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Approximation of analytic functions by an absolutely
convergent Dirichlet series
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Abstract. In the paper, an absolutely convergent Dirichlet series whose
shifts approximate a wide class of analytic functions is constructed. This
series is close in the mean to the Riemann zeta-function.
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1. Introduction. Let ζ(s), s = σ + it, be the Riemann zeta-function, i.e., for
σ > 1,

ζ(s) =
∞∑

m=1

1
ms

.

The function ζ(s) has an analytic continuation to the whole complex plane,
except for a simple pole at the point s = 1 with residue 1. It is well known that
the function ζ(s) has a universality property discovered by Voronin [13] on the
approximation of a wide class of analytic functions by shifts ζ(s + iτ), τ ∈ R.
Let D = {s ∈ C : 1/2 < σ < 1}. Denote by K the class of compact subsets of
the strip D with connected complements, and by H0(K) with K ∈ K the class
of continuous non-vanishing functions on K that are analytic in the interior
of K. Then the last version of the Voronin theorem, see, for example, [5], says
that, for every K ∈ K, f(s) ∈ H0(K), and ε > 0,

lim inf
T→∞

1
T

meas
{

τ ∈ [0, T ] : sup
s∈K

|ζ(s + iτ) − f(s)| < ε

}
> 0. (1.1)

The latter inequality shows that there are infinitely many shifts ζ(s+ iτ) that
approximate uniformly on K a given function f(s) ∈ H0(K) with accuracy
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ε > 0. On the other hand, no concrete such shift is known. In [7] and [9], it
was obtained that “lim inf” in (1.1) can be replaced by “lim” for all but at
most countably many ε > 0.

Some other zeta-functions and their classes are universal in the above sense
as well, see [1,3,6,11] and the very informative survey paper [8].

The Riemann zeta-function ζ(s), for s ∈ D, cannot be written as a conver-
gent Dirichlet series, and is defined by analytic continuation. The aim of this
note is to present a certain absolutely convergent Dirichlet series in D having
an approximation property similar to that of the function ζ(s). Obviously, an
absolutely convergent Dirichlet series cannot be universal. Therefore, such a
series must be close in a certain sense to ζ(s).

For u > 0, let θ > 1/2 be a fixed number and, for m ∈ N,

vu(m) = exp
{

−
(m

u

)θ
}

,

where exp{a} = ea. Define the series

ζu(s) =
∞∑

m=1

vu(m)
ms

.

It will be proved below that the latter series is absolutely convergent in the
half plane σ > 1/2, thus, for s ∈ D as well.

For the precise statement of the approximation theorem for the function
ζu(s), we need one particular topological group. Let γ = {s ∈ C : |s| = 1}, P
denote the set of all prime numbers, and

Ω =
∏

p∈P

γp,

where γp = γ for all p ∈ P. By the Tikhonov theorem, the infinite-dimensional
torus Ω with pointwise multiplication and the product topology is a compact
topological Abelian group. Therefore, on (Ω,B(Ω)) (B(X) is the Borel σ-field
of the space X), the probability Haar measure mH can be defined. This leads
to the probability space (Ω,B(Ω),mH). Denote by H(D) the space of analytic
functions on D endowed with the topology of uniform convergence on com-
pacta, by ω(p) the pth component of an element ω ∈ Ω, p ∈ P, and on the
probability space (Ω,B(Ω),mH), define the H(D)-valued random element

ζ(s, ω) =
∏

p∈P

(
1 − ω(p)

ps

)−1

.

Note that the latter infinite product converges uniformly on compact subsets
of the strip D for almost all ω ∈ Ω, see [1] or [5].

The main result of the paper is the following theorem.

Theorem 1.1. Suppose that nT → ∞ and nT � T 2 as T → ∞. Let K ∈ K
and f(s) ∈ H0(K). Then the limit

lim
T→∞

1
T

meas
{

τ ∈ [0, T ] : sup
s∈K

|ζnT
(s + iτ) − f(s)| < ε

}
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= mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, ω) − f(s)| < ε

}
> 0

exists for all but at most countably many ε > 0.

Theorem 1.1 implies that there exists T0 = T0(f,K, ε) > 0 such that, for
every T ≥ T0, there are infinitely many shifts ζnT

(s + iτ) approximating a
given function f(s).

2. The function ζu(s). Denote by Γ(s) the Euler gamma-function, and define

lu(s) =
s

θ
Γ

(s

θ

)
us,

where θ > 1/2 is from the definition of vu(m). For convenience, recall some
properties of Γ(s).

Lemma 2.1. For arbitrary σ1 < σ2, there exists c > 0 such that the estimate

Γ(σ + it) � exp{−c|t|}
holds uniformly in σ, σ1 ≤ σ ≤ σ2.

Proof of the lemma can be found, for example, in [4].

Lemma 2.2. For positive a and b,

1
2πi

b+i∞∫

b−i∞
Γ(s)a−s ds = e−a.

The equality of the lemma is the classical Mellin formula, for the proof,
see, for example, [12].

Lemma 2.3. The series for ζu(s) is absolutely convergent for σ > 1/2. More-
over, the equality

ζu(s) =
1

2πi

θ+i∞∫

θ−i∞
ζ(s + z)lu(z)

dz

z

is valid.

Proof. In view of Lemma 2.2,

1
2πi

θ+i∞∫

θ−i∞

1
θ
Γ

(s

θ

) ( u

m

)s

ds

=
1

2πi

1+i∞∫

1−i∞
Γ(s)

((m

u

)θ
)−s

ds

= exp
{

−
(m

u

)θ
}

. (2.1)
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Therefore, by Lemma 2.1,

exp
{

−
(m

u

)θ
}

�θ

∞∫

−∞

∣∣∣∣Γ
(

1 +
it

θ

)∣∣∣∣
uθ

mθ
dt �θ,u m−θ.

Since θ > 1/2, this shows the absolute convergence in the half-plane σ > 1/2
of the series for ζu(s).

Now, using (2.1) and the definition of lu(s), we find

ζu(s) =
1

2πi

∞∑

m=1

1
ms

θ+i∞∫

θ−i∞

z

θ
Γ

(z

θ

)( u

m

)z dz

z

=
1

2πi

θ+i∞∫

θ−i∞

lu(z)
z

∞∑

m=1

1
ms+z

dz =
1

2πi

θ+i∞∫

θ−i∞
ζ(s + z)

lu(z)dz

z
.

�

3. Mean distance between ζnT
(s) and ζ(s). For nT sufficiently large, the

coefficients of the series for ζnT
(s) are close to 1. This suggests that the function

ζnT
(s) is close to ζ(s) even in the strip D. Actually, those two functions are

close in the mean.

Lemma 3.1. Suppose that nT → ∞ and nT � T 2 as T → ∞. Then, for every
compact set K ⊂ D,

lim
T→∞

1
T

T∫

0

sup
s∈K

|ζ(s + iτ) − ζnT
(s + iτ)|dτ = 0.

Proof. By Lemma 2.3, for s ∈ D, we have

ζnT
(s) =

1
2πi

θ+i∞∫

θ−i∞
ζ(s + z)lnT

(z)
dz

z
. (3.1)

Let 0 < θ̂ < 2θ. Then (3.1), properties of the function ζ(s), and the residue
theorem imply

ζnT
(s) − ζ(s) =

1
2πi

−θ̂+i∞∫

−θ̂−i∞

ζ(s + z)lnT
(z)

dz

z
+

lnT
(1 − s)
1 − s

. (3.2)

Denote the points of the set K by s = σ + iv. Then there exists ε > 0 such
that 1/2 + 2ε ≤ σ ≤ 1 − ε for all s ∈ K. Taking

θ̂ = σ − 1
2

− ε > 0,

we obtain from (3.2) that, for all s ∈ K,
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ζnT
(s + iτ) − ζ(s + iτ) =

1
2πi

∞∫

−∞
ζ

(
σ + iv + iτ − σ +

1
2

+ it + ε

)

× lnT

(
1
2

+ ε − s + i(v + t)
)

dt

1/2 + ε − s + i(v + t)
+

lnT
(1 − s − iτ)
1 − s − iτ

.

Hence, putting t in place of v + t gives

ζnT
(s + iτ) − ζ(s + iτ) =

1
2πi

∞∫

−∞
ζ

(
1
2

+ ε + iτ + it

)

× lnT
(1/2 + ε − s + it)
1/2 + ε − s + it

dt +
lnT

(1 − s − iτ)
1 − s − iτ

�
∞∫

−∞

∣∣∣∣ζ
(

1
2

+ ε + iτ + it

)∣∣∣∣

× sup
s∈K

|lnT
(1/2 + ε − s + it)|

|1/2 + ε − s + it| dt

+ sup
s∈K

|lnT
(1 − s − iτ)|

|1 − s − iτ | .

Therefore, in view of Lemma 2.1,

1
T

T∫

0

sup
s∈K

|ζnT
(s + iτ) − ζ(s + iτ)| dτ � I1T + I2T , (3.3)

where

I1T =

∞∫

−∞

⎛

⎝ 1
T

T∫

0

∣∣∣∣ζ
(

1
2

+ ε + iτ + it

)∣∣∣∣ dτ

⎞

⎠ sup
s∈K

|lnT
(1/2 + ε − s + it)|

|1/2 + ε − s + it| dt

and

I2T =
1
T

T∫

0

sup
s∈K

∣∣∣∣
lnT

(1 − s − iτ)
1 − s − iτ

∣∣∣∣ dτ.

It is well known that, for fixed σ, 1/2 < σ < 1,

T∫

−T

|ζ(σ + it)|2 dt �σ T.

Therefore, for all t ∈ R and T ≥ 1,
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1
T

T∫

0

∣∣∣∣ζ
(

1
2

+ ε + iτ + it

)∣∣∣∣ dτ ≤
⎛

⎝ 1
T

T∫

0

∣∣∣∣ζ
(

1
2

+ ε + iτ + it

)∣∣∣∣
2

dτ

⎞

⎠
1/2

�

⎛

⎜⎝
1
T

T+|t|∫

−|t|

∣∣∣∣ζ
(

1
2

+ ε + iτ

)∣∣∣∣
2

dτ

⎞

⎟⎠

1/2

�ε

(
T + |t|

T

)1/2

�ε 1 + |t|.

(3.4)

Moreover, taking into account Lemma 2.1, we find that, for all s ∈ K,

lnT
(1/2 + ε − s + it)
1/2 + ε − s + it

�θ n
1/2+ε−σ
T

∣∣∣∣Γ
(

1
θ

(
1
2

+ ε − σ − iv + it

))∣∣∣∣

�θ n−ε
T exp

{
− c

θ
|t − v|

}

�θ,K n−ε
T exp{−c1|t|}, c1 > 0.

This and (3.4) show that

I1T �ε,θ,K n−ε
T

∞∫

−∞
(1 + |t|) exp{−c1|t|}dt �ε,θ,K n−ε

T . (3.5)

Similarly, we obtain that, for s ∈ K,

lnT
(1 − s − iτ)
1 − s − iτ

�θ n1−σ
T

∣∣∣∣Γ
(

1
θ
(1 − σ − iv − iτ)

)∣∣∣∣

�θ n
1/2−2ε
T exp

{
− c

θ
|τ + v|

}
�θ,K n

1/2−2ε
T exp{−c1|τ |}.

Therefore,

I2T �θ,K n
1/2−2ε
T

1
T

T∫

0

exp{−c1|τ |}dτ �θ,K
n
1/2−2ε
T

T

∞∫

0

exp{−c1τ}dτ

�θ,K
n
1/2−2ε
T

T
.

Since nT � T 2, this, (3.3), and (3.5) prove the lemma. �

4. Limit theorem. The inequality (1.1) and its modification with “lim” are
derived in [1,5,7] from a probabilistic limit theorem for measures in the space
of analytic functions H(D). For A ∈ B(H(D)), define

PT (A) =
1
T

meas {τ ∈ [0, T ] : ζ(s + iτ) ∈ A} ,

and denote by Pζ the distribution of the H(D)-valued random element ζ(s, ω),
i.e.,

Pζ(A) = mH{ω ∈ Ω : ζ(s, ω) ∈ A}.

Then the following statement is true [1,5].
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Lemma 4.1. PT converges weakly to Pζ as T → ∞. Moreover, the support of
the measure Pζ is the set S = {g ∈ H(D) : g(s) 	= 0 or g(s) ≡ 0}.

Several equivalents of weak convergence of probability measures are known,
see, for example, [2]. For us, the equivalent in terms of continuity sets is useful.
Recall that a set A ∈ B(X) is called a continuity set of a measure P on
(X,B(X)) if P (∂A) = 0, where ∂A denotes the boundary of the set A.

Lemma 4.2. Suppose that Pn, n ∈ N, and P are probability measures on
(X,B(X)). Then Pn converges weakly to P as n → ∞ if and only if, for every
continuity set A of P ,

lim
n→∞ Pn(A) = P (A).

Proof of the lemma can be found, for example, in [2].

5. Proof of Theorem 1.1. We will apply a method of characteristic functions
which is used in the theory of weak convergence of probability measures on
(R,B(R)). We recall that every left continuous non-decreasing function F (x) on
R such that F (+∞) = 1 and F (−∞) = 0 coincides with a certain distribution
function. Note that the left continuity of distribution functions can be replaced
by right continuity, however, for our aims the left continuity is more convenient.
We say that the distribution function Fn(x), n ∈ N, converges weakly to a
distribution function F as n → ∞ if limn→∞ Fn(x) = F (x) for every continuity
point x of F (x).

Every distribution function F (x) is uniquely defined by its characteristic
function

∞∫

−∞
eiux dF (x), u ∈ R.

Moreover, the following classical continuity theorem is valid.

Lemma 5.1. Suppose that Fn(x), n ∈ N, and F (x) are distribution functions,
and gn(u) and g(u) are the corresponding characteristic functions. If Fn(x),
as n → ∞, converges weakly to F (x), then limn→∞ gn(u) = g(u), u ∈ R. This
convergence is uniform in every finite interval. If limn→∞ gn(u) = g(u), u ∈ R,
where g(u) is a continuous function at u = 0, then there exists a distribution
function F (x) such that Fn(x) converges weakly to F (x) as n → ∞. In this
case, g(u) is the characteristic function of F (x).

For the proof of Theorem 1.1, the Mergelyan theorem on the approximation
of analytic functions by polynomials [10] is also needed, see the next lemma.

Lemma 5.2. Suppose that K ⊂ C is a compact set with connected complement,
and g(s) is a continuous function in K and analytic in the interior of K.
Then, for every ε > 0, there exists a polynomial p(s) such that

sup
s∈K

|g(s) − p(s)| < ε.
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Proof of Theorem 1.1. By Lemma 4.1, PT converges weakly to Pζ as T → ∞.
Define the set

Aε =
{

g ∈ H(D) : sup
s∈K

|g(s) − f(s)| < ε

}
.

The boundaries ∂Aε1 and ∂Aε2 do not intersect for different positive ε1 and
ε2. Therefore, the set Aε is a continuity set of the measure Pζ for all but at
most countably many ε > 0. This, the weak convergence of PT , and Lemma 4.2
imply the relation

lim
T→∞

PT (Aε) = Pζ(Aε) (5.1)

for all but at most countably many ε > 0. Moreover, since by Lemma 4.1, the
support of Pζ is the set S, the inequality

Pζ(Âε) > 0, (5.2)

where p(s) is a polynomial and

Âε =
{

g ∈ H(D) : sup
s∈K

∣∣∣g(s) − ep(s)
∣∣∣ <

ε

2

}
,

is true. Lemma 5.2 ensures the choice of the polynomial p(s) satisfying

sup
s∈K

∣∣∣f(s) − ep(s)
∣∣∣ <

ε

2
.

The latter inequality together with the definitions of the sets Aε and Âε implies
the inclusion Âε ⊂ Aε. Therefore, in view of (5.2),

Pζ(Aε) > 0.

By the definitions of PT , Pζ , and Aε,

PT (Aε) =
1
T

meas
{

τ ∈ [0, T ] : sup
s∈K

|ζ(s + iτ) − f(s)| < ε

}

and

Pζ(Aε) = mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, ω) − f(s)| < ε

}
.

Thus, FT (ε)
def
= PT (Aε) and Fζ(ε)

def
= Pζ(Aε) with respect to ε are distribution

functions. Moreover,

Pζ(Bε) − Pζ(Aε) = Pζ(∂Aε),

where

Bε =
{

g ∈ H(D) : sup
s∈K

|g(s) − f(s)| ≤ ε

}
.

Thus,

Pζ(∂Aε) = Fζ(ε + 0) − Fζ(ε).

This shows that Fζ(ε) is right continuous, thus continuous, only if the set Aε is
a continuity set of the measure Pζ . Therefore, in view of (5.1), the distribution
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function FT converges weakly to Fζ as T → ∞. Hence, by the first part of
Lemma 5.1,

lim
T→∞

gT (u) = gζ(u) (5.3)

uniformly in u in every finite interval, where gT (u) and gζ(u) are the charac-
teristic functions of the distribution functions FT and Fζ , respectively.

Denote by ĝT (u) the characteristic function of the distribution function

F̂T (ε)
def
=

1
T

meas
{

τ ∈ [0, T ] : sup
s∈K

|ζnT
(s + iτ) − f(s)| < ε

}
.

Using the inequality |eiu − 1| ≤ |u|, u ∈ R, and the triangle inequality
∣∣∣∣sup
s∈K

|ζnT
(s + iτ) − f(s)| − sup

s∈K
|ζ(s + iτ) − f(s)|

∣∣∣∣

≤ sup
s∈K

|ζ(s + iτ) − ζnT
(s + iτ)| ,

we obtain by (5.3) that

ĝT (u) =

∞∫

−∞
eiuε dF̂T (ε) =

1
T

T∫

0

exp
{

iu sup
s∈K

|ζnT
(s + iτ) − f(s)|

}
dτ

=
1
T

T∫

0

exp
{

iu

(
sup
s∈K

|ζ(s + iτ) − f(s)| + sup
s∈K

|ζnT
(s + iτ) − f(s)|

− sup
s∈K

|ζ(s + iτ) − f(s)|
)}

dτ

=
1
T

T∫

0

exp
{

iu sup
s∈K

|ζ(s + iτ) − f(s)|
}

dτ

+ O

⎛

⎝ |u|
T

T∫

0

∣∣∣∣sup
s∈K

|ζnT
(s + iτ) − f(s)|

− sup
s∈K

|ζ(s + iτ) − f(s)|
∣∣∣∣ dτ

)

=gζ(u) + o(1) + O

⎛

⎝ |u|
T

T∫

0

sup
s∈K

|ζ(s + iτ) − ζnT
(s + iτ)|dτ

⎞

⎠

as T → ∞. Therefore, in view of Lemma 3.1, we have

ĝT (u) = gζ(u) + o(1)

as T → ∞, uniformly in u in every finite interval. The function gζ(u), |u| ≤ C
with every C > 0, as a characteristic function is continuous at the point u = 0.
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This and the second part of Lemma 5.1 show that F̂T , as FT , converges weakly
to Fζ as T → ∞, and we have

lim
T→∞

1
T

meas
{

τ ∈ [0, T ] : sup
s∈K

|ζnT
(s + iτ) − f(s)| < ε

}

= mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, ω) − f(s)| < ε

}
> 0

for all but at most countably many ε > 0. �
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