
Arch. Math. 120 (2023), 297–305
c© 2023 Springer Nature Switzerland AG

0003-889X/23/030297-9

published online January 11, 2023
https://doi.org/10.1007/s00013-022-01821-2 Archiv der Mathematik

On the growth behavior of partial quotients in continued
fractions
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Abstract. Let [a1(x), a2(x), a3(x), . . .] be the continued fraction expansion
of an irrational number x ∈ (0, 1). It is known that for Lebesgue almost
all x ∈ (0, 1) \ Q,

lim inf
n→∞

log an(x)

log n
= 0 and lim sup

n→∞
log an(x)

log n
= 1.

In this note, the Baire classification and Hausdorff dimension of

E(α, β) :=

{
x ∈ (0, 1) \ Q : lim inf

n→∞
log an(x)

log n
= α, lim sup

n→∞
log an(x)

log n
= β

}

for all α, β ∈ [0, ∞] with α ≤ β are studied. We prove that E(α, β) is
residual if and only if α = 0 and β = ∞, and the Hausdorff dimension of
E(α, β) is as follows:

dimH E(α, β) =

{
1, α = 0;
1/2, α > 0.

Moreover, the Hausdorff dimension of the intersection of E(α, β) and the
set of points with non-decreasing partial quotients is also provided.
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1. Introduction. For x ∈ (0, 1) \ Q, let [a1(x), a2(x), a3(x), . . .] be the contin-
ued fraction expansion of x, where a1(x), a2(x), a3(x), . . . are positive integers,
and are called the partial quotients of x. See [9,12] for more information on
continued fractions.

One of the major problems in the study of continued fractions is to in-
vestigate the growth behavior of the partial quotients an(x) for almost all
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x ∈ (0, 1) \ Q, see for example [5,7,8,10,11,15,17]. A central result in this
topic is the Borel-Bernstein theorem (see [1,2]), which states that for any
ψ : N → R+, the set {x ∈ x ∈ (0, 1)\Q : an(x) ≥ ψ(n) for infinitely many n’s}
has full or null Lebesgue measure according to whether the series

∑
n≥1 1/ψ(n)

diverges or converges. Combining this with the fact that for any k ≥ 1,
1
2k

≤ L{
x ∈ (0, 1) \ Q : an(x) ≥ k

} ≤ 2
k

∀n ≥ 1,

where L denotes the Lebesgue measure, we deduce that for Lebesgue almost
all x ∈ (0, 1) \ Q,

lim inf
n→∞

log an(x)
log n

= 0 and lim sup
n→∞

log an(x)
log n

= 1. (1.1)

Recently, Fang, Ma, and Song [5] showed that the set of points for which the
liminf in (1.1) is equal to a given positive real number has Hausdorff dimension
one-half; while the set of points such that the limsup in (1.1) is equal to a
given positive real number is of full Hausdorff dimension. These aforementioned
results say that the growth behavior of partial quotients is strange in the senses
of Lebesgue measure and Hausdorff dimension. To understand this well, we are
concerned with the subtle set of points for which the liminf and limsup in (1.1)
have different values. More precisely, for α, β ∈ [0,∞] with α ≤ β, let

E(α, β) :=
{

x ∈ (0, 1) \ Q : lim inf
n→∞

log an(x)
log n

= α, lim sup
n→∞

log an(x)
log n

= β

}
.

Our first result is the Baire classification of E(α, β), which gives the “size”
of E(α, β) from a topological point of view.

Theorem 1.1. The set E(α, β) is residual if and only if α = 0 and β = ∞.

Recall that a set is said to be of first category if it can be represented as
a countable union of nowhere dense sets. A set is residual if its complement
is of first category. In a certain sense, the sets of first category are consid-
ered to be “small” while the residual sets are treated to be “large” (see for
example [14]). Theorem 1.1 says that E(α, β) is residual for the extreme case
α = 0 and β = ∞; otherwise it is of first category. In particular, E(0, 1) has
full Lebesgue measure, but is of first category. On the contrary, E(0,∞) has
Lebesgue measure zero, but is residual.

Next we discuss the fractal “size” of E(α, β) by calculating its Hausdorff
dimension. Denote by dimH the Hausdorff dimension (see [3] for the definition).

Theorem 1.2. For α, β ∈ [0,∞] with α ≤ β,

dimH E(α, β) =

⎧⎨
⎩

1, α = 0;
1
2
, α > 0.

From Theorem 1.1, we see that E(α, β) for α > 0 or β < ∞ is “small” in
the sense of Baire category. However, Theorem 1.2 means that these sets are
not that “small” since they have Hausdorff dimension at least one-half. We also
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point out that the Hausdorff dimension of E(α, β) is a function independent
of β.

Let Λ := {x ∈ (0, 1) \ Q : an(x) ≤ an+1(x) ∀n ≥ 1}, namely the set of
points with non-decreasing partial quotients. It was shown in [15] that Λ has
Hausdorff dimension one-half (see also [11]). The authors of [6] proved that for
α ∈ [0,∞],

dimH

{
x ∈ Λ : lim inf

n→∞
log an(x)

log n
= α

}
=

⎧⎨
⎩

0, 0 ≤ α ≤ 1;
α − 1
2α

, α > 1.
(1.2)

We will refine this result to the Hausdorff dimension of the intersection of Λ
and E(α, β).

Theorem 1.3. For α, β ∈ [0,∞] with α ≤ β,

dimH

(
Λ ∩ E(α, β)

)
=

⎧⎨
⎩

0, 0 ≤ α ≤ 1;
α − 1
2α

, α > 1.

The proofs of Theorems 1.1–1.3 will be given in the next section.

2. Proofs of the main results. In this section, we will give the proofs of our
main results. To this end, we need the following notation. For (a1, . . . , an) ∈
Nn, let

In(a1, . . . , an) := {x ∈ (0, 1) : a1(x) = a1, . . . , an(x) = an} .

It was shown in [9] that In(a1, . . . , an) is an interval with two rational end-
points.

2.1. Proof of Theorem 1.1. For simplicity, let I := (0, 1)\Q. In the rest of this
section, the underlying topological space is I with the induced topology. For
α ∈ [0,∞], put

E(α) =
{

x ∈ I : lim inf
n→∞

log an(x)
log n

= α

}
,

E(α) =
{

x ∈ I : lim sup
n→∞

log an(x)
log n

= α

}
,

E∗(α) =
{

x ∈ I : lim inf
n→∞

log an(x)
log n

≤ α

}
,

E
∗
(α) =

{
x ∈ I : lim sup

n→∞
log an(x)

log n
≥ α

}

and use E(α) to represent E(α) ∩ E(α). Then E(α, β) = E(α) ∩ E(β).

Lemma 2.1. For any α ∈ [0,∞], E(α) is dense in I.

Proof. We remark that for any α ∈ [0,∞], there exists x0 ∈ I such that

lim
n→∞

log an(x0)
log n

= α.
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When α ∈ [0,∞), take x0 = [σ1, σ2, . . . , σn, . . .] with σn := 	nα
; when α = ∞,
take x0 = [σ̂1, σ̂2, . . . , σ̂n, . . .] with σ̂n := 	en
. Write

D(x0) :=
∞⋃

K=1

{
x ∈ I : an(x) = an(x0) ∀n ≥ K

}
.

Then D(x0) is dense in I. In fact, for y ∈ I, we can find a sequence of points
in D(x0)

yn := [a1(y), . . . , an(y), an+1(x0), an+2(x0), . . .],

and yn → y as n → ∞. Note that D(x0) is a subset of E(α), so E(α) is dense.
�

Since I is a Baire space, to prove that a set is residual, it is equivalent to
show that it contains a dense Gδ subset, see for example [14, Theorem 9.2].
The method of the proof of the following result has been used by the authors
in [16].

Lemma 2.2. For any α ∈ (0,∞), E∗(α) and E
∗
(α) are residual.

Proof. Let α ∈ (0,∞) be fixed. It follows from Lemma 2.1 that E∗(α) and
E

∗
(α) are dense. To prove that E∗(α) and E

∗
(α) are residual, it suffices to

show that they are all Gδ sets.
For E∗(α), we see that

E∗(α) =
∞⋂

k=1

∞⋂
N=1

∞⋃
n=N

Bn(α, k),

where Bn(α, k) is given by

Bn(α, k) :=
{

x ∈ I : an(x) < nα+1/k
}

.

We remark that each non-empty set Bn(α, k) can be written as a countable
union of open sets in I. To be more precise,

Bn(α, k) =
�nα+1/k�⋃

j=1

⋃
(σ1,...,σn−1)∈Nn−1

In(σ1, . . . , σn−1, j) ∩ I,

where In(σ1, . . . , σn−1, j) ∩ I is open in I. Then E∗(α) is a Gδ set.
For E

∗
(α), we conclude that

E
∗
(α) =

∞⋂
k=�1/α�+1

∞⋂
N=1

∞⋃
n=N

B̂n(α, k),

where B̂n(α, k) =
{
x ∈ I : an(x) > nα−1/k

}
. Since B̂n(α, k) is a countable

union of open sets in I, E
∗
(α) is a Gδ set. �

We are now in a position to give the proof of Theorem 1.1.
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Proof of Theorem 1.1. For any K ∈ N, we deduce from Lemma 2.2 that E∗(1/K)
and E

∗
(K) are residual. Note that

E∗(0) = ∩∞
K=1E

∗(1/K) and E
∗
(∞) = ∩∞

K=1E
∗
(K)

since the countable intersection of residual sets is also residual, we obtain that
E∗(0) and E

∗
(∞) are residual. Consequently, E(0,∞) is residual.

By the definition of the set of first category, every subset of a set of first
category is also of first category. For α > 0 or β < ∞, each set E(α, β) is a
subset of the complement of E(0,∞), and so E(α, β) is of first category. �

2.2. Proof of Theorem 1.2. We will use the following lemma to prove Theo-
rem 1.2 by choosing a suitable sequence {sn}. See [13] for a general result.

Lemma 2.3 ([4, Lemma 3.2]). Let {sn} be a sequence of positive real numbers
such that sn → ∞ as n → ∞. Then

dimH

{
x ∈ I : sn ≤ an(x) < 2sn ∀n ≥ 1

}
=

1
2 + η

,

where η ∈ [0,∞] is given by

η := lim sup
n→∞

log sn+1

log s1 + · · · + log sn
.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We first point out three known facts (case α = β):
dimH E(0, 0) = 1 (Jarńık [10]); dimH E(α, α) = 1/2 if 0 < α < ∞ (Fang-Ma-
Song [5]); dimH E(∞,∞) = 1/2 which follows from dimH{x : an(x) → ∞} =
1/2 (Good [8]).

For the case α < β, when α = 0, we remark that E(α, β) has full Hausdorff
dimension, whose proof is the same as that of [5, Theorem 1.1]. So it remains
to deal with the cases: 0 < α < β < ∞ and 0 < α < β = ∞.

Case (i) 0 < α < β < ∞. For the upper bound of dimH E(α, β), it follows
from [8] that

dimH E(α, β) ≤ dimH

{
x ∈ I : an(x) → ∞ as n → ∞}

=
1
2
.

For the lower bound of dimH E(α, β), we define sn by nβ for n = 2k and by
nα for other n’s. Then nα ≤ sn ≤ nβ and η = 0. Write E := {x ∈ I : sn ≤
an(x) < 2sn ∀n ≥ 1}. As a consequence of Lemma 2.3, dimH E = 1/2. Now it
suffices to claim that E is a subset of E(α, β). In fact, for x ∈ E, we see that

α ≤ lim inf
n→∞

log an(x)
log n

≤ lim sup
n→∞

log an(x)
log n

≤ β

and

lim
k→∞

log ank+1(x)
log(nk + 1)

= α and lim
k→∞

log ank
(x)

log nk
= β.

Case (ii) 0 < α < β = ∞. The proof is very similar to that of Case (i).
The upper bound follows from [8]. For the lower bound, we define ŝn by en

for n = 2k and by nα for other n’s. Then nα ≤ ŝn ≤ en and η̂ = 0. Write
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Ê := {x ∈ I : ŝn ≤ an(x) < 2ŝn∀n ≥ 1}. Then Ê is a subset of E(α,∞). It
follows from Lemma 2.3 that dimH E(α,∞) ≥ dimH Ê = 1/2. �
2.3. Proof of Theorem 1.3. To deal with Λ ∩ E(α, β), we need to construct
a set of continued fractions such that not only they are in E(α, β) but also
their partial quotients are non-decreasing. This can be done by the following
lemma.

Lemma 2.4 ([6, Lemma 3.4]). Let {tm} be a sequence of positive real numbers
such that tm → ∞ as m → ∞. Then

dimH

{
x ∈ I : mtm ≤ am(x) < (m + 1)tm ∀m ≥ 1

}
=

1
2 + ξ

,

where ξ ∈ [0,∞] is given by

ξ := lim sup
m→∞

2 log(m + 1)! + log tm+1

log t1 + · · · + log tm
.

We are going to prove Theorem 1.3.

Proof of Theorem 1.3. The upper bound follows from (1.2) and the fact that
our set in question is a subset of E(α).

For the lower bound, we only need to deal with the case α > 1. When
α = β, the proof is a direct consequence of Lemma 2.4 by letting tm = mα−1.
Assume α < β. We are going to distinguish two cases β < ∞ and β = ∞.

Case (i) 1 < α < β < ∞. Let {mk} be an increasing sequence of positive
integers such that m0 = 1,

(mk+1 − 1)α−1 > mβ−1
k , and mβ−1

k+1 > (mk+1 − 1)α−1 + mβ−1
k .

Define

tm :=

{
mβ−1

k + 1, m = mk;

mβ−1
k + mα−1, mk < m < mk+1.

Then {tm} is increasing, mα−1 < tm < 2mβ−1, tmk
= mβ−1

k + 1, (mk+1 −
1)α−1 < tmk+1−1 < 2(mk+1 − 1)α−1. Hence

lim inf
m→∞

log tm
log m

= α − 1, lim sup
m→∞

log tm
log m

= β − 1

and consequently

lim
m→∞

log tm+1

log t1 + · · · + log tm
= 0.

Write F := {x ∈ I : mtm ≤ am(x) < (m + 1)tm ∀m ≥ 1}. So, F is a subset of
Λ ∩ E(α, β). In fact, for any x ∈ F, we have that am+1(x) ≥ (m + 1)tm+1 ≥
(m + 1)tm > am(x) and

lim inf
m→∞

log am(x)
log m

= α, lim sup
m→∞

log am(x)
log m

= β.

Note that

ξ ≤ lim sup
m→∞

2 log(m + 1)
log tm

=
2

α − 1
,



Vol. 120 (2023) Growth behavior of partial quotients 303

we conclude from Lemma 2.4 that dimH

(
Λ∩E(α, β)

) ≥ dimH F ≥ (α−1)/(2α).
Case (ii) 1 < α < β = ∞. The proof is similar to that of Case (i). Let {m̂k}

be a sequence of positive integers such that m̂0 = 1,

(m̂k+1 − 1)α−1 > em̂k , and em̂k+1 > (m̂k+1 − 1)α−1 + em̂k .

Write

t̂m :=
{

em̂k , m = m̂k;
em̂k + mα−1, m̂k < m < m̂k+1.

Then

lim inf
m→∞

log t̂m
log m

= α − 1, lim sup
m→∞

log t̂m
log m

= ∞

and consequently

lim sup
m→∞

log t̂m+1

log t̂1 + · · · + log t̂m
= 0.

Let F̂ := {x ∈ I : mt̂m ≤ am(x) < (m + 1)t̂m ∀m ≥ 1}. So, F̂ is a subset of
Λ ∩ E(α,∞). Applying Lemma 2.4, we obtain that

dimH

(
Λ ∩ E(α,∞)

) ≥ dimH F̂ ≥ α − 1
2α

.

�
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