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Four-dimensional quadratic forms over C((¢))(X)
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Abstract. For quadratic forms in 4 variables defined over the rational
function field in one variable over C((t)), the validity of the local-global
principle for isotropy with respect to different sets of discrete valuations
is examined.
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1. Introduction. Let E be a field of characteristic different from 2 and let
E(X) denote the rational function field in one variable over E.

For E = C((t)), the field of Laurent series in one variable over the complex
numbers, the quadratic form

VP 1Yy + Y3 + X (Y7 + Y3 +Y))

in the variables Y7, Y5, Y3, Yy over E(X) has no non-trivial zero, but it has a
non-trivial zero over the completion of E(X) with respect to any non-trivial
valuation on E(X) that is trivial on E. This is in contrast to the situation
when E is a finite field, by the Hasse-Minkowski theorem (see [6, Chapter VI,
Theorem 66.1]). Note that, in both cases, the field E has a unique extension
of each degree in a fixed algebraic closure.

By a Z-valuation we mean a valuation with value group Z. A quadratic
form is isotropic if it has a non-trivial zero, otherwise it is anisotropic. Without
any restrictions on the base field E other than char(E) # 2, any anisotropic
quadratic form over F(X) of dimension at most 3 remains anisotropic over the
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completion of F(X) with respect to some Z-valuation on E(X) that is trivial on
E; this follows for example from Milnor’s exact sequence [4, Theorem IX.3.1].
The case of 4-dimensional quadratic forms is the first case over E(X) where
the validity of such a local-global principle for isotropy depends on the base
field E.

When E is a non-dyadic local field, using a result of Lichtenbaum [5], one
obtains that a 4-dimensional anisotropic quadratic form over F(X) remains
anisotropic over the completion of F(X) with respect to some Z-valuation on
E(X) that is trivial on E (see [1, Remark 3.8]). This resembles the case where
FE is a finite field.

In contrast to the situations where FE is a finite field or a local field, for
E = C((t)), the example of the quadratic form above shows that the local-
global principle for isotropy of 4-dimensional quadratic forms over E(X) fails
with respect to Z-valuations that are trivial on E. However, anisotropy of
this quadratic form can be detected over the larger field C(X)((t)) by using
Springer’s theorem (see [4, Proposition VI.1.9]).

Consider the more general situation where the field F is complete with
respect to a non-dyadic Z-valuation v. In this case, a local-global principle
for isotropy was obtained in [1] using a geometric setup. Let O, denote the
valuation ring of v. By a model for E(X) over O, we mean a two-dimensional
integral normal projective flat O,-scheme 2~ whose function field is isomorphic
to E(X). Codimension-one points on a model of E(X) over O, correspond
to certain Z-valuations on E(X). For a model 2" of E(X) over O,, let Qg
denote the set of Z-valuations given by codimension-one points of Z . Consider
the set Q = |J, Q2 where the union is taken over all models 2" of E(X)
over O,. It follows from [1, Theorem 3.1 and Remark 3.2] that an anisotropic
quadratic form over E(X) remains anisotropic over the completion of E(X)
with respect to some Z-valuation in £2. One may ask whether this remains true
if one replaces Q by Q2 for some well-chosen model 2" of E(X) over O,.

The aim of this note is to show that this is not the case: if the residue field of
v is separably closed, then, for any model 2" of E(X) over O,, there exists an
anisotropic 4-dimensional quadratic form over F(X) which is isotropic over the
completion of E(X) with respect to any w € Qg (Corollary 2). Let 7 € O, be a
uniformiser of v. For any model 2" of E(X) over O,, the set {w(w) | w € Qg }
is finite and hence it has an upper bound. However, for any positive integer r,
the quadratic form

or = (X" —m)YVE+ (X" 4+ 1) Y2 + 7 XYE 4+ X (X + 7)Y

is anisotropic over F(X), but it is isotropic over the completion of E(X) with
respect to any Z-valuation w on E(X) with w(w) < r (Theorem). The con-
struction of ¢, is inspired by the example in [1, Remark 3.6] of an anisotropic
6-dimensional quadratic form over Q,(X) where p is an odd prime.

2. Results. We assume some familiarity with basic quadratic form theory over
fields, for which we refer to [4]. We first fix some notation and recall some
results.
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By a quadratic form or simply a form we mean a regular quadratic form.
Let E always be a field of characteristic different from 2 and let E* denote its
multiplicative group. For ay, ..., a, € E*, the diagonal form a; X7+ - -+a, X2
is denoted by (a1, ..., an).

Let v be a Z-valuation on E. We denote the corresponding valuation ring,
its maximal ideal, and its residue field respectively by O,,m,, and &,. For an
element a € O,, let @ denote the residue class a + m, in x,. The completion
of E with respect to v is denoted by F,. We say that v is henselian if it
extends uniquely to every finite field extension of E. Complete discretely valued
fields are henselian (see [2, Theorem 1.3.1 and Theorem 4.1.3]). We recall a
consequence of Hensel’s lemma:

Lemma. Let v be a henselian Z-valuation on E such that v(2) = 0. Then:
(a) For uj,us € OF, the quadratic form (uj,us2) over E is isotropic if and
only if uruz € —K 2.
(b) If K, is separably closed, then every 3-dimensional form over E is
isotropic.

Proof. (a) For uy,us € O, since v is henselian and v(2) = 0, it follows by [2,
Theorem 4.1.3(4)] that uyus € —E*? if and only if uyus € —k2.

(b) Every 3-dimensional form over F contains a 2-dimensional form isomet-
ric to A(1,u) for some u € OF and A € E*. If £, is separably closed, then

u € —kx? and hence (1,u) is isotropic by (a). a

The set of all Z-valuations on E(X) is denoted by Qp(x). For r € N, we

define
Q = {w € Qgx) | w(E™) = iZ for some 0 < i < r}.

With this notation, € is the set of all E-trivial Z-valuations on E(X). We
recall that any monic irreducible polynomial p € FE[X] determines a unique
Z-valuation v, on E(X) which is trivial on E and such that v,(p) = 1. There
is further a unique Z-valuation vo on E(X) such that v (f) = —deg(f) for
any f € E[X]\ {0}. Moreover, every Z-valuation w on E(X) trivial on F is
either equal to v or to v, for some monic irreducible polynomial p € E[X]
(see [2, Theorem 2.1.4]), and in either of the two cases the residue field is a
finite field extension of F.

Theorem. Let v be a henselian Z-valuation on E such that v(2) = 0. Assume
that Kk, 1is separably closed. Let m € E* be such that v(w) =1 and let r € N.
Then the quadratic form

or = (X" —m, X" 41 X, X(X" + 7))

is isotropic over E(X), for every Z-valuation w € Q._1, but anisotropic over
E(X)y for some w € .

Proof. Set F = E(X). We first show that ¢, is isotropic over F, for all
w € Q,_1. Consider w € Q,_1.

Case 1: w(mr) = 0 = w(X). Then kK, is a finite extension of E. Since v is
henselian, there is a unique extension v’ of v to k,,, and v’ is again henselian.
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Furthermore, it follows by [2, Theorem 3.3.4] that v'(k}) is isomorphic to Z
and K, is separably closed. It follows by part (b) of the Lemma that every
3-dimensional quadratic form over ,, is isotropic. We have that w = v, for
some monic irreducible polynomial p € E[X] such that p # X. Note that, in
this case, at least three diagonal coefficients of ¢, are units in O,,. It follows

by Springer’s theorem [4, Proposition VI.1.9] that ¢, is isotropic over Fy,.

Case 2: 0 < w(m) < rand 1 < w(X). Let u = (X"~ — 1)(XTD7x=1 4 1).
Then w(u) =0 and u = —1 € —x 2. It follows by part (a) of the Lemma that
the form 7= (X" — 7, X"*! 4+ 7) is isotropic over F,,. Thus ¢, is isotropic over
Fy.

Case 3: w(X) < 0 < w(w) < r. Note that, if w(r) = 0, then w = v and
kw = E, and otherwise w|g is equivalent to v and K, C ky; since —1 € kX2,
we get in either case that —1 € x$2. Consider u = (1 +7X D)1+ 7X 7).
We have that w(u) = 0 and U = 1 € k%% = —kX2. It follows by part (a) of
the Lemma that the form X~ +D(X7+1 47 X (X" 4 7)) is isotropic over F,,.
Thus ¢, is isotropic over F,.

We have thus shown that ¢, is isotropic over F, for every w € €2,._1. Now
we show that ¢, is anisotropic over F, for some w € Qp.

Let E' = E(s), where s = /7. Then v extends uniquely to a valuation on
E’ which we again denote by v. Note that s” = 7 in £’ and hence v(m) = rv(s).
Then v' = rv is a Z-valuation on E’.

Let L = E'(X) and let Y = % Note that L = E'(Y). By [2, Corollary
2.2.2], there exists a unique extension of v’ to L such that v(Y) = 0 and
Y is transcendental of . ; we further have that k, = k(YY) and w(L*) =

v'(E') = 7Z. Since w(Y) = 0, we have that w(X) = w(s) = 1. We get that
op = (s"(Y" = 1),s"(sY +1),s" 7Y, s" 1Y (Y" + 1)).

Consider the forms o1 = (Y" — 1, sY 4+ 1) and o = (Y, Y(Y" + 1)).

SinceY' —1,Y" +1 ¢ —rx2, it follows by Springer’s theorem [4, Proposition
VI.1.9] that the quadratic form s~ "¢, is anisotropic over L,,. Hence ¢, is
anisotropic over L,,. We obtain that ¢, is anisotropic over F,,.. Note that
w(m) = w(s") = rw(s) =r, thus w € Q,. O

We now provide a different perspective to the above theorem. For a subset
2 C Qpx), we say that Q has the finite support property if for every f €
E(X)™, the set {w € Q| w(f) # 0} is finite. It is well-known that g has the
finite support property. When E carries a discrete valuation, the set Qp(x)
does not have the finite support property. However, for any model 2" of E(X)
over O,, the set {29 contains )y and has the finite support property. We show
the following:

Corollary 1. Let v be a henselian Z-valuation on E with v(2) = 0. Assume
that k., is separably closed. Let Q C Qpx) be a subset with the finite support
property. Then there exists an anisotropic 4-dimensional quadratic form over
E(X) which is isotropic over E(X),, for every w € ).
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Proof. Let m € E* be such that v(n) = 1. Since  has the finite support
property, the set {w € Q| w(w) # 0} is finite. Set r = 1+ max{w(w) | w € Q}.
Clearly Q C Q,_;1. Then the form ¢, in the Theorem is isotropic over E(X),,
for every w € Q, but anisotropic over E(X). O

Corollary 2. Let v be a henselian Z-valuation on E with v(2) = 0. Assume
that K, is separably closed. Let 2 be a regular model of E(X) over O,. Then
there exists an anisotropic 4-dimensional quadratic form over E(X) which is
isotropic over E(X),, for every w € Qg .

Proof. By [3, Chapter II, Lemma 6.1], for every element f € E(X)™, the set
{w € Qy | w(f) # 0} is finite, hence the statement follows by Corollary 1.
0
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