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Improved local convergence analysis of the Landweber iteration
in Banach spaces
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Abstract. The convergence analysis of the Landweber iteration for solv-
ing inverse problems in Banach spaces via Hölder stability estimates is
well studied by de Hoop et al. (Inverse Probl 28(4):045001, 2012) in the
presence of unperturbed data. For real life problems, it is important to
study the convergence analysis in the presence of perturbed data. In this
paper, we show that the convergence analysis of the Landweber iteration
can also be studied by utilizing the Hölder stability estimates in the pres-
ence of perturbed data. Furthermore, as a by-product, we formulate the
convergence rates of the Landweber iteration without utilizing any addi-
tional smoothness condition. This shows the advantage of Hölder stability
estimates over a tangential cone condition in the theory of inverse prob-
lems.
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1. Introduction and main result.

1.1. Background and main problem. Let F : D(F ) ⊂ B1 → B2 be a nonlinear
operator between Banach spaces B1 and B2. Here D(F ) represents the domain
of F. In this paper, we are concerned about the solution of following equation:

F (u) = v, u ∈ D(F ), v ∈ B2. (1.1)

For practical applications, it is known that v is never available. Instead some
perturbed data vδ fulfilling ‖vδ−v‖ ≤ δ is available, where δ > 0. Consequently,
(1.1) is ill-posed due to no continuous dependence between the solution and
data. We assume that (1.1) has a solution. Let it be represented by u†. To
approximately solve (1.1), a number of regularization methods are known in
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Hilbert as well as Banach spaces (cf. [2–6,8,10,17]). A well known and classical
regularization method is the Landweber iteration [7,17]:

Jp(ur+1) = Jp(ur) − μF ′(ur)∗jp(F (ur) − v), ur+1 = J∗
q (Jp(ur+1)), r ≥ 0.

(1.2)

Here F ′(ur) is the Fréchet derivative of F at ur, F ′(ur)∗ is the adjoint of
F ′(ur), u0 is an initial guess of the exact solution u†, p > 1, p and q are con-
jugate exponents, and Jp : B1 → 2B∗

1 defined as Jp(u) := {u∗ ∈ B∗
1 | 〈u, u∗〉 =

‖u‖p, ‖u∗‖ = ‖u‖p−1} is the duality mapping of B1 with the gauge function
s → sp−1. For a gauge function s → sq−1, the corresponding duality mapping
J∗

q : B∗
1 → B1 is the inverse of Jp. The convergence analysis of (1.2) is well

studied by utilizing a tangential cone condition [4] in Hilbert as well as Banach
spaces [10,17]. In addition, the convergence rates for this method have been
obtained by incorporating the source conditions and variational inequalities
[10,17]. Recently, de Hoop et al. [7] studied the convergence analysis of (1.2)
by utilizing the following Hölder-type stability:

Δp(u, ũ) ≤ Ap‖F (u) − F (ũ)‖ p(1+ε)
2 , ∀u, ũ ∈ Bρ(u†), (1.3)

where ε ∈ [0, 1], p > 1, A > 0, Δp(u, ū) is the Bregman distance of ū from u
and it is given by

Δp(u, ū) := p−1‖ū‖p − p−1‖u‖p − 〈Jp(u), ū − u〉.
Here, we assume that Bρ(u†) := {ū ∈ B1 : Δp(ū, u†) ≤ ρ} ⊂ D(F ) for some
ρ > 0. However, the convergence analysis of the perturbed version of (1.2),
i.e.,

Jp(uδ
r+1) = Jp(uδ

r) − μF ′(uδ
r)

∗jp(F (uδ
r) − vδ), uδ

r+1 = J∗
q (Jp(uδ

r+1)), r ≥ 0,

(1.4)

is not yet studied in the literature via the stability estimates (1.3). In this
paper, we fill this important gap in the literature. The importance of studying
the convergence analysis of an iterative method via stability estimates is that
these provide the convergence rates without the requirement of any additional
smoothness condition. This is in contrary to the standard analysis. We refer
to [11–15] for studying the convergence analysis of several other regularization
methods through stability estimates. Very recently, Jin [9] studied the conver-
gence rates for the method (1.4) in Banach spaces for linear ill-posed problems
with perturbed data.
To this end, we recall some basic definitions and known results related to
our work (see [11,17] for more details). For u ∈ B1 and ζ ∈ B∗

1 , we write
〈ζ, u〉 = ζ(u) for the duality pairing. In this paper, in order to ensure the
well-definedness of the method (1.4), we require the following definitions of
the modulus of convexity δB1(·) and the modulus of smoothness ρB1(·):

δB1(ε) := inf
0≤ε≤2

{
(2 − ‖u + ū‖) : u, ū ∈ S, ‖u − ū‖ ≥ ε

}
,

ρB1(τ) := sup
τ≥0

{
(‖u + τ ũ‖ + ‖u − τ ũ‖ − 2) : u, ũ ∈ S

}
.
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Here S denotes the boundary of the unit sphere in B1. We say that B1 is p-
convex if δB1(ε) ≥ C1ε

p for all ε ∈ [0, 2], where p ≥ 0 and C1 > 0. Further, we
say that B1 is q-smooth if ρB1(τ) ≤ C2τ

q for all τ ≥ 0, where q > 1 and C2 > 0.
Also, B1 is uniformly convex if for any ε ∈ (0, 2], δB1(ε) > 0 and it is uniformly
smooth if limτ→0 ρB1(τ)τ−1 = 0. We note that B1 is uniformly convex if and
only if B∗

1 is uniformly smooth. Moreover, any uniformly convex or uniformly
smooth Banach space is reflexive. We emphasize that uniform smoothness of
B1 guarantees that Jp(u) is single valued for all u ∈ B1, i.e., the method (1.4)
becomes well-defined.

Finally, we recall a known result that will be utilized in our work.

Lemma 1 ([7,16]). Let B1 be a uniformly convex and uniformly smooth Banach
space. Then, for all u, ū ∈ B1 and u∗, ū∗ ∈ B∗

1 , we have:

(1) Δp(u, ū) ≥ 0 and Δp(u, ū) = 0 ⇐⇒ u = ū.
(2) If B1 is p-convex, then Δp(u, ū) ≥ C3p

−1‖u − ū‖p, where C3 > 0 is a
constant.

(3) If B∗
1 is q-smooth, then Δq(u∗, ū∗) ≤ C4q

−1‖u∗ − ū∗‖q, where C4 > 0 is
a constant.

(4) The following are equivalent: (a) limr→∞ ‖ur − u‖ = 0. (b) limr→∞
Δp(ur, u) = 0. (c) limr→∞ ‖ur‖ = ‖u‖ and
limr→∞〈Jp(ur), u〉 = 〈Jp(u), u〉.

(5) Δp(u, ũ) = p−1‖ũ‖p + q−1‖u‖p − 〈Jp(u), ũ〉 = p−1‖ũ‖p − p−1‖u‖p −
〈Jp(u), ũ〉 + ‖u‖p.

1.2. Main result. In order to formulate our main result, we discuss certain
assumptions. With the gauge function s → sp−1, we assume that jp denotes
the single valued selection of the duality mapping. For the method (1.4), we
engage the following well known discrepancy criterion:

‖vδ − F (uδ
r∗)‖ ≤ τδ < ‖vδ − F (uδ

r)‖, 0 ≤ r < r∗, (1.5)

where τ > 1 satisfies

1 − 2
τ

− 1
2τp

> 0 (1.6)

and r∗ = r∗(δ, vδ) is the stopping index. The utilization of (1.5) yields r∗ and
uδ

r∗ which is the required approximate solution. Our main result is as follows:

Theorem 1. Let B1 be p-convex and q-smooth with conjugate exponents 1 <
p, q < ∞ and let B2 be an arbitrary Banach space. Moreover, we assume:

(1) For all u, ū ∈ Bρ(u†), it holds that

‖F ′(u) − F ′(ū)‖ ≤ C5‖u − ū‖, where C5 > 0. (1.7)

(2) For all u ∈ Bρ(u†), it holds that ‖F ′(u)‖ ≤ C6, where C6 > 0.
(3) u† is a solution of (1.1) such that Δp(u0, u

†) ≤ ρ for

ρ
1
p = 2−pεC−1

6 (C3A
2)− 1

ε (p−1C3)(1+
2
ε )

1
p . (1.8)
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(4) μ in (1.4) is such that

μ <

(
q

2C4C6

) 1
q−1

and 4C4Cq
6q

−1μq−1 < 1. (1.9)

(5) The Hölder stability estimate (1.3) and (1.5) hold with τ the same as in
(1.6).

Further, assume that

R := 1 − 2
τ

− 1
2τp

. (1.10)

Then, we have:
(a) For 0 ≤ r < r∗, Δp(uδ

r+1, u
†) ≤ Δp(uδ

r, u
†).

(b) The stopping index r∗ is finite.
(c) Moreover, for a given δ > 0, if ρ > 0 is such that ρ ≤ C7δ

p for some
C7 > 0, then the following convergence rates can be derived:

Δp(uδ
r∗ , u†) ≤ C8δ

p,

where C8 = C7 − r∗ μR
2 .

Proof. We engage the fundamental theorem of the Fréchet derivative along
with (1.7) to deduce that

‖F (uδ
r) − vδ − F ′(uδ

r+1)(u
δ
r+1 − u†)‖ ≤ δ +

C5

2
‖uδ

r+1 − u†‖2. (1.11)

It is known that Δp(u0, u
†) ≤ ρ. Suppose by the induction principle that

Δp(uδ
s, u

†) ≤ ρ for s = 0, 1, . . . , r.

We claim that Δp(uδ
r+1, u

†) ≤ ρ. Using induction, the mean value inequality,
(2) of Theorem 1 and (2) of Lemma 1, we obtain

‖F (uδ
s) − v‖ ≤ C6(pC−1

3 )
1
p Δp(uδ

s, u
†)

1
p ≤ C6(pC−1

3 )
1
p ρ

1
p , (1.12)

where s = 0, 1, . . . , r. Next, by taking ū∗ = Jp(uδ
r+1) and u∗ = Jp(uδ

r) in (3) of
Lemma 1, we derive that

Δq(Jp(uδ
r), Jp(uδ

r+1)) ≤ C4q
−1‖Jp(uδ

r+1) − Jp(uδ
r)‖q. (1.13)

After applying (5) of Lemma 1 and the result that J−1
p (u∗) = J∗

q (u∗) along
with the definition of the duality mapping, we note that

Δq(Jp(uδ
r), Jp(uδ

r+1))

= q−1‖Jp(uδ
r+1)‖q − q−1‖Jp(uδ

r)‖q − 〈J∗
q (Jp(uδ

r)), Jp(uδ
r+1)〉 + ‖Jp(uδ

r)‖q

= q−1‖Jp(uδ
r+1)‖q − q−1‖Jp(uδ

r)‖q − 〈J∗
q (Jp(uδ

r)), Jp(uδ
r+1)〉 + ‖uδ

r‖p

= q−1‖Jp(uδ
r+1)‖q − q−1‖Jp(uδ

r)‖q − 〈Jp(uδ
r+1) − Jp(uδ

r), u
δ
r〉.

Plugging (1.13) in the last estimate we deduce that

q−1(‖Jp(uδ
r+1)‖q − ‖Jp(uδ

r)‖q)

≤ Δq(Jp(uδ
r), Jp(uδ

r+1)) + 〈Jp(uδ
r+1) − Jp(uδ

r), u
δ
r〉

≤ C4q
−1‖Jp(uδ

r+1) − Jp(uδ
r)‖q + 〈Jp(uδ

r+1) − Jp(uδ
r), u

δ
r〉. (1.14)
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Again we note from (5) of Lemma 1 that

Δp(uδ
r+1, u

†) − Δp(uδ
r, u

†) = q−1(‖Jp(uδ
r+1)‖q − ‖Jp(uδ

r)‖q)

−〈Jp(uδ
r+1) − Jp(uδ

r), u
†〉. (1.15)

By combining (1.14) and (1.15), we note that

Δp(uδ
r+1, u

†) − Δp(uδ
r, u

†) ≤ C4q
−1‖Jp(uδ

r+1) − Jp(uδ
r)‖q

+〈Jp(uδ
r+1) − Jp(uδ

r), u
δ
r − u†〉.

We incorporate (1.4) and assumption (2) of Theorem 1 in the last inequality
to derive that

Δp(uδ
r+1, u

†) − Δp(uδ
r, u

†) ≤ C4(C6μ)qq−1‖Aδ
r‖p − μ〈jp(Aδ

r), F
′(uδ

r)(u
δ
r − u†)〉

= C4(C6μ)qq−1‖Aδ
r‖p − μ〈jp(Aδ

r),Aδ
r〉 + μ〈jp(Aδ

r),Aδ
r − F ′(uδ

r)(u
δ
r − u†)〉

≤ C4(C6μ)qq−1‖Aδ
r‖p − μ‖Aδ

r‖p + μ‖Aδ
r‖p−1‖Aδ

r − F ′(uδ
r)(u

δ
r − u†)‖

≤ C4(C6μ)qq−1‖Aδ
r‖p − μ‖Aδ

r‖p + μ‖Aδ
r‖p−1

(
δ +

C5

2
‖uδ

r+1 − u†‖2
)

, (1.16)

where Aδ
r = F (uδ

r) − vδ and the last inequality holds due to (1.11) and the
definition of the duality mapping. We plug the Hölder stability estimate (1.3)
and (2) of Lemma 1 in (1.16) to further write it as

Δp(uδ
r+1, u

†) − Δp(uδ
r, u

†) ≤ 1
2
(2C4(C6μ)qq−1 − μ)‖Aδ

r‖p − μ

2
‖Aδ

r‖p

+μδ‖Aδ
r‖p−1 +

μ

2
C5A

2(pC−1
3 )

2
p ‖F (uδ

r) − v‖p+ε.

Inserting (1.12) in the last estimate, we derive that

Δp(uδ
r+1, u

†) − Δp(uδ
r, u

†) ≤ 1
2
(2C4(C6μ)qq−1 − μ)‖Aδ

r‖p − μ

2
‖Aδ

r‖p

+μδ‖Aδ
r‖p−1 +

μ

2
C5A

2(pC−1
3 )

2
p (C6(pC−1

3 )
1
p ρ

1
p )ε‖F (uδ

r) − v‖p. (1.17)

Using (1.9) and the estimate

(α1 + α2)p ≤ 2p−1(αp
1 + αp

2) for α1, α2 ≥ 0, p ≥ 1 (1.18)

in (1.17), we get

Δp(uδ
r+1, u

†) − Δp(uδ
r, u

†) ≤ −μ

2
‖Aδ

r‖p + μδ‖Aδ
r‖p−1 +

μ

4
δp

+
1
2

(
2C4(C6μ)qq−1 − μ +

μ

2

)
‖Aδ

r‖p. (1.19)

By incorporating the discrepancy principle (1.5) and (1.9) in (1.19), we obtain

Δp(uδ
r+1, u

†) − Δp(uδ
r, u

†) ≤ −1
2

(
1 − 2

τ
− 1

2τp

)
μ‖Aδ

r‖p, (1.20)

where r+1 ≤ r∗. This and the choice of τ mentioned in (1.6) together with the
induction hypothesis guarantee that Δp(uδ

r+1, u
†) < ρ. Therefore, our claim

holds which completes the proof of assertion (a).
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Next, we show that the stopping index r∗ < ∞. For this, we incorporate
(1.9) and (1.20) to write

R

2
μ‖Aδ

r‖p ≤ Δp(uδ
r, u

†) − Δp(uδ
r+1, u

†).

Summing this from r = 0 to r∗ − 1, we deduce that
r∗−1∑

r=0

‖Aδ
r‖p ≤ 2

μR
Δp(u0, u

†).

This, the choice of u0, and (1.5) yield

r∗(τδ)p ≤
r∗−1∑

r=0

‖Aδ
r‖p ≤ 2

μR
Δp(u0, u

†) ≤ 2ρ

μR
.

We note that as 2ρ
μR < ∞ and both τ, δ are positive quantities, r∗ can never

be infinite. This proves assertion (b).
To this end, we deduce the convergence rates for the method (1.4). It follows

from the Hölder stability estimate (1.3) that

Δp(uδ
r, u

†) ≤ Ap‖F (uδ
r) − F (u†)‖ p(1+ε)

2 .

This with a slightly modified version of (1.18) (i.e., (α1 + α2)p ≤ 2p(αp
1 + αp

2)
for α1, α2 ≥ 0, p ≥ 0) implies that

Δp(uδ
r, u

†) ≤ 2p1Ap(‖Aδ
r‖p1 + δp1) =⇒ −‖Aδ

r‖p1 ≤ −Δp(uδ
r, u

†)
2p1Ap

+ δp1 ,

where p1 = p(1+ε)
2 . Inserting the last estimate in (1.20), we obtain

Δp(uδ
r+1, u

†) − Δp(uδ
r, u

†) ≤ −1
2
μR

(
Δp(uδ

r, u
†)

2p1Ap
+ δp1

) 2
1+ε

. (1.21)

With some minor rearrangements, (1.21) leads to

Δp(uδ
r+1, u

†) ≤ Δp(uδ
r, u

†) − μR

2
δp.

Consequently, by the induction hypothesis, we derive that

Δp(uδ
r∗ , u†) ≤ Δp(uδ

0, u
†) − μR

2
r∗δp.

From the last inequality, we can deduce the convergence rates in assertion (c)
which completes the proof. �

Remark 1. The assumptions considered in our work are standard and similar
to [7]. Consequently, our results are applicable on a severely ill-posed inverse
conductivity problem related to electrical impedance tomography (EIT) [1]. de
Hoop et al. [7] showed that the inverse conductivity problem fulfills a Hölder
stability estimate (1.3) for p = 2 and ε = 1. In addition to this, it is also known
that the operator associated with this inverse conductivity problem fulfills (1)
and (2) of Theorem 1. Therefore, by carefully choosing the other parameters
such as τ, μ etc., one can apply our results on the inverse conductivity problem.
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2. Conclusion and future scope. In this paper, we have shown that one can
obtain the convergence rates of the Landweber iteration method through sta-
bility estimates in the presence of perturbed data without the utilization of
any additional smoothness concept. This paper fills an important gap in the
literature. With this paper, the study of convergence analysis of the Landwe-
ber method for perturbed as well as unperturbed data via stability estimates is
complete. One of the most important future tasks in the direction of studying
the convergence analysis via stability estimates is to derive the optimal con-
vergence rates. In this direction, the optimality conditions discussed in [4,17]
can be used as a reference.
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