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Abstract. Recently, the different types of unbounded convergences (uo, un,
uaw, uaw∗) in Banach lattices were studied. In this paper, we study the
continuous functionals with respect to unbounded convergences. We first
characterize the continuity of linear functionals for these convergences.
Then we define the corresponding unbounded dual spaces and get their
exact form. Based on these results, we discuss order continuity and re-
flexivity of Banach lattices. Some related results are obtained as well.
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1. Introduction. A net (xα)α∈A in a Riesz space E is order convergent to
x ∈ E (write xα

o−→ x) if there exists a net (yβ), possibly over a different
index set, such that yβ ↓ 0 and for each β ∈ B, there exists α0 ∈ A satisfying
|xα −x| ≤ yβ for all α ≥ α0. The unbounded order convergence was considered
firstly by Nakano in [7] and introduced in [2,9]. A net (xα) in a Banach lattice E
is unbounded order (resp. norm, absolute weak) convergent to some x, denoted
by xα

uo−→ x (resp. xα
un−−→ x, xα

uaw−−−→ x), if the net (|xα − x| ∧ u) converges to
zero in order (resp. norm, weak) for all u ∈ E+. A net (x′

α) in a dual Banach
lattice E′ is unbounded absolute weak* convergent to some x′, denoted by
x′

α
uaw∗
−−−→ x′, if |x′

α −x′|∧u′ w∗
−−→ 0 for all u′ ∈ E′

+. Recently, there are different
kind of results involving these convergences (see [3–5,8,10]). In [3,4], some
properties of uo-convergence in Riesz spaces and Banach lattices is studied.
For the properties of un, uaw, and uaw∗-convergence, we refer to [5,8,10].

It can be easily verified that, in lp (1 ≤ p < ∞), uo, un, and uaw, and
uaw∗-convergence of nets are the same as the coordinate-wise convergence.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-021-01610-3&domain=pdf


306 Z. Wang et al. Arch. Math.

In Lp(μ) (1 ≤ p < ∞) for a finite measure μ, uo-convergence for sequences
is the same as almost everywhere convergence, un and uaw-convergence for
sequences are the same as convergence in measure. In Lp(μ) (1 < p < ∞)
for a finite measure μ, uaw∗-convergence for sequences is also the same as
convergence in measure.

In [4], Gao et al. studied the continuity of the linear functionals for uo-
convergence. The aim of the present paper is the continuity of linear func-
tionals for different types of unbounded convergences (uo;un;uaw;uaw∗) in
Banach lattices. A linear functional f on a Banach lattice E is said to be uo
(resp. un, uaw, uaw∗)-continuous whenever f(xα) → 0 for every uo (resp. un,
uaw, uaw∗)-null net (xα) in E. In the first part of the paper, we investigate
the continuity of the linear functional f and prove that the carrier of f is
finite-dimensional. Then we assume that the net (xα) is norm bounded. We
characterize the continuity of such functionals and obtain the exact form of the
corresponding dual spaces. As an application of these results, we conclude the
paper with characterizations of the order continuity and reflexivity of Banach
lattices.

Recall that a Riesz space E is an ordered vector space in which x ∨ y =
sup{x, y} and x ∧ y = inf{x, y} exist for every x, y ∈ E. The positive cone of
E is denoted by E+, i.e., E+ = {x ∈ E : x ≥ 0}. For any vector x in E, define
x+ := x ∨ 0, x− := (−x) ∨ 0, |x| := x ∨ (−x). An operator T : E → F between
two Riesz spaces is said to be positive if Tx ≥ 0 for all x ≥ 0. A net (xα) in a
Riesz space is called disjoint whenever α 
= β implies |xα|∧|xβ | = 0 (denoted by
xα ⊥ xβ). A set A in E is said to be order bounded if there exsits some u ∈ E+

such that |x| ≤ u for all x ∈ A. The solid hull Sol(A) of A is the smallest solid
set including A and it equals the set Sol(A) := {x ∈ E : ∃y ∈ A, |x| ≤ |y|}.
An operator T : E → F is called order bounded if it maps order bounded
subsets of E to order bounded subsets of F . A Banach lattice E is a Banach
space (E, ‖ ·‖) such that E is a Riesz space and its norm satisfies the following
property: for each x, y ∈ E with |x| ≤ |y|, we have ‖x‖ ≤ ‖y‖. Recall that a
vector e > 0 in Banach lattice lattice E is an atom if for any u, v ∈ [0, e] with
u ∧ v = 0, either u = 0 or v = 0. In this case, the band generated by e is
span{e}. Moreover, the band projection Pe : E → span{e} defined by

Pex = sup
n

(x+ ∧ ne) − sup
n

(x− ∧ ne)

exsits, and there is a unique positive linear functional fe on E such that
Pe(x) = fe(x)e for all x ∈ E. We call fe the coordinate functional with the
atom e. Clearly, the span of any finite set of atoms is also a projection band.

For undefined terminology, notation, and basic theory of Riesz spaces, Ba-
nach lattices, and linear operators, we refer to [1,6].

2. Results. Let us determine continuous functionals with respect to unbounded
convergences on �1.

Example 2.1. Let (xα) be a uo-null, un-null, uaw-null, uaw∗-null, and dis-
joint net in �1. Clearly, (xα) is coordinate-wise convergent. For a vector λ =
(λ1, λ2, ..., λn, ...) satisfying λ(xα) → 0, it can be easily verified that λ ∈ c00.
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According to the above example, we can find that the carriers of the
uo-continuous, un-continuous, uaw-continuous, uaw∗-continuous, and disjoint
continuous functionals λ on l1 are finite-dimensional. It is natural to ask
whether the carriers are finite-dimensional in more general situations. The
following results confirm the hypothesis.

For an operator T : E → F between two Riesz spaces, we shall say that its
modulus |T | exists (or that T possesses a modulus) whenever |T | := T ∨ (−T )
exists. The carrier of T is denoted by CT with CT := {x ∈ E : |T |(|x|) = 0}d.

Theorem 2.2. Let E be an atomic Banach lattice and F a Banach lattice. For
a nonzero linear operator T : E → F , assume that the modulus |T | exsits, then
CT is generated by finitely many atoms if one of the following conditions is
satisfied.
(1) Txα → 0 for every disjoint net (xα) ⊂ E.
(2) Txα → 0 for every uo-null net (xα) ⊂ E.
(3) Txα → 0 for every un-null net (xα) ⊂ E and E has order continuous

norm.
(4) Txα → 0 for every uaw-null net (xα) ⊂ E.
(5) Txα → 0 for every uaw∗-null net (xα) ⊂ E whenver E is a dual Banach

lattice.

Proof. (1). We claim that CT can not contain an infinite disjoint set of nonzero
vectors. Suppose that there exsits an infinite positive disjoint sequence of
nonzero vectors (xn)n∈N in CT . Clearly, |T |(xn) > 0 for all n ∈ N. Hence
there exsits yn ∈ [−xn, xn] such that T (yn) 
= 0. Since (yn) is also a disjoint
sequence,

( yn

‖T (yn)‖
)

is disjoint, but for any n ∈ N, one has T
( yn

‖T (yn)‖
)

= 1

and so → 0 is absurd.
Then we prove that CT is generated by finitely many atoms. Let X be a

maximal disjoint family of atoms of E and A = X ∩ CT . The linear span B
of A is a projection band in CT since A is a finite set (of atoms). If B 
= CT ,
hence CT = B ⊕ Bd, so there exist 0 < x ∈ CT such that x ⊥ B. Since x is
not an atom, there exist u1, y such that 0 < u1, y ≤ x and u1 ⊥ y. Clearly,
u1, y ∈ CT . Since y ⊥ B, y is not an atom, and thus there exist u2, z such
that 0 < u2, z ≤ y and u2 ⊥ z. Clearly, u2, z ∈ CT . Repeating this process,
we obtain an infinite disjoint sequence (un)n∈N in CT , but we have proved
that the carrier of T can not contain an infinite disjoint set of nonzero vectors.
Hence B = CT .

(2)–(5). It follows from [3, Corollary 3.6], [10, Lemma 2], and [8, Lemma 2.3]
that every disjoint sequence in a Banach lattice E is uo-null, uaw-null, and
uaw∗-null. According to [5, Proposition 3.5], if E has order continuous norm,
every disjoint sequence in E is un-null, so we can find that

( yn

‖T (yn)‖
)

is uo,

un, uaw, and uaw∗-null. The rest of the proof is an application of (1). �
Let F = R, we have the following result.

Corollary 2.3. Let E be an atomic Banach lattice, f a nonzero linear func-
tional on E, and (xα) a net in E such that f(xα) → 0. Then f is the linear
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combination of the coordinate functionals of finitely many atoms if one of the
following conditions is satisfied.
(1) (xα) is disjoint.
(2) ([4, Proposition 2.2]) xα

uo−→ 0.
(3) ([5, Corollary 5.4]) xα

un−−→ 0 and E has order continuous norm.
(4) xα

uaw−−−→ 0.

(5) Whenever E is a dual Banach lattices and xα
uaw∗
−−−→ 0.

According to the above results, we can find that the uo-continuous, un-
continuous, uaw-continuous, uaw∗-continuous, and disjoint continuous func-
tionals only work on finite-dimensional spaces, hence we study the “bounded”
continuous functionals for unbounded convergences in Banach lattices.

Let E be a Banach lattice. A linear functional f on E is said to be (σ)-order
continuous if f(xα) → 0

(
f(xn) → 0

)
for any net (sequence) (xα)

(
(xn)

)
in E

that order converges to zero. The set E∼
n of all order continuous functionals is

called the order continuous dual of E. In [4], a linear functional f on E is said
to be bounded uo-continuous if f(xα) → 0 for any norm bounded uo-null net
(xα) in E. The set of all bounded uo-continuous linear functionals on E will be
called the unbounded order dual (uo-dual for short) of E, and will be denoted
by E∼

uo. It is natural to consider the other duals for unbounded convergence
like un-continuous, uaw-continuous, and uaw∗-continuous functionals.

Definition 2.4. Let E be a Banach lattice. A bounded linear functional f on
E is said to be bounded d (un, uaw)-continuous if f(xα) → 0 for any norm
bounded disjoint (un-null, uaw-null) net (xα) in E. The set of all bounded
d (un, uaw)-continuous linear functionals on E will be called the disjoint (un-
bounded norm, unbounded absolute weak) dual (d-dual, un-dual, and uaw-
dual for short) of E, and will be denoted by E∼

d (E∼
un, E∼

uaw).
A bounded linear functional f on E′ is said to be bounded uaw*-continuous

if f(x′
α) → 0 for any norm bounded uaw∗-null net (x′

α) in E′. The set of
all bounded uaw∗-continuous linear functionals on E′ will be called the un-
bounded absolute weak* dual (uaw*-dual for short) of E, and will be denoted
by (E′)∼

uaw∗ .

The basic properties of these duals are as follows.

Proposition 2.5. For a Banach lattice E, the following holds.
(1) (E′)∼

uaw∗ is a closed ideal of E;
(2) E∼

uo is a closed ideal of E∼
n ;

(3) E∼
uaw, E∼

d , and E∼
un are closed ideals of E′.

Proof. (1). Since x′
α

uaw∗
−−−→ 0 ⇔ |x′

α| uaw∗
−−−→ 0, we can assume that (x′

α) is
positive. Let f be a bounded uaw∗-continuous functional on E′. For a net
(x′

α) satisfying |x′
α| w∗

−−→ 0 in E′, clearly, we have x′
α

uaw∗
−−−→ 0 and f(x′

α) → 0.
Since

(
E′, |σ|(E′, E)

)′ = E, we have f ∈ E. So (E′)∼
uaw∗ ⊂ E.

It is clear that (E′)∼
uaw∗ is a linear subspace of E. We claim that (E′)∼

uaw∗

is a closed ideal of E. Since |f |(x) = sup{f(y) : |y| ≤ x}, for any ε > 0, there
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exist some α0 and a net (y′
α) ⊂ E′ such that |f |(x′

α) ≤ f(y′
α) + 2ε whenever

α ≥ α0. It is clear that (y′
α) is also uaw∗-null, hence we have |f |(x′

α) → 0. So
(E′)∼

uaw∗ is a sublattice of E. For the functionals 0 ≤ g ≤ f ∈ (E′)∼
uaw∗ , clearly,

g(x′
α) ≤ f(x′

α) → 0, hence g ∈ (E′)∼
uaw∗ . So (E′)∼

uaw∗ is an ideal of E. Choose
some g ∈ (E′)∼

uaw∗ satisfying ‖f − g‖ < ε. Since f(x′
α) = g(x′

α) + (f − g)(x′
α),

we have |f(x′
α)| ≤ |g(x′

α)| + |(f − g)(x′
α)|. Hence f ∈ (E′)∼

uaw∗ . So (E′)∼
uaw∗ is

a closed ideal of E.
(2) and (3). It is clear that order convergence implies uo-convergence, and

norm convergence implies un and uaw-convergence. So we can get that E∼
uo is

a subspace of E∼
n and E∼

uaw, and E∼
d and E∼

un are subspaces of E′. The rest
of the proof is similar to (1). �

Recall that the order continuous part Ea of a Banach lattice E is given by

Ea = {x ∈ E : every monotone increasing sequence in [0, |x|] is norm convergent}.

According to [6, Corollary 2.3.6], it is equivalent to

Ea = {x ∈ E : every disjoint sequence in [0, |x|] is norm convergent}.

A Banach lattice E is said to be order continuous whenever ‖xα‖ → 0 for
every net xα ↓ 0 in E. By [6, Proposition 2.4.10], Ea is the largest closed ideal
with order continuous norm of E.

The following results show some characterizations of the continuity of bounded
uo, un, uaw, uaw∗, and d-continuous functionals.

Theorem 2.6. Let E be a Banach lattice and Fx a functional on E′ for any
x ∈ E. The following conditions are equivalent.

(1) Fx ∈ (E′)∼
uaw∗ .

(2) Fx(x′
n) → 0 for any bounded uaw∗-null sequence (x′

n) in E′.
(3) Fx ∈ (E′)∼

uo.
(4) Fx(x′

n) → 0 for any bounded uo-null sequence (x′
n) in E′.

(5) Fx ∈ (E′)∼
uaw.

(6) Fx(x′
n) → 0 for any bounded uaw-null sequence (x′

n) in E′.
(7) Fx ∈ (E′)∼

d .
(8) Fx(x′

n) → 0 for any bounded disjoint sequence (x′
n) in E′.

(9) Every disjoint sequence in [0, |x|] is norm convergent to zero.
In addition, if E′ has order continuous norm, these conditions are equiv-
alent to

(10) Fx ∈ (E′)∼
un.

(11) Fx(x′
n) → 0 for any bounded un-null sequence (x′

n) in E′.

Proof. (1) ⇒ (2), (3) ⇒ (4), (5) ⇒ (6), and (7) ⇒ (8) are obvious. (1) ⇒ (5)
and (2) ⇒ (6) hold since uaw-convergence implies uaw∗-convergence.

(1) ⇒ (3). Let (x′
α) be an uo-null net in E′ and Fx ∈ (E′)∼

uaw∗ . Hence
|x′

α| ∧ u′ ≤ y′
β ↓ 0 in E′ for all u′ ∈ E′

+. Clearly, for a positive element x ∈ E,
we have (|x′

α| ∧ u′)(x) ≤ (y′
β)(x) → 0. Since Fx ∈ (E′)∼

uaw∗ , Fx ∈ (E′)∼
uo.

(2) ⇒ (4) is similar.
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(1) ⇒ (7), (2) ⇒ (8), (5) ⇒ (7), and (6) ⇒ (8). It follows from [10,
Lemma 2] and [8, Lemma 2.3] that every disjoint net is uaw-null and uaw∗-
null. According to [3, Corollary 3.6], we have (4) ⇒ (8).

(8) ⇒ (1). Since (x′
n) is a disjoint sequence, a sequence (y′

n) statisfying
{y′

n ∈ [−|x′
n|, |x′

n|]} is also disjoint. Therefore supy′
n∈[−|x′

n|,|x′
n|] |Fx(y′

n)| =
|Fx|(|x′

n|) → 0 for any disjoint sequence (x′
n) in BE′ . Applying [1, Theo-

rem 4.36] to the seminorm |Fx|(| · |), the identity operator T , and the solid set
BE′ , we have that, for any ε > 0, there exists u′ ∈ E′

+ such that

sup
x′∈BE′

|Fx|(|x′| − |x′| ∧ u′) = sup
x∈BE′

|Fx|((|x′| − u)+
)

< ε.

For a uaw∗-null net (x′
α) ⊂ BE′ , we have |x′

α|∧u′ w∗
−−→ 0. Hence |Fx|(|x′

α|∧
u′) → 0. Therefore |Fx(x′

α)| ≤ |Fx|(|x′
α|) → 0.

(8) ⇔ (9). According to [6, Corollary 2.3.3], let A = [−|x|, |x|] and B = BE′ .
Every disjoint sequence in [0, |x|] is norm convergent to zero if and only if every
disjoint sequence in [−|x|, |x|] is uniform convergencent to zero on B. Since (x′

n)
is disjoint if and only if (|x′

n|) is disjoint and Fx(|x′
n|) = supg∈[−|x|,|x|] |g(x′

n)|,
Fx(x′

n) → 0 for any bounded disjoint sequence (x′
n) in E′ if and only if (x′

n)
is uniform convergencent to zero on A. We have the result.

(5) ⇔ (11). Suppose now that E′ is order continuous. According to [8,
Theorem 2.4], the uaw and uaw∗-topologies coincide with the un-topology.
The result can be easily verified. �

Theorem 2.7 (Extension of [4, Theorem 2.3]). Let E be a Banach lattice. For
any f ∈ E∼

n , the following conditions are equivalent.
(1) f ∈ E∼

uo.
(2) f(xn) → 0 for any bounded uo-null sequence (xn) in E.
(3) f ∈ E∼

uaw.
(4) f(xn) → 0 for any bounded uaw-null sequence (xn) in E.
(5) f ∈ E∼

d .
(6) f(xn) → 0 for any bounded disjoint sequence (xn) in E.
(7) Every disjoint sequence in [0, |f |] is norm convergent to zero.

In addition, if E has order continuous norm, these conditions are equiv-
alent to

(8) f ∈ E∼
un.

(9) f(xn) → 0 for any bounded un-null sequence (xn) in E.

Proof. (1) ⇔ (2) ⇔ (6) ⇔ (7). By [4, Theorem 2.3].
(3) ⇔ (9) is similar to (5) ⇔ (11) of Theorem 2.6.
(3) ⇒ (4) and (5) ⇒ (6) are obvious. (3) ⇒ (5) and (4) ⇒ (6) hold since

every disjoint net is uaw-null.
(6) ⇒ (3). Using [1, Theorem 4.36], the proof is similar to (3) ⇒ (1) of [4,

Theorem 2.3] and (8) ⇒ (1) of Theorem 2.6. �

Similarly, we have the following.

Theorem 2.8. Let E be a Banach lattice. For any f ∈ E′, the following condi-
tions are equivalent.
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(1) f ∈ E∼
uaw.

(2) f(xn) → 0 for any bounded uaw-null sequence (xn) in E.
(3) f ∈ E∼

d .
(4) f(xn) → 0 for any bounded disjoint sequence (xn) in E.
(5) Every disjoint sequence in [0, |f |] is norm convergent to zero.

In addition, if E has order continuous norm, these conditions are equiv-
alent to

(6) f ∈ E∼
un.

(7) f(xn) → 0 for any bounded un-null sequence (xn) in E.

Using the above results, we obtain the exact form of these duals.

Theorem 2.9. Let E be a Banach lattice. The following relations hold.
(1) E∼

uo = (E∼
n )a ⊂ E∼

uaw = E∼
d = (E′)a ⊂ E∼

un ⊂ E′.
(2) (E′)∼

uaw∗ = Ea ⊂ (E′)∼
uo =

(
(E′)∼

n )a ⊂ (E′)∼
uaw = (E′)∼

d = (E′′)a ⊂
(E′)∼

un ⊂ E′′.

Proof. According to Proposition 2.5, we have (E′)∼
uaw∗ ⊂ E, E∼

uo ⊂ E∼
n ,

E∼
uaw ⊂ E′, E∼

d ⊂ E′, and E∼
un ⊂ E′. It follows from Theorems 2.6, 2.7,

and 2.8 that these duals are the order continuous part, therefore we have the
result. �

The following example shows the bounded duals for unbounded convergence
in classical Banach lattices.

Example 2.10.

(c0)∼
uo = (c0)∼

uaw = (c0)∼
d = (c0)∼

un = (l1)a = l1,

(l1)∼
uaw∗ = (l1)∼

uo = (l1)∼
uaw = (l1)∼

d = (l∞)a = (c0)a = c0,

(l∞)∼
uaw∗ = (l∞)∼

uo = (l1)a = l1,

(l∞)∼
uaw = (l∞)∼

d = (l∞)∼
un = ba(2N),

(L1[0, 1])∼
uo = (L1[0, 1])∼

uaw = (L1[0, 1])∼
d = (L∞[0, 1])a = {0},

(L∞[0, 1])∼
uaw∗ = (L∞[0, 1])∼

uo = (L1[0, 1])a = L1[0, 1],

(L∞[0, 1])∼
uaw = (L∞[0, 1])∼

d = (L∞[0, 1])∼
un = (ba[0, 1])a = ba[0, 1],

(C[0, 1])∼
uo = ({0})a = {0},

(C[0, 1])∼
uaw = (C[0, 1])∼

d = (C[0, 1])∼
un = rca[0, 1].

As an application of these results, we conclude the paper with characteri-
zations of the order continuity and reflexivity of Banach lattices.

Theorem 2.11. For a Banach lattice E, the following holds.
(1) E has order continuous norm if and only if (E′)∼

uaw∗ = E;
(2) E′ has order continuous norm if and only if E∼

uaw = E∼
d = E∼

un = E′;
(3) (Extension of [9, Theorem 5]) E and E′ are order continuous if and only

if E∼
uo = E∼

uaw = E∼
d = E∼

un = E′;
(4) E is reflexive if and only if (E′)∼

uaw∗ = (E′)∼
uo = (E′)∼

uaw = (E′)∼
d =

(E′)∼
un = E′′.
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Proof. (1). E is order continuous if and only if Ea = E. It follows from Theo-
rem 2.9(2) that E is order continuous if and only if (E′)∼

uaw∗ = Ea = E.
(2). E′ is order continuous if and only if (E′)a = E′. According to Theo-

rem 2.9(1), we have E∼
uaw = E∼

d = (E′)a, therefore E′ is order continuous if
and only if E∼

uaw = E∼
d = E∼

un = (E′)a = E′.
(3). E and E′ are order continuous if and only if (E∼

n )a = E′. Since E∼
uo =

(E∼
n )a, E and E′ are order continuous if and only if E∼

uo = E∼
uaw = E∼

d =
E∼

un = (E∼
n )a = (E′)a = E′.

(4). E is reflexive if and only if Ea = E = E′′. Hence E is reflexive if and
only if (E′)∼

uaw∗ = (E′)∼
uo = (E′)∼

uaw = (E′)∼
d = (E′)∼

un = Ea = E = E′′ by
(E′)∼

uaw∗ = Ea. �

So far, we still do not know what the exact form of E∼
un is. So, we state the

problem here.

Problem 2.12. What is the exact form of E∼
un?
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