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Abstract. We establish a Nishikawa type maximum principle for the drift
Laplacian and, under a suitable boundedness of the second fundamental
form, we apply it to prove that the hyperplanes are the only complete
n-dimensional submanifolds immersed with either parallel weighted mean
curvature vector, for codimension p ≥ 2, or constant weighted mean cur-
vature, for codimension p = 1, in the (n + p)-dimensional Gaussian space
G

n+p, which corresponds to the Euclidean space R
n+p endowed with the

Gaussian probability measure dμ = e−|x|2/4dσ, where dσ is the stan-
dard Lebesgue measure of R

n+p. Furthermore, we also use a maximum
principle at infinity to get additional rigidity results, as well as a nonexis-
tence result related to nonminimal submanifolds immersed with parallel
weighted mean curvature vector in G

n+p.
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1. Introduction and statements of the main results. Given an (n+p)-dimensio-
nal Riemannian manifold (M

n+p
, ḡ) and a smooth function f ∈ C∞(M), we

recall that the weighted manifold associated to M
n+p

and f is just the triple
(M

n+p
, ḡ, dμ = e−fdM), where dM denotes the standard volume element

of M
n+p

. For a throughout discussion of weighted manifolds, we suggest the
articles [10,15,19] and references therein.

An important example of a weighted Riemannian manifold is the so-called
Gaussian spaceGn+p, which corresponds to the Euclidean space Rn+p endowed
with the Gaussian probability measure

dμ = e− |x|2
4 dσ, (1.1)
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where dσ is the standard Lebesgue measure of Rn+p. In this context, the f -
mean curvature vector of an immersed n-dimensional submanifold X : Mn �
G

n+p is defined by

�Hf = �H + (∇f)⊥ = �H +
1
2
X⊥. (1.2)

Here, �H stands for the standard (nonnormalized) mean curvature vector of the
immersion X : Mn � R

n+p and ( )⊥ denotes the normal part of a vector field
on R

n+p. When �Hf vanishes identically, Mn is called a self-shrinker of the
mean curvature flow, which plays an important role in the study of the mean
curvature flow because it describes all possible blow ups at a given singularity
of such a flow and, as it was pointed out by Colding and Minicozzi in [7],
self-shrinkers are critical submanifolds for the entropy functional.

There exist in the literature many characterizations and rigidity results of
self-shrinkers under appropriate hypothesis. For instance; Ecker and Huisken
[9] proved that if a self-shrinker is an entire graph with polynomial volume
growth, then it is a hyperplane. Later on, the condition of polynomial volume
growth was removed by Wang [18]. In [12], Le and Sesum showed that any
smooth self-shrinker with polynomial volume growth and satisfying |A|2 < 1

2
is a hyperplane, where A denotes the second fundamental form of an immer-
sion. Afterwards, Cao and Li [3] generalized this result to arbitrary codimen-
sion proving that any smooth complete self-shrinker with polynomial volume
growth and |A|2 ≤ 1

2 is either a round sphere, a circular cylinder, or a hyper-
plane.

In [6], Cheng and Peng gave estimates on supremum and infimum of the
squared norm of the second fundamental form of self-shrinkers without as-
sumption on polynomial volume growth which, in particular, enabled them to
obtain the rigidity theorem of [3] without assumption on polynomial volume
growth (see also [5, Theorem 1.1] concerning the 2-dimensional case). More re-
cently, Wang et al. [17] proved a rigidity theorem for complete n-dimensional
submanifolds with parallel f -mean curvature vector in the Gaussian space
G

n+p, under an integral curvature pinching condition, generalizing a previous
rigidity result for self-shrinkers due to Ding and Xin [8].

Proceeding with this picture and considering initially the case that the
codimension p ≥ 2, we obtain a sort of extension of [6, Theorem 1.1].

Theorem 1.1. Let X : Mn � G
n+p be a complete submanifold immersed with

parallel f-mean curvature vector �Hf in the (n+p)-dimensional Gaussian space
G

n+p, with p ≥ 2. If the second fundamental form A of Mn satisfies

sup
M

|A| < γ1, (1.3)

where

γ1 =

√
| �Hf |2 + 3 − | �Hf |

3
, (1.4)

then Mn is a hyperplane of Gn+p.
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When the codimension is p = 1, the f -mean curvature Hf of X : Mn �
G

n+1 is defined by

Hf = H + 〈∇f,N〉 = H +
1
2
〈X,N〉, (1.5)

where H = tr(A) corresponds to the standard mean curvature of X : Mn �
R

n+1 with respect to its orientation N . When Hf ≡ λ for some constant λ ∈ R,
Mn is also called a λ-hypersurface.

In [11], Guang proved a classification theorem for complete hypersurfaces
with polynomial volume growth and constant f -mean curvature, under a suit-
able boundedness on the norm of the second fundamental form. More recently,
Miranda and Vieira [14] replaced the assumption of polynomial volume growth
in Guang’s result by an assumption on the integral of the second fundamental
form. They also generalized Cheng-Peng’s result in codimension 1 for the case
of constant f -mean curvature. In our second rigidity result, we obtain a slight
improvement of [14, Corollary 11] in the sense that we are not requiring that
the hypersurface Mn is embedded, but just immersed in G

n+1.

Theorem 1.2. Let X : Mn � G
n+1 be a complete hypersurface immersed

with constant f-mean curvature Hf in the (n+1)-dimensional Gaussian space
G

n+1. If the second fundamental form A of Mn satisfies

sup
M

|A| < γ2, (1.6)

where

γ2 =

√
H2

f + 2 − |Hf |
2

, (1.7)

then Mn is a hyperplane of Gn+1.

The proofs of Theorems 1.1 and 1.2 are presented in Section 4. Our ap-
proach is based on a Nishikawa type maximum principle for the drift Laplacian,
which is proved in Section 3 using a more general version of the Omori-Yau
maximum principle due to Chen and Qiu [4] (see Proposition 3.1). Further-
more, in Section 5, we use a maximum principle at infinity due to Aĺıas,
Caminha, and Nascimento [1] to get additional rigidity results, as well as a
nonexistence result related to nonminimal submanifolds immersed with paral-
lel weighted mean curvature vector in G

n+p (see Theorems 5.2, 5.3, and 5.4).
Before, in Section 2, we recall some basic facts related to submanifolds im-
mersed in the Euclidean space.

2. Preliminaries. Let X : Mn � R
n+p be an n-dimensional connected sub-

manifold immersed in the (n+p)-dimensional Euclidean space Rn+p. We choose
a local field of orthonormal frame {e1, . . . , en+p} in R

n+p, with dual coframe
{ω1, . . . , ωn+p}, such that, at each point of Mn, e1, . . . , en are tangent to Mn

and en+1, . . . , en+p are normal to Mn. We will use the following convention
for indices

1 ≤ A,B,C, . . . ≤ n + p, 1 ≤ i, j, k, . . . ≤ n, and
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n + 1 ≤ α, β, γ, . . . ≤ n + p.

With restricting on Mn, the second fundamental form A, the curvature
tensor R of Mn, and the normal curvature tensor R⊥ of Mn are given by

ωiα =
∑

j

hα
ijωj , A =

∑
i,j,α

hα
ijωi ⊗ ωj ⊗ eα,

dωij =
∑

k

ωik ∧ ωkj − 1
2

∑
k,l

Rijklωk ∧ ωl,

dωαβ =
∑

γ

ωαγ ∧ ωγα − 1
2

∑
k,l

R⊥
αβklωk ∧ ωl,

where ωBC are the connection 1-forms on R
n+p. Moreover, the Gauss equation

is given by

Rijkl =
∑
α

(
hα

ikhα
jl − hα

ilh
α
jk

)
. (2.1)

Hence, denoting by Hα the components of the mean curvature vector, that
is,

�H =
∑
α

Hαeα =
∑
α

(∑
k

hα
kk

)
eα,

it is not difficult to verify from (2.1) that the components of the Ricci tensor
Rik satisfy

Rik =
∑
α

Hαhα
ik −

∑
α,j

hα
ijh

α
jk. (2.2)

3. A Nishikawa type result for the drift Laplacian. According to [4], we define
the Bakry–Émery–Ricci tensor Ricf of a weighted manifold M

n+1

f as being
the following extension of the standard Ricci tensor Ric:

Ricf = Ric − Hessf. (3.1)

Furthermore, given a hypersurface Mn immersed in M
n+1

f , the f -divergence
operator on Mn is defined by

divf (X) = efdiv(e−fX) (3.2)

for all tangent vector fields X on Mn and, for a smooth function u : Mn → R,
its drift Laplacian (or f -Laplacian) is given by

Δfu = divf (∇u) = Δu − 〈∇u,∇f〉. (3.3)

In our next result, we apply a version of the Omori-Yau maximum principle
due to Chen and Qiu [4, Theorem 1] to get a sort of extension of Nishikawa’s
result in [16].

Proposition 3.1. Let (Mn, 〈 , 〉) be an n-dimensional complete Riemannian man-
ifold and let f be a smooth function on Mn such that Ricf ≥ −G(r)〈 , 〉, where
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r is the distance function on Mn from a fixed point of it, G : R → R is a
positive continuous function satisfying

ϕ(t) :=

t∫

ρ0+1

dr∫ r

ρ0
G(s)ds + 1

−→ +∞ (t → +∞)

for some positive constant ρ0 ∈ R. If u ∈ C2(M) is a nonnegative function on
Mn such that

Δfu ≥ βu1+α (3.4)

for some positive constants α, β ∈ R, then u is identically zero on Mn.

Proof. Let u ∈ C2(M) be a nonnegative function. We consider on Mn the
function F given by

F =
1

(1 + u)λ
(3.5)

for some constant λ > 0 which will be chosen later. We have that 0 < F ≤ 1
and, in particular, inf F ≥ 0.

Moreover, given any tangent vector field X on M , from (3.5), we obtain

〈∇F,X〉 = X

(
1

(1 + u)λ

)
= −λ(1 + u)−λ−1X(u)

= − λ

(1 + u)λ+1
〈∇u,X〉 = 〈−λF

λ+1
λ ∇u,X〉,

that is,

∇F = −λF
λ+1

λ ∇u. (3.6)

Consequently, using (3.6), we get

ΔF = div(−λF
λ+1

λ ∇u) = −λ∇u(F
λ+1

λ ) − λF
λ+1

λ Δu

= −(λ + 1)F
1
λ ∇u(F ) − λF

λ+1
λ Δu

= λ(λ + 1)F
2+λ

λ |∇u|2 − λF
λ+1

λ Δu. (3.7)

Thus, from (3.3) and (3.7), we have

ΔfF = λ(λ + 1)F
2+λ

λ |∇u|2 − λF
λ+1

λ Δu + λF
λ+1

λ 〈∇f,∇u〉
= −λF

λ+1
λ (Δu − 〈∇f,∇u〉) + λ(λ + 1)F

2+λ
λ |∇u|2. (3.8)

Hence, from (3.6) and (3.8), we reach at the following relation

λFΔfF = −λ2F
2λ+1

λ Δfu + (λ + 1)|∇F |2. (3.9)

On the other hand, since F is bounded on Mn, we have

lim
x→∞

F (x)
ϕ(r(x))

= 0



668 D.F. da Silva et al. Arch. Math.

since 1
ϕ(r(x)) −→ 0 when r(x) −→ +∞. Thus, taking into account our con-

straint on Ricf , we can apply [4, Theorem 1] to guarantee the existence of a
sequence {xm}m∈N ⊂ Mn such that

⎧⎨
⎩

0 ≤ infM F ≤ F (xm) < infM F + 1
m ,

|∇F |(xm) < 1
m ,

ΔfF (xm) > − 1
m .

(3.10)

Combining (3.4), (3.9), and (3.10), we obtain

− 1
m

λF (xm) < λF (xm)ΔfF (xm)

= −λ2F
2λ+1

λ (xm)Δfu(xm) + (λ + 1)|∇F |2(xm)

≤ −λ2βu1+α(xm)F
2λ+1

λ (xm) + (λ + 1)|∇F |2(xm)
≤ (λ + 1)|∇F |2(xm). (3.11)

Using (3.5) and making m −→ +∞ in (3.11), we get

0 = lim
m→+∞ F

2λ+1
λ (xm)u1+α(xm) = lim

m→+∞
u1+α(xm)

(1 + u(xm))2λ+1
. (3.12)

At this point, taking 2λ = α, from (3.12), we obtain

lim
m→∞

(
u(xm)

1 + u(xm)

)1+α

= 0.

But, from (3.5), we also have that

lim
m→+∞ F (xm) = inf

M
F if and only if lim

m→+∞ u(xm) =
1 − (infM F )

2
α

(infM F )
2
α

.

Consequently, we get 1−(infM F )
2
α

(infM F )
2
α

= 0 and, hence, infM F = 1. Therefore,

since F ≤ 1, we conclude that u must be identically zero on Mn. �

4. Proofs of Theorems 1.1 and 1.2. We start presenting the proof of Theo-
rem 1.1.

Proof of Theorem 1.1. Since we are assuming that �Hf is parallel in the normal
bundle, from [17, Lemma 1, Eq. (4)], we have that

Δf |A|2 = 2|∇A|2 + |A|2 + 2
∑

i,j,k,α,β

Hβ
f hβ

jkhα
ijh

α
ik

−2
∑
α,β

⎛
⎝∑

i,j

hα
ijh

β
i,j

⎞
⎠

2

− 2
∑

i,j,α,β

(∑
p

(hα
iph

β
pj − hα

jph
β
pi)

)2

,

(4.1)

where Hα
f = Hα + 1

2 〈X, eα〉 and Hα =
∑

i hα
ii.
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On the other hand, taking into account that p ≥ 2, from [13, Theorem 1],
we get the following inequality

∑
α,β

⎛
⎝∑

i,j

hα
ijh

β
i,j

⎞
⎠

2

+
∑

i,j,α,β

(∑
p

(hα
iph

β
pj − hα

jph
β
pi)

)2

≤ 3
2
|A|4. (4.2)

Thus, considering (4.2) into (4.1), we obtain

Δf |A|2 ≥ 2|∇A|2 + |A|2 + 2
∑

i,j,k,α,β

Hβ
f hβ

jkhα
ijh

α
ik − 3|A|4

≥
(
1 − 2| �Hf ||A| − 3|A|2

)
|A|2. (4.3)

At this point, we note that the constant γ1 defined in (1.4) is the positive
root of the function ζ(t) = 1 − 2| �Hf |t − 3t2. So, from hypothesis (1.3), we can
take a positive constant γ such that supM |A| < γ < γ1 and, considering the
behavior of ζ(t) for 0 ≤ t ≤ γ1, we get

1 − 2| �Hf ||A| − 3|A|2 ≥ 1 − 2| �Hf |γ − 3γ2

γ
|A|. (4.4)

Hence, from (4.3) and (4.4), we arrive at the following estimate

Δf |A|2 ≥ β
(|A|2)1,5

, (4.5)

where β = 1−2| �Hf |γ−3γ2

γ .

Moreover, from (2.2), we get that the boundedness of |A| =
√∑

α,i,j(h
α
ij)2

implies, in particular, that the Ricci tensor of Mn is bounded from below. But,
from (1.1), we have that Hessf = 1

2 . Consequently, from (3.1), we have that
the Bakry–Émery–Ricci tensor of Mn is also bounded from below.

Therefore, we are in position to apply Proposition 3.1 to conclude that
|A| vanishes identically on Mn, which means that Mn is an n-dimensional
hyperplane of Gn+p. �

We close this section with the proof of Theorem 1.2.

Proof of Theorem 1.2. Since we are assuming that Hf is constant, from [11,
Lemma 2.1, Equation (2.3)], we get

Δf |A|2 ≥ 2|∇A|2 + 2
(

1
2

− |A|2
)

|A|2 − 2|Hf ||〈A2, A〉|

≥ 2
(

1
2

− |A|2
)

|A|2 − 2|Hf |2|A|3. (4.6)

Thus, from (4.6), we have that

Δf |A|2 ≥ (
1 − 2|Hf ||A| − 2|A|2) |A|2. (4.7)

Now, we observe that the constant γ2 defined in (1.7) is the positive root of
the function ς(t) = 1 − 2|Hf |t − 2t2. Consequently, from hypothesis (1.6), we
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can choose a positive constant γ̃ such that supM |A| < γ̃ < γ2 and, considering
the behavior of ς(t) for 0 ≤ t ≤ γ2, we obtain

1 − 2|Hf ||A| − 2|A|2 ≥ 1 − 2|Hf |γ̃ − 2γ̃2

γ̃
|A|. (4.8)

Hence, from (4.7) and (4.8), we deduce that

Δf |A|2 ≥ β̃
(|A|2)1,5

, (4.9)

where β̃ = 1−2|Hf |γ̃−2γ̃2

γ̃ .
On the other hand, as in the proof of Theorem 1.1, we have that the

boundedness of |A| guarantees that the Bakry–Émery–Ricci tensor of Mn is
bounded from below.

Therefore, we can apply once more Proposition 3.1 to infer that |A| is
identically zero on Mn, that is, Mn is a hyperplane of Gn+1. �

5. Further results. Let Mn be a complete noncompact Riemannian manifold
and let d( · , o) : Mn → [0,+∞) denote the Riemannian distance of Mn,
measured from a fixed point o ∈ Mn. We say that a smooth function u ∈
C∞(M) converges to zero at infinity when it satisfies the following condition

lim
d(x,o)→+∞

u(x) = 0. (5.1)

Keeping in mind this previous concept, the following maximum principle at
infinity corresponds to [1, Theorem 2.2, item (a)].

Lemma 5.1. Let Mn be a complete noncompact Riemannian manifold and let
X ∈ X(M) be a vector field on Mn. Assume that there exists a nonnegative,
non-identically vanishing function u ∈ C∞(M) which converges to zero at
infinity and such that 〈∇u,X〉 ≥ 0. If divX ≥ 0 on Mn, then 〈∇u,X〉 ≡ 0 on
Mn.

Now, we are in position to present our next rigidity result.

Theorem 5.2. Let X : Mn � G
n+p be a complete noncompact submanifold

immersed with parallel f-mean curvature vector �Hf in the (n+p)-dimensional
Gaussian space G

n+p, with p ≥ 2. If the second fundamental form A of Mn

is such that |A| converges to zero at infinity and |A| ≤ γ1, where γ1 is the
positive constant defined in (1.4), then Mn is a hyperplane of Gn+p.

Proof. Let us suppose by contradiction that Mn is not a hyperplane of Gn+p

or, equivalently, that |A| does not vanish identically on Mn. Taking the vector
field X = e−f∇|A|2, since we are assuming that |A| ≤ γ1, from (3.2), (3.3),
and (4.3), we obtain that

divX = e−fΔf |A|2 ≥ 0.

Moreover, choosing the smooth function u = |A|2, we also have that

〈∇u,X〉 = e−f |∇|A|2|2 ≥ 0. (5.2)

Consequently, since we are also supposing that |A| converges to zero at infinity,
we can apply Lemma 5.1 to get that 〈∇u,X〉 ≡ 0 on Mn. So, returning to



Vol. 118 (2022) Submanifolds in the Gaussian space 671

(5.2), we conclude that |A| must be constant on Mn. Therefore, from (5.1), we
have that |A| is identically zero on Mn and, hence, we reach a contradiction.

�

Taking into account inequality (4.7), it is not difficult to see that we can
reason as in the proof of Theorem 5.2 to obtain the following rigidity result
for codimension 1, which is in consonance with [6, Theorem 1.1].

Theorem 5.3. Let X : Mn � G
n+1 be a complete noncompact hypersur-

face immersed with constant f-mean curvature Hf in the (n + 1)-dimensional
Gaussian space G

n+1. If the second fundamental form A of Mn is such that
|A| converges to zero at infinity and |A| ≤ γ2, where γ2 is the positive constant
defined in (1.7), then Mn is a hyperplane of Gn+1.

Finally, we obtain the following nonexistence result.

Theorem 5.4. There does not exist a complete noncompact nonminimal sub-
manifold X : Mn � G

n+p immersed with parallel f-mean curvature vector �Hf

in the (n+p)-dimensional Gaussian space Gn+p such that | �H| converges to zero
at infinity and, in the points x ∈ Mn where | �H(x)| �= 0, |A|2 ≤ | �H|

2(| �H|+| �Hf |) .

Proof. Let us suppose by contradiction the existence of such a submanifold
Mn. Taking the vector field X = e−f∇|H|2 and since we are assuming that
|A|2 ≤ | �H|

2(| �H|+| �Hf |) in the points where | �H| does not vanish, from (3.2), (3.3),

and [17, Lemma 1, equation (5)], we obtain that

divX = e−fΔf | �H|2 ≥ | �H|
(
| �H| − 2(| �H| + | �Hf |)|A|2

)
≥ 0.

Choosing the smooth function u = | �H|2, we also have that

〈∇u,X〉 = e−f |∇| �H|2|2 ≥ 0. (5.3)

Thus, since we are also supposing that | �H| converges to zero at infinity, we can
apply once more Lemma 5.1 to get that 〈∇u,X〉 ≡ 0 on Mn. Consequently,
returning to (5.3), we conclude that | �H| must be constant on Mn. Therefore,
from (5.1), we have that | �H| is identically zero on Mn and, hence, we reach a
contradiction with the hypothesis that Mn is not a minimal submanifold. �

Remark 5.5. Related to the nonexistence result obtained in Theorem 5.4, it
is worth to observe that Angenent [2] proved the existence of embedded self-
shrinkers from S

1 × S
n−1 into R

n+1 satisfying the hypothesis inf H2 = 0.
Furthermore, Cheng and Peng [6] obtained some classification theorems con-
cerning complete self-shrinkers whose squared norm of the second fundamental
form is constant and such that | �H| > 0 and the principal normal ν = �H

| �H| is
parallel.
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