Arch. Math. 117 (2021), 315-322
(© 2021 Springer Nature Switzerland AG
0003-889X,/21/030315-8

published online May 13, 2021 I . .

https://doi.org/10.1007/s00013-021-01614-z Archiv der Mathematik
Check for
updates

Quantitative weakly compact sets and Banach-Saks sets in /;
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Abstract. In this paper, we show a quantitative version of the theorem
stating that relatively weakly compact sets in #; coincide with those hav-
ing the Banach-Saks property. Namely, we prove that the measure of
the weak noncompactness based on the Eberlein double limit criterion
is equal to the measure of the non-Banach-Saks property defined by the
arithmetic separation of sequences.
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1. Introduction. In this article, we aim to quantify the relationship of com-
pact sets and the Banach-Saks sets in the Banach space ¢; by using measures
of weak noncompactness and the Banach-Saks property. Measures of noncom-
pactness and weak noncompactness have been widely applied in functional
analysis, both in applications and Banach space theory. In the area of differ-
ential and integral equations, they become indispensable to characterize com-
pact sets and weakly compact sets, and then to get fixed points and further
solutions to equations, see [6,12,13,25] for example. On the other hand, they
are widely used in Banach space theory to get deeper understanding of the
implications through quantitative means. The quantitative methods provide
different angles to view the theoretical results. There is a new trend to inves-
tigate the quantified properties of Banach spaces, see, e.g., [9,10,14,17] and
their references. From the applications in both equations and theories, we may
infer that representations of the measures are always crucial. Every represen-
tation has its own advantages. To satisfy different goals, there have appeared
many different measures of noncompactness and weak noncompactness, and
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the relationship between these measures is of interest, see [1,7,22] for example.
In view of [3,15,17], it is specially interesting to study on which spaces the
measures are equal. In the sequel, we work on De Blasi’s [11] measure of weak
noncompactness w and the measure v based on the Eberlein double limit cri-
terion for weakly compact sets. Results in [3,4] showed that the two measures
are not equivalent in general. We will prove that v is exactly 2w in ¢;.

A Banach space X is said to have the Banach-Saks property if every
bounded sequence (z,) in X has a subsequence (x],) such that the Cesaro
means () + --- 4+ z],)/n converge. As a weaker form, the weak Banach-Saks
property of Banach spaces has been introduced. It means that every weakly
convergent sequence has a subsequence whose Cesaro means converge in norm.
For example, the spaces cg, ¢1, and L]0, 1] have the weak Banach-Saks prop-
erty. As for localization, a bounded subset A of a Banach space is said to be a
Banach-Saks set if every sequence in A has a subsequence whose Cesaro sum
converges. An analogue of the weak Banach-Saks set could be defined. The
Banach-Saks property connects closely to reflexivity and weak compactness.
Any Banach space with the Banach-Saks property was shown to be reflexive
by a so-called summability method [23]. Meanwhile there are reflexive spaces
without the Banach-Saks property [5]. Via the Rosenthal ¢; theorem, every
Banach-Saks set has been proved to be relatively weakly compact [21]. But in
general, the reverse is not true because of the counterexample by Schreier [24]
(see also, Baernstein [5]). Many mathematicians keep trying to quantify the
involving Banach-Saks properties, see, e.g., [9,18,19].

Suppose that a sequence (z,,) is contained in a relatively weakly compact set
of a Banach space X, then there is a subsequence (z,, ) weakly converging to
some point. If additionally the space X has the weak Banach-Saks property,
then we could get a subsequence of (z,,), whose Cesaro sum converges in
norm. Consequently, we may see that Banach-Saks sets coincide with relatively
weakly compact sets in Banach spaces having the weak Banach-Saks property.
Recently Kryczka [19] proved a quantitative Szlenk theorem which states the
equivalence of the relatively weak compactness and the Banach-Saks property
in L]0, 1]. Inspired by their works, in Section 2, we prove a similar quantitative
equivalence result in ¢; by proving an equality in terms of measures of the
Banach-Saks property and weak noncompactness.

2. Quantitative Banach-Saks property. Let X be a real infinite dimensional
Banach space normed with || - ||, and let X* be its dual. By is the unit ball of
X. For any subset F C X, co(E) is the convex hull of E. Denote by B(X) the
collection of all nonempty bounded subsets of X. By N we understand the set
of positive integers, and |A| is the cardinality of a subset A C N. Recall the
Hausdorff measure of noncompactness x : 5(X) — R on X.

X(A):=inf{t >0| AC K +tBx,K C X is compact}, (1)

where A € B(X). The Hausdorfl measure is widely applied and the representa-
tion of the measure is of interest. In the Banach space £1, x may be expressed
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by the following formula (see [2, p. 5]).
X(A) = lim sup Y |a(k)| (2)
n—00 ;e A —

for any A € B(¢1).

X characterizes compact sets in X as x(A4) = 0 if and only if A is relatively
compact. Replacing the compact set K in formula (1) by a weakly compact
one, it is then the De Blasi measure of weak noncompactness w. By the well-
known Schur theorem, we observe easily that w(A4) = x(A4). Recall that the
measures w and Y satisfy all the axiomatic principles for regular measures, see
[6].

Another measure of weak noncompactness we are interested in is the mea-

sure v based on the classical double-limit criterion of Eberlein. For any A €
B(X),

~Y(A):=sup [lim lim(f,, z,,) — lim lim(f,, 2},

where the supremum is taken over all sequences f,, € Bx+ and x,, € A such
that the double limits exist. It has been proved in [4] that the measures w
and v are not equivalent, and they are shown in [3] to have the relationship
v(A4) < 2w(A) for any A € B(X).

Kryczke et al. [20] found that the measure v can be expressed exactly in
terms of the James convex separation criterion of weak compactness (see [16]).
In detail, they proved

7(A4) = sup{csep(w) | (zn) C co(A)},

where
csep(zy) = i?f d{co{xp i, co{Tn}n, it} (3)

Applying this result, we will see in next theorem that the reverse relationship
of w and v could also be verified particularly in ¢;.

Theorem 1. For any nonempty bounded subset A of {1, v(A) = 2w(A).

Proof. With the comments above in mind, we only need to prove the inequality
v(A) > 2w(A). Without loss of generality, we may suppose w(A4) = x(4) =
6 > 0 since the case is trivial when 6 = 0. By fomula (2), for any £ > 0, there
exists an integer Ky € N such that for any = € A,

|2l xg:= Y |2(k)| < 0 +e.
k=Kp+1

It is easy to see that supycu Y e, |2(k)| is decreasing in n. Then for any
K € N, there is # € A with § — ¢ < ||z||x. Thus there exist z; € A and
K1 > K such that

K1
lz1llko > 0 — ¢, and [lz|[§E:= " a1 (k)] > 6 —&.
k=Ko+1
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Proceeding this process, we inductively produce a sequence (z,) C A and an
increasing sequence (K,,) C N such that for any m € N,
Km
|Zmllr, . >0, and [[zml|57 = [em (k)] >0,
k=K _1+1

We observe that the sequence (x,,) satisfies a nice property. To specify that,
let us take just two elements z; and x5 as an example. Clearly,

o + @2l > (o + 2l ko = lle1 + 22ll5 + [z + 22ll52 + 21 + 22|k,
K, Ko
>N mk) Fzk) 4+ Y |wi(k) + 22(k)] — [zt + 22|k,
k=Ko-+1 k=K, +1

Ky Ko
> (e(B)] = lz2(B)) + D (22(k)] = ler(R)]) = w1l x, — 2k,

k=Ko+1 k=K, +1
K K K K.

= (lz1llzg = llz2lizey) + Ulz2llzg = lleallzy) = el = lle2lixe
K K: K

= (lz1llky = lleallm) + (le2llzy = lw2llky = lle2llx.)

>2(0 — 3¢).

To explain the last inequality, we may tell that ||x2||§f - ||x2||§(1) — @2k, >
6 — 3¢ since

K K
22} > 0 — € and [|z2 /%] + |22llx, < 2e.
The latter is true because additionally
2ol iy = @2l + lz2lli + 22k, <6 +e.
By the same process, we have
lzill%t = N1l > 6 — 3e.

In fact, this property could be valid not only for £y and x5, but also for any
element in the set {z,,} and its multiplication with a real number. Namely, for
any z; € {x,} and A € R,

Azl o > (Mllzillz_, =D Mll@illz?_,
J#i

Applying the similar calculation for 1 and x5 to arbitrary finite elements,
we have that for any fixed n € N and any \; € R withi=1,... n,

n n
1> Xl = 1) il o
=1 =1
n n n
K.
>3 D Nl = 11D Ak,
j=1 =1 i=1
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n n n
K; K;
>3 (Mlllzl_, = S Pallemli,) = S Willzilx,
j=1 i=1

m#j
= (IMalllz1 5 = Dalloal i = Dalllesllfy = -+ = Aallleal )
K K. K. K
— Il + Palllzallf = Dallas 52 = - = Al l2all 2
—ullesllf, = Pelllezlfn, = Pallleslys_, =+ + alllealli_, )
n
= illlzil .,
i=1
n i—1 n
K; K; K;
=3 (Willlzall sy = D2 Palllaallig_, = 2 Wil = il
i=1 Jj=1 j=i+1
n
=3 (Wil =S Il )
i=1 J#i
n
= > (A0 =) = Il - 22)
i=1

=(0-3))_|Ail. (4)
i=1

For any y € co{z;};"; and z € co{z;}2,,,, with m € N, there exist
n>m,a,20w1thz—l ,mand b; > 0 with j =m +1,...,n, such that

n

iaizl, Z ijl,
i=1

Jj=m+1
m n
Y= g a;ir;, 2= g bjz;.
i=1 j=m+1

By formula (4), it is easy to see that

n

ly — 2| > (6 — 3¢) Z|al|+ > =51 | =2(0 - 30).

j=m+1

Thus by (3), we have csep(zy,) > 2(6 — 3¢).

Now we have proved that for any £ > 0, there is a sequence (z,) in A such
that csep(zy,) > 2(6 — 3¢). It further means that y(A4) > 2w(A), and the proof
is completed. O

Beauzamy in [8] characterized spaces having the Banach-Saks property
by spreading models, i.e., a Banach space X does not have the Banach-Saks
property if and only if there exist § > 0 and a bounded sequence (z,) C X
such that for any subsequence (7)),
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>0.

(Zm > ;)

n=k+1

for any positive integers k < m. Kryczka [18] modified Beauzamy’s condition
and introduced a deviation ¢ as the following to denote whether a set of a
Banach space is a Banach-Saks set. We may call it the deviation measure of
non-Banach-Saksness. For any A € B(X),

©(A) = sup{asep(zy,) | (z,) € A},

where

SR EY o |

neD

with the infimum taken over all m € N and finite C; D C N having |C| =
|D| = m and max C < inf D. The measure ¢ satisfies (see [18]) that for any
A, B € B(X),

) =

(i) ¢(A) =0 if and only if A is a Banach-Saks set;
(ii) ¢(A) < ¢(B) whenever A C B;
(i) @(tA) = |t|p(A) for t € R;

(iv) ¢(A+ B) < p(A) + ¢(B) if A and B are convex.

From the definitions (3) and (5), we may get v(A) < ¢(A), which quantifies
the result that every Banach-Saks set is weakly compact. A glimpse on the
unit bases (e,) of ¢1 gives p(By,) = 2. We will use a quantitative method
to state that the compact sets, weakly compact sets, and Banach-Saks sets
coincide with each other in ¢;, and moreover the measures of these properties
are equal.

Theorem 2. For any nonempty bounded subset A of {1, p(A) = v(A) = 2w(A) =
2x(4).

Proof. 1t is sufficient to prove v(A) > ¢(A). Suppose that ¢ > w(A), then
there exists a weakly compact set K C ¢; such that A C K +tBy,. By Krein’s
theorem, it is reasonable to assume that K is convex. Noticing the properties
of ¢ and ¢(K) = 0 since ¢; has the weak Banach-Saks property, we get

P(A) < p(K) +tBy, = 2t.
It means y(A) = 2w(A) > ¢(A), and the proof is completed. O
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