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On the generic Conley conjecture
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Abstract. In this paper, we treat an open problem related to the number
of periodic orbits of Hamiltonian diffeomorphisms on closed symplectic
manifolds, the so-called (generic) Conley conjecture. The generic Con-
ley conjecture states that generically Hamiltonian diffeomorphisms have
infinitely many simple contractible periodic orbits. We prove the generic
Conley conjecture for very wide classes of symplectic manifolds. Our proof
is based on applications of the Birkhoff–Moser fixed point theorem and
Floer homology theory.
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1. Introduction and main results. In this section, we briefly explain the main
theme of this paper. Precise definitions and notations are given in the next
section. The information of periodic orbits of Hamiltonian diffeomorphisms is
very important in Hamiltonian dynamics. The Conley conjecture was originally
stated for Hamiltonian diffeomorphisms on the standard torus (T2n, ω0) [3]. It
states that any Hamiltonian diffeomorphism on (T2n, ω0) has infinitely many
simple contractible periodic orbits (simple means that it is not an iterated
periodic orbit of the lower period). It is easy to see that this conjecture can not
be generalized to any closed symplectic manifold. For example, an irrational
rotation on the standard sphere S2 ⊂ R

3 has only two contractible periodic
orbits, the north pole and the south pole.

However, the Conley conjecture was proved for wide classes of closed sym-
plectic manifolds. For example, the Conley conjecture holds on symplectically
aspherical manifolds, negatively monotone symplectic manifolds, and symplec-
tic manifolds with vanishing spherical Chern class [5,7–9,11,16]. So, today’s
Conley conjecture is a conjecture which states that every Hamiltonian diffeo-
morphism has infinitely many simple contractible periodic orbits on “almost
all” closed symplectic manifolds.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-021-01633-w&domain=pdf
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Another variant of the above Conley conjecture is the so-called generic Con-
ley conjecture [6,8,9]. The generic Conley conjecture states that “almost all”
Hamiltonian diffeomorphisms have infinitely many simple contractible peri-
odic orbits on every closed symplectic manifold. The Conley conjecture and
the generic Conley conjecture state that Hamiltonian diffeomorphisms with
finitely many simple periodic orbits (like the irrational rotation on the sphere
S2) are very rare. In summary, we have the following two conjectures.

Conjecture 1 ((Generic) Conley conjecture).
(1) On “almost all” closed symplectic manifolds, every Hamiltonian diffeo-

morphism has infinitely many simple contractible periodic orbits.
(2) On every closed symplectic manifolds, “almost all” Hamiltonian diffeo-

morphisms have infinitely many simple contractible periodic orbits.

In this paper, we study Conjecture 1 (2), the generic Conley conjecture.
The statement of our main result is as follows.

Theorem 1.1. Let (M,ω) be a 2n-dimensional closed symplectic manifold and
let N ∈ N ∪ {∞} be the minimum Chern number of (M,ω). Assume that
(M,ω) satisfies at least one of the following conditions.
(1) n is odd.
(2) Hodd(M : Q) �= 0.
(3) N > 1.

Then there is a C∞-dense and C∞-residual (=contains a countable intersec-
tion of C∞-open dense subsets) subset U ⊂ Ham(M,ω) such that any element
of U has infinitely many simple contractible periodic orbits.

Note that the above conditions (1), (2), and (3) cover almost all closed
symplectic manifolds.

Remark 1.1. The case (2) of Theorem 1.1 was also proved in [6, Proposition
1.6]. The case (3) is a generalization of [6, Theorem 1.2] where Ginzburg and
Gürel proved the generic Conley conjecture for N ≥ n + 1. The proof of [6,
Proposition 1.6] was an application of the Birkhoff–Moser fixed point theorem
and the proof of [6, Theorem 1.2] was an application of “resonance relation”
proved in [10]. Our proof of Theorem 1.1 is a modification of the former proof.

Remark 1.2. The key part of Theorem 1.1 is the assertion that the set U is
C∞-(but not just C1-)generic. The C1-generic existence of infinitely many
periodic points readily follows from the C1 closing lemma in [15]. Further-
more, a stronger result holds in dimension two. Asaoka-Irie proved a C∞

closing lemma for Hamiltonian diffeomorphisms of closed surfaces in [1]. In
particular, periodic points are dense C∞-generically in dimension two. The
C∞ closing problem for Hamiltonian diffeomorphisms in dimension ≥ 4 is an
open problem. However, Herman’s example in [12] indicates that there is little
hope to extend the C∞ closing lemma to higher dimensions.

2. Preliminaries. In this section, we explain notations and terminologies used
in this paper.



Vol. 117 (2021) On the generic Conley conjecture 425

2.1. Elementary notations. Let (M,ω) be a symplectic manifold, so M is a
finite-dimensional C∞-manifold and ω ∈ Ω2(M) is a symplectic form on M .
In this paper, we always assume that M is a closed manifold.

For any C∞-function H ∈ C∞(M), we define the Hamiltonian vector field
XH by the following relation:

ω(XH , ·) = −dH.

We can also consider a S1-dependent (=1-periodic) Hamiltonian function H
and a Hamiltonian vector field XH by the same formula. The time 1 flow of XH

is called a Hamiltonian diffeomorphism generated by H. We denote this flow
by φH . The set of all Hamiltonian diffeomorphisms is called the Hamiltonian
diffeomorphism group and we denote the Hamiltonian diffeomorphism group
of (M,ω) by Ham(M,ω), i.e.,

Ham(M,ω) = {φH | H ∈ C∞(S1 × M)}.

We also consider “iterations” of H and φH . For any integer k ∈ N, we define
H(k) as

H(k) = kH(kt, x).

It is straightforward to see that φH(k) = (φH)k. Let P l(H) be the space of
l-periodic contractible periodic orbits of XH , i.e.,

P l(H) = {x : S1
l → M | ẋ(t) = XHt

(x(t)), x : contractible},

S1
l = R/l · Z.

It is also straightforward to see that there is a one-to-one correspondence
between P k(H) and P 1(H(k)). We abbreviate P 1(H) to P (H). An l-periodic
orbit x ∈ P l(H) is called simple if there is no l′-periodic orbit y ∈ P l′(H) which
satisfies the following conditions:

l = l′ · m (l′,m ∈ N),
x(t) = y(πl,l′(t)).

Here πl,l′ : Sl → Sl′ is the natural projection. So a periodic orbit is simple if
and only if it is not an iterated periodic orbit of the lower period.

Next, we explain the definition of the minimum Chern number N . A sym-
plectic manifold (M,ω) becomes an almost complex manifold, and its tangent
bundle has the natural first Chern class c1(TM) ∈ H2(M : Z). The minimum
Chern number N ∈ N∪{+∞} is the positive generator of c1(TM)|π2(M). Note
that if the image is zero, N is defined by N = +∞.

2.2. Floer homology and degrees of periodic orbits. In this subsection, we
explain basic notations of Floer homology theory and the Conley-Zehnder
index of periodic orbits. Let H be a 1-periodic Hamiltonian function. We
call H non-degenerate if the differential map dφH : TMx → TMx does not
have 1 as an eigenvalue for any fixed point x ∈ Fix(φH). Note that H is non-
degenerate if and only if graph(φH) ⊂ M × M is transverse to the diagonal
ΔM ⊂ M × M .
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We construct the Novikov covering of P (H) as

P̃ (H) = {(u, x) | x ∈ P (H), u : D2 → M,∂u = x}/ ∼
where D2 is the two dimensional disc D2 ⊂ R

2 and the equivalence relation ∼
is defined as

(u, x) ∼ (v, y) ⇐⇒

⎧
⎪⎨

⎪⎩

x = y,

ω(u�v) = 0,

c1(u�v) = 0.

Here v is the disc with the opposite orientation on the domain and u�v is the
glued sphere. Each [u, x] ∈ P̃ (H) has a Conley-Zehnder index μCZ([u, x]) ∈ Z.
We normalize μCZ so that the Conley-Zehnder index of a local maximum of
a C2-small Morse function is equal to n. The Conley-Zehnder index gives a
grading of the Floer chain complex and the Floer homology. We also have the
action functional AH on P̃ (H) as follows:

AH([u, x]) = −
∫

D2

u∗ω +

1∫

0

H(t, x(t))dt.

Then the Floer chain complex CF∗(H) is defined as

CF∗(H) =

{
∑

z∈˜P (H)

az · z

∣
∣
∣
∣ az ∈ Q, ∀C ∈ R, �{z ∈ P̃ (H) | az �= 0, AH(z) > C} < ∞

}

.

The boundary operator dF has the following form:

dF (z) =
∑

w∈P̃ (H)

n(z, w)w.

The coefficient n(z, w) ∈ Q is the number of solutions of the following Floer
equation modulo the natural R-action [4,13]. Let Jt be an almost complex
structure on M parametrized by t ∈ S1,

z = [v−, x−], w = [v+, x+],
u : R × S1 −→ M,

∂su(s, t) + Jt(u(s, t))(∂tu(s, t) − XHt
(u(s, t))) = 0,

lim
s→−∞ u(s, t) = x−(t), lim

s→+∞ u(s, t) = x+(t), (v−�u, x+) ∼ (v+, x+).

The Floer homology HF∗(H) is the homology of the chain complex
(CF∗(H), dF ). We introduce the notion of the Novikov ring of (M,ω). We
define an abelian group Γ by

Γ =
π2(M)

Kerω ∩ Kerc1

where ω : π2(M) → R is the integration of the symplectic form ω and
c1 : π2(M) → Z is the integration of the first Chern class. We define the degree
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of u ∈ Γ by −2c1(u). The Novikov ring Λ(M,ω) is defined as the set of possibly
infinite sums of Γ with suitable convergence, i.e.,

Λ(M,ω) =
{

∑

u∈Γ

au · u

∣
∣
∣
∣ au ∈ Q,∀C ∈ R, �{u ∈ Γ | au �= 0, ω(u) < C} < ∞

}

.

Then the Floer homology is isomorphic to the singular homology group
with the Novikov ring coefficient [4,13].

HF∗(H) ∼= H∗−n(M : Q) ⊗ Λ(M,ω).

3. Generic Conley conjecture. We prove Theorem 1.1 in this section. Through-
out this section, we assume that (M,ω) is a 2n-dimensional closed symplectic
manifold with the minimum Chern number N and it also satisfies at least one
of the following conditions.
(1) n is odd.
(2) Hodd(M : Q) �= 0.
(3) N > 1.

The purpose of this section is to construct a subset X ⊂ Ham(M,ω) and a
family of subsets {Yk ⊂ Ham(M,ω)} (1 ≤ k < +∞) which satisfy the following
conditions.

• X ⊂ Ham(M,ω) is a C∞-dense subset.
• Yk ⊂ Ham(M,ω) are C∞-open dense subsets.
• Any element of X has infinitely many simple contractible periodic orbits.
• X =

⋂∞
k=1 Yk holds.

The above conditions imply that X is a C∞-residual subset of Ham(M,ω)
and generically Hamiltonian diffeomorphisms have infinitely many simple con-
tractible periodic orbits.

As in [6], our proof is based on applications of the Birkhoff–Moser fixed
point theorem (local theory) and Floer homology theory (global theory).
Roughly speaking, the Birkhoff–Moser fixed point theorem guarantees infin-
itely many periodic orbits of a symplectic map near non-hyperbolic fixed points
which satisfies some generic conditions. For the reader’s convenience, we briefly
recall the statement and properties of the Birkhoff–Moser fixed point theorem.

Theorem 3.1 (Birkhoff–Moser fixed point theorem [14]). Let φ be a symplec-
tic map defined in an open neighborhood of the origin (= p) in (R2n, ω0)
and the origin is a fixed point of φ. Here ω0 is the standard symplectic form∑n

i=1 xi ∧ yi on R
2n. Let λ1, . . . , λm, λ−1

1 , . . . , λ−1
m be all the eigenvalues of the

differential map
dφp : TpM −→ TpM

on the unit circle in C. Assume that φ satisfies the following conditions:
(1) m ≥ 1.
(2)

∏m
k=1 λjk

k �= 1 for 1 ≤ ∑m
k=1 |jk| ≤ 4.

(3) The Taylor coefficient of φ up to order 3 satisfies a non-degenerate con-
dition.

Then φ possesses infinitely many periodic orbits in any neighborhood of p.
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The meaning of “non-degenerate” in (3) is difficult to state briefly because
its meaning becomes clear in the proof of the theorem. We just introduce an
example of the “non-degenerate” condition.

Example 3.1. (Non-degeneracy condition [14]) Let φ be a symplectic map
defined in an open neighborhood of the origin in (R2n, ω0) and the origin
is a fixed point of φ. Assume that φ can be written in the following form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ((x1, . . . , xn, y1, . . . , yn)) = (x(1)
1 , . . . , x

(1)
n , y

(1)
1 , . . . , y

(1)
n ),

x
(1)
k = xk cos Φk − yk sin Φk + fk,

y
(1)
k = xk sin Φk + yk cos Φk + fk+n,

Φk = αk +
∑n

l=1 βkl(x2
l + y2

l ).

The error terms fk are assumed to have vanishing derivatives up to order 3 at
the origin. Then non-degeneracy means that the matrix (βkl) is non-singular.

Moser first proved the Birkhoff–Moser fixed point theorem for the above
special case. Then he proved that general cases can be reduced to this special
case. So roughly speaking, “non-degenerate” means that it can be reduced to
the above form so that the matrix (βkl) is non-singular.

The Birkhoff–Moser fixed point theorem (and its proof in [14]) implies the
following fact. Let x ∈ P (H) be a non-degenerate contractible periodic orbit
of a Hamiltonian function H ∈ C∞(S1 × M). We also assume that there is at
least one eigenvalue of the differential map

dφH : Tx(0)M −→ Tx(0)

on the unit circle and all eigenvalues on the unit circle are pairwise distinct.
Then we can perturb H to H̃ near x so that it satisfies all required conditions
in the statement of the Birkhoff–Moser fixed point theorem. Moreover, these
conditions are satisfied in a sufficiently small open neighborhood of φ

H̃
and

hence all of them possess infinitely many simple contractible periodic orbits.
We apply this observation to our proof of Theorem 1.1. Let Hsn ⊂

Ham(M,ω) be the set of strongly non-degenerate Hamiltonian diffeomor-
phisms (strongly non-degenerate means any iteration of it is non-degenerate).
We divide Hsn into the following three pairwise disjoint subsets:

H(1)
sn

=

{

φ ∈ Hsn

∣
∣
∣
∣
∣

the number of simple contractible periodic orbits is finite
and all contractible periodic orbits are hyperbolic

}

,

H(2)
sn

=

{

φ ∈ Hsn

∣
∣
∣
∣
∣

the number of simple contractible periodic orbits is finite
and at least one contractible periodic orbit is non-hyperbolic

}

,

H(3)
sn

=

{

φ ∈ Hsn

∣
∣
∣
∣
∣

φ possesses infinitely many simple contractible periodic orbits

}

.
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First, we prove that H(1)
sn is empty. We fix φ ∈ H(1)

sn and let {xl, . . . , xl}
be the set of all simple contractible periodic orbits of φ and let p1, . . . , pl ∈ N

be their periods. We also choose a common multiple k of p1, . . . , pl. Then all
periodic orbits of ψ′ = φ(k) are 1-periodic orbits and all of them are hyperbolic.
For any capped periodic orbit z̄, we have the equation

μCZ(z̄) = Δψ′(z̄)

where Δψ′(z̄) is the mean index [16]. This implies that

μCZ(z̄m) = mμCZ(z̄)

holds for any m ∈ N. For the iteration ψ = ψ′(2N) and any capped periodic
orbit of ψ, the same equation μCZ(z̄) = Δψ(z̄) holds. Let {y1, . . . , yl} be all
contractible periodic orbits of ψ. Note that they are 2N -times iterations of

{x
( k
p1

)

1 , . . . , x
( k
pl

)

l }. This means that any capped periodic orbit z̄ of {y1, . . . , yl}
has mean index Δψ(z̄) = 2Nm (m ∈ Z). This implies that the Conley-Zehnder
index of any capped periodic orbit is divided by 2N and HFodd(ψ) = 0 holds.
If n is an odd integer, this is a contradiction because HFn(ψ) �= 0 holds. So,
H(1)

sn is empty if n is odd.
Next, assume that Hodd(M : Q) �= 0 holds. Without loss of generality, we

assume that n is an even integer. Then the isomorphism

HF∗(ψ) ∼= H∗−n(M : Q) ⊗ Λ(M,ω)

implies that there is at least one capped periodic orbit of ψ whose Conley-
Zehnder index is odd. This is a contradiction. So H(1)

sn is empty if Hodd(M : Q)
�= 0 holds.

Assume that N > 1 holds. Without loss of generality, we assume that n is
even. Note that Hn+2(M : Q) �= 0 holds in this case. This implies HF2(ψ) �= 0,
but this is impossible because the Conley-Zehnder index of any capped periodic
orbit can be divided by 2N . So we have proved that H(1)

sn is empty in all cases.
Next we fix φ ∈ H(2)

sn . Let {x1, . . . , xl} be the set of all simple periodic
orbits and let p1, . . . , pl be their periods. We divide {x1, . . . , xl} into hyperbolic
periodic orbits and non-hyperbolic periodic orbits. Let {x1, . . . , xl′} be the set
of all non-hyperbolic periodic orbits. We perturb φ to φ̃ so that all differential
maps

(dφ)pi : Txi(0)M −→ Txi(0)M

have 2n pairwise distinct eigenvalues (see the arguments in the proof of [2,
Lemma 7.1.5]). The perturbed φ̃ may not be strongly non-degenerate and the
perturbed periodic orbits {x̃1, . . . , x̃l′} may not be non-hyperbolic. We prove
that at least one x̃i is non-hyperbolic. Note that φ̃ may have more than l simple
contractible orbits, but we can assume that the period of a “new” periodic orbit
is much greater than 2Nk. So the existence of “new” periodic orbits does not
influence our arguments. Assume that all x̃i are hyperbolic. As in the proof
of H(1)

sn = ∅, we fix ψ = φ̃(2N×k) where k is a common multiple of p1, . . . , pl.
Then each periodic orbit x̃i

(2N× k
pi

) of ψ has a capping z̄i so that μCZ(z̄i) = 0.
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This is a contradiction as in the proof of H(1)
sn = ∅. So at least one of x̃i is a

non-hyperbolic periodic orbit.
Let x̃1 be a non-hyperbolic periodic orbit. We can perturb φ̃ so that x̃1

satisfies all required conditions in the statement of the Birkhoff–Moser fixed
point theorem. These arguments imply that we can choose a sequence {φk}k∈N

and open neighborhoods Wk of φk which satisfy the following conditions:

• φk −→ φ in the C∞-topology.
• Any element of Wk satisfies all required conditions in the statement of the

Birkhoff–Moser fixed point theorem and hence possesses infinitely many
simple contractible periodic orbits.

We define V (φ) and V (k)(φ) (k ∈ N) for φ ∈ H(2)
sn as

V (φ) =
∞⋃

i=1

Wi,

V (k)(φ) = V (φ).

Next we fix φ ∈ H(3)
sn . There are the following two possibilities:

(1) There is an open neighborhood U of φ (in Ham(M,ω)) such that

U ∩ Hsn ⊂ H(3)
sn

holds.
(2) There is no open neighborhood U as above. In other words, we can choose

a sequence {φk}k∈N ⊂ H(2)
sn such that φk → φ holds.

In the case of (2), we define V (φ) and V (k)(φ) (k ∈ N) as

V (φ) =
∞⋃

k=1

V (φk),

V (k)(φ) = V (φ).

In the case of (1), we define V (φ) and V (k)(φ) (k ∈ N) as

V (φ) = U ∩ Hsn,

V (k)(φ) = {ψ ∈ U | ψ, . . . , ψk are non-degenerate}.

Then V (k)(φ) ⊂ U is open dense and V (φ) =
⋂∞

k=1 V (k)(φ) holds. We can
define X and Yk as

X =
⋃

φ∈Hsn

V (φ),

Yk =
⋃

φ∈Hsn

V (k)(φ).

X and {Yk} satisfy the required conditions and we proved Theorem 1.1.
�
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