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Abstract. In this work, we analyze a truncated version for the Timoshenko
beam model with thermal and mass diffusion effects derived by Aouadi
et al. (Z Angew Math Phys 70:117, 2019). In particular, we study some
issues related to the second spectrum of frequency according to a pro-
cedure due to Elishakoff (in: Advances in mathematical modelling and
experimental methods for materials and structures, solid mechanics and
its applications, Springer, Berlin, 2010). In Aouadi et al. (2019), the lack
of exponential stability for the classical Timoshenko beam with thermo-
diffusion effects without assuming the nonphysical condition of equal wave
speeds has be proved. By using the classical Faedo–Galerkin method com-
bined with the a priori estimates, we prove the existence and uniqueness of
a global solution of the truncated version of this problem. Then we prove
that this solution is exponentially stable without assuming the condition
of equal wave speeds.
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1. Introduction. Recently, Aouadi et al. [5] introduced a new Timoshenko
beam model with thermal and mass diffusion effects given by

ρ1ϕtt − κ(ϕx + ψ)x = 0 in ]0, L[×]0,∞[, (1.1)
ρ2ψtt − αψxx + κ(ϕx + ψ) − γ1θx − γ2Px = 0 in ]0, L[×]0,∞[, (1.2)

cθt + dPt − Kθxx − γ1ψxt = 0 in ]0, L[×]0,∞[, (1.3)
dθt + rPt − �Pxx − γ2ψxt = 0 in ]0, L[×]0,∞[, (1.4)
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where ϕ is the transverse displacement, ψ is the rotation of the neutral axis
due to bending, θ is the temperature, and P is the chemical potential. The
constants ρ1, ρ2, κ, α, γ1, γ2, c, r, d, �, and K are physical positive parameters.
They showed, without assuming the well-known equal wave speeds condition
χ := κ/ρ1 − b/ρ2 = 0, the lack of exponential stability for the problem. Based
on [5] and the recent studies due to Almeida Júnior et al. [1–4], we consider
the truncated version given by

ρ1ϕtt − κ(ϕx + ψ)x = 0 in ]0, L[×]0,∞[, (1.5)
−ρ2ϕxtt − αψxx + κ(ϕx + ψ) − γ1θx − γ2Px = 0 in ]0, L[×]0,∞[, (1.6)

cθt + dPt − Kθxx − γ1ψxt = 0 in ]0, L[×]0,∞[, (1.7)
dθt + rPt − �Pxx − γ2ψxt = 0 in ]0, L[×]0,∞[, (1.8)

with the initial conditions

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ϕtt(x, 0) = ϕ2(x), x ∈ (0, L),
ψ(x, 0) = ψ0(x), θ(x, 0) = θ0(x), P (x, 0) = P0(x), x ∈ (0, L), (1.9)

and boundary conditions of Dirichlet-Neumann-type

ϕ(0, t) = ϕ(L, t) = ψx(0, t) = ψx(L, t) = 0, t ≥ 0
θ(0, t) = θ(L, t) = P (0, t) = P (L, t) = 0, t ≥ 0. (1.10)

The truncated version (1.5)–(1.10) is obtained by following the procedure
of Elishakoff [7] which involves replacing the term ψtt in (1.2) by −ϕxtt based
on d’Alembert’s principle for dynamic equilibrium. This eliminates the second
spectrum of frequency and its damaging consequences for wave propagation
speed (see the first results in [1] and also in [9]). Therefore, the goal of this
work is to prove the well-posedness of problem (1.5)–(1.10) and the exponential
stability of solutions without assuming the nonphysical condition of equal wave
speeds.

In order to derive the dissipative nature of the system (1.5)–(1.10), we
define its functional energy of solutions

E(t) :=
ρ1
2

L∫

0

|ϕt|2dx +
ρ1ρ2
2κ

L∫

0

|ϕtt|2dx +
ρ2
2

L∫

0

|ϕxt|2dx

+
α

2

L∫

0

|ψx|2dx +
κ

2

L∫

0

|ϕx + ψ|2dx +
1
2
(c − d2/r)

L∫

0

|θ|2dx

+
1
2

L∫

0

∣∣∣∣ d√
r
θ +

√
rP

∣∣∣∣
2

dx, (1.11)

which preserves its positivity property for

cr − d2 > 0. (1.12)
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2. Well-posedness. In this section, the existence and uniqueness of weak and
strong solutions to (1.5)–(1.10) will be proved. To this end, we will use the
Faedo–Galerkin approximations and pass to the limit by using compactness
arguments (see also [6]).

We introduce the phase space

H := H1
0 (0, L) × H1

0 (0, L) × L2(0, L) × H1
∗ (0, L) × L2(0, L) × L2(0, L),

and

H1 := (H2(0, L) ∩ H1
0 (0, L))2 × H1

0 (0, L) × H2
∗ (0, L) × H1

0 (0, L) × H1
0 (0, L),

where

L2
∗(0, L) :=

⎧⎨
⎩u ∈ L2(0, L) :

L∫

0

u(x)dx = 0

⎫⎬
⎭ ,

and

H1
∗ (0, L) := H1(0, L) ∩ L2

∗(0, L), H2
∗ (0, L) := H2(0, L) ∩ H1

∗ (0, L).

In order to state our main result, we begin with a precise definition of a
weak solution to (1.5)–(1.10).

Definition 2.1. Given initial data (ϕ0, ϕ1, ϕ2, ψ0, θ0, P0) ∈ H, a function U =
(ϕ,ϕt, ϕtt, ψ, θ, P ) ∈ C(0, T ;H) is said to be a weak solution of (1.5)–(1.10) if
for almost every t ∈ [0, T ],

ρ1
d

dt
(ϕt, u) + κ(ϕx + ψ, ux) = 0, (2.1)

ρ1
d

dt
(ϕtt, v) + κ

d

dt
(ϕx + ψ, vx) = 0, (2.2)

ρ2
d

dt
(ϕt, wx)+α(ψx, wx)+κ(ϕx+ψ,w)+(γ1θ + γ2P,wx) = 0, (2.3)

d

dt
(cθ + dP, ξ) + K(θx, ξx) + γ1

d

dt
(ψ, ξx) = 0, (2.4)

d

dt
(dθ + rP, ζ) + �(Px, ζx) + γ2

d

dt
(ψ, ζx) = 0, (2.5)

for all u, v, ξ, ζ ∈ H1
0 (0, L), w ∈ H1

∗ (0, L), and(
ϕ(0), ϕt(0), ϕtt(0), ψ(0), θ(0), P (0)

)
=

(
ϕ0, ϕ1, ϕ2, ψ0, θ0, P0

)
.

Theorem 2.2. Suppose that condition (1.12) holds. Then we have:
(i) If the initial data (ϕ0, ϕ1, ϕ2, ψ0, θ0, P0) ∈ H, then problem (1.5)–(1.10) has
a weak solution satisfying

ϕ ∈ L∞(
0, T ;H1

0 (0, L)
)
, ψ ∈ L∞(

0, T ;H1
∗ (0, L)

)
,

ϕt ∈ L∞(
0, T ;H1

0 (0, L)
)
, ϕtt ∈ L∞(

0, T ;L2(0, L)
)
,

θ ∈ L∞(
0, T ;L2(0, L)

)
, P ∈ L∞(

0, T ;L2(0, L)
)
.

(ii) If the initial data (ϕ0, ϕ1, ϕ2, ψ0, θ0, P0) ∈ H1, then problem (1.5)–(1.10)
has a unique stronger weak solution satisfying

ϕ ∈ L∞(
0, T ;H2(0, L) ∩ H1

0 (0, L)
)
, ψ ∈ L∞(

0, T ;H2
∗ (0, L)

)
,
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ϕt ∈ L∞(
0, T ;H2(0, L) ∩ H1

0 (0, L)
)
,

ϕtt ∈ L∞(
0, T ;H1

0 (0, 1)
)
, θ ∈ L∞(

0, T ;H1
0 (0, L)

)
,

P ∈ L∞(
0, T ;H1

0 (0, L)
)
.

(iii) In both cases, the solution (ϕ,ϕt, ϕtt, ψ, θ, P ) depends continuously on
the initial data in H. In particular, problem (1.5)–(1.10) has a unique weak
solution.

Proof. The proof is given by the Faedo–Galerkin method. We only briefly
present the main (six) steps.

Step 1 – Approximate problem. Let us consider the initial data (ϕ0, ϕ1, ϕ2,
ψ0, θ0, P0) ∈ H. Let {ωj}∞

j=1 and {μj}∞
j=1 be orthogonal bases for H2(0, L) ∩

H1
0 (0, L) and H2

∗ (0, L), respectively, which are both orthonormal in L2(0, L).
Now we denote the finite-dimensional subspaces, for any integer n ∈ N, by

Hn = span{ω1, ω2, ..., ωn}, Vn = span{μ1, μ2, ..., μn}.

We will find an approximate solution of the form

ϕn(x, t) =
n∑

j=1

aj,nωj(x), ψn(x, t) =
n∑

j=1

bj,nμj(x), (2.6)

θn(x, t) =
n∑

j=1

cj,nωj(x), Pn(x, t) =
n∑

j=1

dj,nωj(x), (2.7)

to the following approximate problem

ρ1(ϕn
tt, u) + κ(ϕn

x + ψn, ux) = 0, (2.8)
ρ1(ϕn

ttt, v) + κ(ϕn
xt + ψn

t , vx) = 0, (2.9)
ρ2(ϕn

tt, wx)+α(ψn
x, wx)+κ(ϕn

x +ψn, w)+(γ1θn+γ2P
n,wx) = 0, (2.10)

(cθn
t + dPn

t , ξ) + K(θn
x , ξx) + γ1(ψn

t , ξx) = 0, (2.11)
(dθn

t + rPn
t , ζ) + �(Pn

x , ζx) + γ2(ψn
t , ζx) = 0, (2.12)

for all u, v, ξ, ζ ∈ Hn, w ∈ Vn with initial conditions

(ϕn(0), ϕn
t (0), ϕn

tt(0), ψn(0), θn(0), Pn(0)) = (ϕn
0 , ϕn

1 , ϕn
2 , ψn

0 , θn
0 , Pn

0 ) (2.13)

satisfying

(ϕn
0 , ϕn

1 , ϕn
2 , ψn

0 , θn
0 , Pn

0 ) → (ϕ0, ϕ1, ϕ2, ψ0, θ0, P0) strongly in H.

From the application of the standard ODE theory, we can obtain a local solu-
tion

(
ϕn(t), ϕn

t (t), ϕn
tt(t), ψ

n(t), θn(t), Pn(t)
)

on the maximal interval [0, tn)
with 0 < tn ≤ T for every n ∈ N.

Step 2 – A priori estimate. Replacing u by ϕn
t in (2.8), v by ϕn

tt in (2.9), w by
ψn

t in (2.10), ξ by θn in (2.11), and ζ by Pn, we obtain

d

dt
En(t) + K

L∫

0

|θn
x |2dx + �

L∫

0

|Pn
x |2dx = 0, (2.14)
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where

En(t) :=
ρ1
2

L∫

0

|ϕn
t |2dx +

ρ1ρ2
2κ

L∫

0

|ϕn
tt|2dx +

ρ2
2

L∫

0

|ϕn
xt|2dx

+
α

2

L∫

0

|ψn
x |2dx +

κ

2

L∫

0

|ϕn
x + ψn|2dx +

1
2
(c − d2/r)

L∫

0

|θn|2dx

+
1
2

L∫

0

∣∣∣∣ d√
r
θn +

√
rPn

∣∣∣∣
2

dx.

Then integrating (2.14) from 0 to t < tn, we obtain from our choice of initial
data that for all t ∈ [0, T ] and for every n ∈ N,

En(t) + K

t∫

0

L∫

0

|θn
x (s)|2dxds + �

t∫

0

L∫

0

|Pn
x (s)|2dxds ≤ C1, (2.15)

where C1 is a positive constant depending on the initial data. Thus, approxi-
mate solutions are defined on the whole range [0, T ].

Step 3 – Passing to the limit. From (2.15) and definition of En(t), we deduce
that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ϕn} is bounded in L∞(
0, T ;H1

0 (0, L)
)
,

{ϕn
t } is bounded in L∞(

0, T ;H1
0 (0, L)

)
,

{ϕn
tt} is bounded in L∞(

0, T ;L2(0, L)
)
,

{ψn} is bounded in L∞(
0, T ;H1

∗ (0, L)
)
,

{θn} is bounded in L∞(
0, T ;L2(0, L)

) ∩ L2
(
0, T ;H1

0 (0, L)
)
,

{Pn} is bounded in L∞(
0, T ;L2(0, L)

) ∩ L2
(
0, T ;H1

0 (0, L)
)
.

Then we can extract a subsequence of {ϕn}, {ψn}, {θn}, and {Pn} still denoted
by {ϕn}, {ψn}, {θn}, and {Pn}, such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕn → ϕ weakly star in L∞(
0, T ;H1

0 (0, L)
)
,

ϕn
t → ϕt weakly star in L∞(

0, T ;H1
0 (0, L)

)
,

ϕn
tt → ϕtt weakly star in L∞(

0, T ;L2(0, L)
)
,

ψn → ψ weakly star in L∞(
0, T ;H1

∗ (0, L)
)
,

θn → θ weakly star in L∞(
0, T ;L2(0, L)

)
,

θn → θ weakly in L2
(
0, T ;H1

0 (0, L)
)
,

Pn → P weakly star in L∞(
0, T ;L2(0, L)

)
,

Pn → P weakly in L2
(
0, T ;H1

0 (0, L)
)
.

Therefore the above limits allow us to pass to the limit in the approximate
problem (2.8)–(2.12) to get a weak solution satisfying

ϕ ∈ L∞(
0, T ;H1

0 (0, L)
)
, ψ ∈ L∞(

0, T ;H1
∗ (0, L)

)
,
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ϕt ∈ L∞(
0, T ;H1

0 (0, L)
)
, ϕtt ∈ L∞(

0, T ;L2(0, L)
)
,

θ ∈ L∞(
0, T ;L2(0, L)

)
, P ∈ L∞(

0, T ;L2(0, L)
)
.

Step 4 – Initial data. By using Aubin-Lions lemma, see [8], we arrive at

ϕn → ϕ strongly in C(0, T ;L2(0, L)), (2.16)
ϕn

t → ϕt strongly in C(0, T ;L2(0, L)). (2.17)

Consequently (
ϕ(0), ϕt(0)

)
=

(
ϕ0, ϕ1

)
.

Now, we multiply (2.9) by a test function

η ∈ H1(0, T ), η(0) = 1, η(T ) = 0,

and integrate the result over [0, T ] to obtain

−ρ1(ϕn
2 , v) − ρ1

T∫

0

(ϕn
tt, v)ηtdt + κ

T∫

0

d

dt
(ϕn

x + ψn, vx)ηdt = 0

for all v ∈ H1
0 (0, L). Taking the limit n → ∞, we obtain

− ρ1(ϕ2, v) − ρ1

T∫

0

(ϕtt, v)ηtdt + κ

T∫

0

d

dt
(ϕx + ψ, vx)ηdt = 0 (2.18)

for all v ∈ H1
0 (0, L). On the other hand, multiplying (2.2) by η and integrating

the result over [0, T ], we obtain

− ρ1(ϕtt(0), v) − ρ1

T∫

0

(ϕtt, v)ηtdt + κ

T∫

0

d

dt
(ϕx + ψ, vx)ηdt = 0 (2.19)

for all v ∈ H1
0 (0, L). Combining (2.18) and (2.19), we conclude that ϕtt(0) =

ϕ2. Analogously, we obtain(
ψ(0), θ(0), P (0)

)
=

(
ψ0, θ0, P0

)
.

Step 5—Stronger solutions. Suppose that the initial data in the approximate
problem (2.8)–(2.12) satisfies (ϕ0, ϕ1, ϕ2, ψ0, θ0, P0) ∈ H1 and

(ϕn
0 , ϕn

1 , ϕn
2 , ψn

0 , θn
0 , Pn

0 ) → (ϕ0, ϕ1, ϕ2, ψ0, θ0, P0) strongly in H1. (2.20)

Replacing u by −ϕn
xxt in (2.8), v by −ϕn

xxtt in (2.9), w by −ψn
xxt in (2.10), ξ

by −θn
xx in (2.11), and ζ by −Pxx in (2.12), we see that

d

dt
Fn(t) + K

L∫

0

|θn
xx|2dx + �

L∫

0

|Pn
xx|2dx = 0, (2.21)

where

Fn(t) :=
ρ1
2

L∫

0

|ϕn
xt|2dx +

ρ1ρ2
2κ

L∫

0

|ϕn
xtt|2dx +

ρ2
2

L∫

0

|ϕn
xxt|2dx
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+
α

2

L∫

0

|ψn
xx|2dx +

κ

2

L∫

0

|ϕn
xx + ψn

x |2dx +
1
2
(c − d2/r)

L∫

0

|θn
x |2dx

+
1
2

L∫

0

∣∣∣∣ d√
r
θn

x +
√

rPn
x

∣∣∣∣
2

dx.

Then from (2.21), we obtain that for all t ∈ [0, T ], n ∈ N,

Fn(t) + K

t∫

0

L∫

0

|θn
xx(s)|2dxds + �

t∫

0

L∫

0

|Pn
xx(s)|2dxds ≤ C2, (2.22)

where C2 is a positive constant independent of t and n but depending on the
initial data. From (2.22), we deduce that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ϕn} is bounded in L∞(
0, T ;H2(0, L) ∩ H1

0 (0, L)
)
,

{ϕn
t } is bounded in L∞(

0, T ;H2(0, L) ∩ H1
0 (0, L)

)
,

{ϕn
tt} is bounded in L∞(

0, T ;H1
0 (0, L)

)
,

{ψn} is bounded in L∞(
0, T ;H2

∗ (0, L)
)
,

{θn} is bounded in L∞(
0, T ;H1

0 (0, L)
) ∩ L2

(
0, T ;H2(0, L) ∩ H1

0 (0, L)
)
,

{Pn} is bounded in L∞(
0, T ;H1

0 (0, L)
) ∩ L2

(
0, T ;H2(0, L) ∩ H1

0 (0, L)
)
.

This implies that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕn → ϕ weakly star in L∞(
0, T ;H2(0, L) ∩ H1

0 (0, L)
)
,

ϕn
t → ϕt weakly star in L∞(

0, T ;H2(0, L) ∩ H1
0 (0, L)

)
,

ϕn
tt → ϕtt weakly star in L∞(

0, T ;H1
0 (0, L)

)
,

ψn → ψ weakly star in L∞(
0, T ;H2

∗ (0, L)
)
,

θn → θ weakly star in L∞(
0, T ;H1

0 (0, L)
)
,

θn → θ weakly in L2
(
0, T ;H2(0, L) ∩ H1

0 (0, L)
)
,

Pn → P weakly star in L∞(
0, T ;H1

0 (0, L)
)
,

Pn → P weakly in L2
(
0, T ;H2(0, L) ∩ H1

0 (0, L)
)
.

From the above limits, we conclude that (ϕ,ϕt, ϕtt, ψ, θ, P ) is a stronger weak
solution satisfying

ϕ ∈ L∞(
0, T ;H2(0, L) ∩ H1

0 (0, L)
)
, ψ ∈ L∞(

0, T ;H2
∗ (0, L)

)
,

ϕt ∈ L∞(
0, T ;H2(0, L) ∩ H1

0 (0, L)
)
,

ϕtt ∈ L∞(
0, T ;H1

0 (0, 1)
)
, θ ∈ L∞(

0, T ;H1
0 (0, L)

)
,

P ∈ L∞(
0, T ;H1

0 (0, L)
)
.

Step 6 – Continuous dependence. Firstly, we consider the case of stronger
solutions. Let U(t) = (ϕ,ϕt, ϕtt, ψ, θ, P ) and V (t) = (ϕ̃, ϕ̃t, ϕ̃tt, ψ̃, θ̃, P̃ ) be
the stronger weak solutions of the problem (1.5)–(1.8) corresponding to the
initial data U(0) = (ϕ0, ϕ1, ϕ2, ψ0, θ0, P0), V (0) = (ϕ̃0, ϕ̃1, ϕ̃2, ψ̃0, θ̃0, P̃0) ∈
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H1, respectively. Then (Φ,Φt,Φtt,Ψ,Θ,Υ) = U(t)−V (t) satisfies the following
equations:

ρ1Φtt − κ(Φx + Ψ)x = 0, (2.23)
−ρ2Φxtt − bΨxx + κ(Φx + Ψ) − γ1Θx − γ2Υx = 0, (2.24)

cΘt + dΥt − KΘxx − γ1Ψxt = 0, (2.25)
dΘt + rΥt − �Υxx − γ2Ψxt = 0, (2.26)

with initial data (Φ(0),Φt(0),Φtt(0),Ψ(0),Θ(0),Υ(0)) = U(0) − V (0).
We multiply (2.23) by Φt, (2.24) by Ψt, (2.25) by Θ, and (2.26) by Υ and

integrate the result over (0, L) to derive

d

dt
Ê(t) = −K

L∫

0

|Θn
x |2dx − �

L∫

0

|Υn
x |2dx, (2.27)

where Ê(t) is the energy corresponding to U(t) − V (t) defined by

Ê(t) =
ρ1ρ2
2κ

L∫

0

Φ2
ttdx +

ρ2
2

L∫

0

Φ2
xtdx +

ρ1
2

L∫

0

Φ2
t dx

+
κ

2

L∫

0

(Φx + Ψ)2dx +
α

2

L∫

0

Ψ2
xdx +

1
2
(c − d2/r)

L∫

0

|Θn|2dx

+
1
2

L∫

0

∣∣∣∣ d√
r
Θn +

√
rΥn

∣∣∣∣
2

dx.

Integrating (2.27) over (0, t), we get that there exists a constant CT > 0 such
that for any t ∈ [0, T ],

Ê(t) ≤ CT Ê(0),

which implies the continuous dependence of stronger weak solutions on the
initial data. Then we know that the stronger weak solution of problem (1.5)–
(1.10) is unique. The continuous dependence and uniqueness for weak solu-
tions can be proved by using density arguments (weak solutions are limits of
stronger weak solutions). Combining the above analysis, we complete the proof
of Theorem 2.2. �

3. Exponential decay. In this section, we use the energy method to prove that
E(t), the energy of system (1.5)–(1.10) given by (1.11), decays exponentially.
For this, we assume that (ϕ,ϕt, ϕtt, ψ, θ, P ) is a solution of the system (1.5)–
(1.10) with the regularity stated in Theorem 2.2 and we suppose that condition
(1.12) holds true.

Theorem 3.1. Suppose that the hypotheses of Theorem 2.2 hold. Then there
exist two positive constants M and η such that

E(t) ≤ ME(0)e−ηt, ∀t ≥ 0. (3.1)
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The proof of Theorem 3.1 will be established through several lemmas. We
have the first lemma regarding the dissipative nature of the energy.

Lemma 3.2. The energy E(t) of the system (1.5)–(1.10) satisfies the energy
dissipation law given by

d

dt
E(t) = −K

L∫

0

|θx|2dx − �

L∫

0

|Px|2dx, t ≥ 0. (3.2)

Proof. Multiplying Eq. (1.5) by ϕt, (1.6) by ψt, (1.7) by θ, (1.8) by P , and
integrating the result over [0, L], we obtain the desired result. �

We set

F1(t) := −ρ1

L∫

0

ϕtϕdx. (3.3)

Lemma 3.3. Suppose that the hypotheses of Theorem 2.2 hold. Then we have

d

dt
F1(t) ≤ −ρ1

L∫

0

|ϕt|2dx + κcp

L∫

0

|ψx|2 dx +
3κ

2

L∫

0

|ϕx + ψ|2dx, (3.4)

where cp > 0 is the Poincaré constant.

Proof. Multiplying Eq. (1.5) by ϕ, integrating over [0, L] using integration by
parts, and taking into account the boundary conditions (1.10), we have

ρ1

L∫

0

ϕttϕ dx + κ

L∫

0

(ϕx + ψ)ϕx dx = 0. (3.5)

Taking into account the identity ϕttϕ =
∂

∂t
(ϕtϕ)−|ϕt|2 and Young’s inequality,

we arrive at

− d

dt

(
ρ1

L∫

0

ϕtϕ dx

)
≤ −ρ1

L∫

0

|ϕt|2dx +
κ

2

L∫

0

|ϕx + ψ|2dx

+
κ

2

L∫

0

|ϕx|2 dx. (3.6)

Moreover, we consider the inequality given by
∫ L

0
|ϕx|2dx ≤ 2

∫ L

0
|ϕx + ψ|2dx

+ 2cp

∫ L

0
|ψx|2dx, we complete the proof. �

Lemma 3.4. Suppose that the hypotheses of Theorem 2.2 hold. Then we have

d

dt
F2(t) ≤ −ρ1ρ2

κ

L∫

0

|ϕtt|2dx − α

2

L∫

0

|ψx|2dx + ρ2

L∫

0

|ϕxt|2 dx
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+
3κ2cp

2α

L∫

0

|ϕx + ψ|2 dx +
3γ2

1cp

2α

L∫

0

|θx|2dx +
3γ2

2cp

2α

L∫

0

|Px|2dx, (3.7)

where

F2(t) := ρ2

L∫

0

ϕxtϕx dx. (3.8)

Proof. Multiplying Eq. (1.6) by ψ and integrating by parts, we obtain

ρ2

L∫

0

ϕttψxdx + α

L∫

0

|ψx|2dx + κ

L∫

0

(ϕx + ψ)ψ dx − γ1

L∫

0

θxψ dx

−γ2

L∫

0

Pxψ dx = 0. (3.9)

It follows from Eq. (1.5) that ψx =
ρ1
κ

ϕtt − ϕxx. Then, substituting ψx into

(3.9), we obtain

d

dt

(
ρ2

L∫

0

ϕxtϕx dx

)
− ρ2

L∫

0

|ϕxt|2 dx +
ρ1ρ2

κ

L∫

0

|ϕtt|2dx

+α

L∫

0

|ψx|2 dx + κ

L∫

0

(ϕx + ψ)ψ dx − γ1

L∫

0

θxψ dx − γ2

L∫

0

Pxψdx = 0,

and using Young’s and Poincare’s inequalities, we arrive at the desired result.
�

Let us introduce one more functional which is given by

F3(t) :=
αρ1
κ

L∫

0

ψxϕtdx − C1

γ1
c

L∫

0

θϕtdx − C1

γ1
d

L∫

0

Pϕtdx

−ρ2

L∫

0

ϕxt(ϕx + ψ)dx. (3.10)

Lemma 3.5. Suppose that the hypotheses of Theorem 2.2 the hold. Then for all
ε > 0, there are constants Ci > 0 (i = 1, 2, 3) such that

d

dt
F3(t) ≤ −ρ2

2

L∫

0

|ϕxt|2dx − κ

2

L∫

0

|ϕx + ψ|2dx + C2

L∫

0

|θx|2dx

+C3

L∫

0

|Px|2dx +
C1

γ1
(c + d)ε

L∫

0

|ϕtt|2dx. (3.11)
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Proof. Multiplying Eq. (1.6) by (ϕx + ψ), integrating over [0, L], and using
integration by parts, we have

−ρ2

L∫

0

ϕxtt(ϕx + ψ) dx + α

L∫

0

ψx(ϕx + ψ)x dx + κ

L∫

0

|ϕx + ψ|2dx

−γ1

L∫

0

θx(ϕx + ψ) dx − γ2

L∫

0

Px(ϕx + ψ) dx = 0. (3.12)

Now, using Young’s inequality, it follows that

−ρ2

L∫

0

ϕxtt(ϕx + ψ) dx + α

L∫

0

ψx(ϕx + ψ)x dx ≤ −κ

2

L∫

0

|ϕx + ψ|2dx

+
γ2
1

κ

L∫

0

|θx|2dx +
γ2
2

κ

L∫

0

|Px|2dx. (3.13)

On the other hand, it follows from Eq. (1.5) that (ϕx + ψ)x =
ρ1
κ

ϕtt and then
we can rewrite the above inequality as

−ρ2

L∫

0

ϕxtt(ϕx + ψ) dx +
αρ1
κ

L∫

0

ϕttψx dx ≤ −κ

2

L∫

0

|ϕx + ψ|2dx

+
γ2
1

κ

L∫

0

|θx|2dx +
γ2
2

κ

L∫

0

|Px|2dx.

Moreover, we consider the identity given by ϕxtt(ϕx +ψ) =
∂

∂t

[
ϕxt(ϕx +ψ)

]−
ϕxt(ϕx + ψ)t from where we obtain

− d

dt

(
ρ2

L∫

0

ϕxt(ϕx + ψ) dx + ρ2

L∫

0

ϕtψx dx

)
≤ −ρ2

L∫

0

|ϕxt|2dx

−C1

L∫

0

ϕttψx dx − κ

2

L∫

0

|ϕx + ψ|2dx +
γ2
1

κ

L∫

0

|θx|2dx

+
γ2
2

κ

L∫

0

|Px|2dx, (3.14)

where C1 := α
(
ρ1/κ + ρ2/α

)
. On the other hand, multiplying Eq. (1.7) by

C1γ
−1
1 ϕt, we have
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C1

γ1
c

L∫

0

θtϕtdx +
C1

γ1
d

L∫

0

Ptϕtdx +
C1

γ1
K

L∫

0

θxϕxtdx − C1

L∫

0

ψxtϕtdx = 0.

Taking into account the identities θtϕt =
∂

∂t
(θϕt) − θϕtt, Ptϕt =

∂

∂t
(Pϕt) −

Pϕtt and ψxtϕt =
∂

∂t
(ψxϕt) − ψxϕtt, we have

d

dt

(
C1

L∫

0

ψxϕtdx − C1

γ1
c

L∫

0

θϕtdx − C1

γ1
d

L∫

0

Pϕtdx

)

= −C1

γ1
c

L∫

0

θϕttdx − C1

γ1
d

L∫

0

Pϕttdx +
C1

γ1
K

L∫

0

θxϕxtdx

+C1

L∫

0

ψxϕttdx. (3.15)

Adding (3.14) and (3.15), we obtain

d

dt
F3(t) ≤ −ρ2

L∫

0

|ϕxt|2dx − κ

2

L∫

0

|ϕx + ψ|2dx +
γ2
1

κ

L∫

0

|θx|2dx

+
γ2
2

κ

L∫

0

|Px|2dx − C1

γ1
c

L∫

0

θϕttdx − C1

γ1
d

L∫

0

Pϕttdx +
C1

γ1
K

L∫

0

θxϕxtdx

and using again Young’s inequality, we arrive at the desired result. �

Lemma 3.6. Suppose that the hypotheses of Theorem 2.2 hold. Then there are
constants λ, N0, δ > 0 such that

d

dt

(
λE(t) + N0E(t)

)
≤ −1

2

(
c − d2

r

)
δ

L∫

0

|θ|2dx

−1
2
δ

L∫

0

∣∣∣∣ d√
r
θ +

√
rP

∣∣∣∣
2

dx − N0K

L∫

0

|θx|2dx − N0�

L∫

0

|Px|2dx.

Proof. First, we define the constant λ0 := max
{
d2cp/Kr, rcp/�

}
. Then,

choosing λ > λ0 and using (3.2), we have

d

dt

(
λE(t) + N0E(t)

)
= −λK

L∫

0

|θx|2dx − λ�

L∫

0

|Px|2dx

−N0K

L∫

0

|θx|2dx − N0�

L∫

0

|Px|2dx. (3.16)
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Then, using the Poincaré inequality, we get

d

dt

(
λE(t) + N0E(t)

)
≤ −λK

2cp

L∫

0

|θ|2dx − λ�

2cp

L∫

0

|P |2dx − λK

2cp

L∫

0

|θ|2dx

− λ�

2cp

L∫

0

|P |2dx − N0K

L∫

0

|θx|2dx − N0�

L∫

0

|Px|2dx.

Since d2λK
2rccp

∫ L

0
|θ|2dx > 0 and − λ�

2cp

∫ L

0
|P |2dx < 0, we get the following esti-

mate

d

dt

(
λE(t) + N0E(t)

)
≤ −(

c − d2

r

) λK

2ccp

L∫

0

|θ|2dx − λK

2cp

L∫

0

|θ|2dx

− λ�

2cp

L∫

0

|P |2dx − N0K

L∫

0

|θx|2dx − N0�

L∫

0

|Px|2dx. (3.17)

Next, we add the term d2

2r

∫ L

0
|θ|2dx > 0

d

dt

(
λE(t) + N0E(t)

)
≤ −N0K

L∫

0

|θx|2dx − N0�

L∫

0

|Px|2dx

−1
2

(
λ�

rcp
− 1

)
r

L∫

0

|P |2dx − 1
2

(
d2

r

L∫

0

|θ|2dx + r

L∫

0

|P |2dx

)

−(
c − d2

r

) λK

2ccp

L∫

0

|θ|2dx − 1
2

(
λKr

d2cp
− 1

)
d2

r

L∫

0

|θ|2dx. (3.18)

Since λ > λ0 = max
{
d2cp/Kr, rcp/�

}
, we have ζ1 := λKr

d2cp
− 1 >

0 and ζ2 := λ�

rcp
− 1 > 0. Using Young’s inequality, we have

2d

L∫

0

θPdx ≤ d2

r

L∫

0

|θ|2dx + r

L∫

0

|P |2dx. (3.19)

Replacing (3.19) in (3.18), we have

d

dt

(
λE(t) + N0E(t)

)
≤ −(

c − d2/r
) λK

2ccp

L∫

0

|θ|2dx − ζ1
2

d2

r

L∫

0

|θ|2dx

−ζ2
2

r

L∫

0

|P |2dx − d

L∫

0

θPdx − N0K

L∫

0

|θx|2dx − N0�

L∫

0

|Px|2dx.
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Therefore,

d

dt

(
λE(t) + N0E(t)

)
≤ −1

2
(
c − d2

r

)
δ

L∫

0

|θ|2dx

−1
2
δ

L∫

0

∣∣∣∣ d√
r
θ +

√
rP

∣∣∣∣
2

dx − N0K

L∫

0

|θx|2dx − N0�

L∫

0

|Px|2dx, ∀ t ≥ 0,

where δ := min{1, λK/ccp, ζ1, ζ2}. �

Now we are ready to prove the main result of this paper.

Proof of Theorem 3.1. We consider the following Lyapunov functional defined
by

L(t) := (λ + N0)E(t) + F1(t) + N2F2(t) + N3F3(t), (3.20)

where λ > λ0 := max
{
d2cp/Kr, rcp/�

}
and Ni, i = 0, 2, 3, are positive

constants to be fixed later. Moreover, the coefficients N0 and λ will be chosen
large enough such that L(t) and E(t) are equivalent. Indeed, from Young’s and
Poincaré’s inequalities, we infer that there exists a constant 0 < c < N0 + λ
such that

|L(t) − (N0 + λ)E(t)| ≤ |F1(t)| + N2|F2(t)| + N3|F3(t)| ≤ cE(t), ∀t ≥ 0.

Consequently,

(N0 + λ − c)E(t) ≤ L(t) ≤ (N0 + λ + c)E(t), ∀t ≥ 0. (3.21)

Substituting the results of Lemmas 3.3, 3.4, and 3.5 in the time derivative of
L(t), we obtain after selecting ε := γ1ρ1ρ2

2κ(c+d)C1N3
,

d

dt
L(t) ≤ −ρ1

L∫

0

|ϕt|2dx −
(
2N2 − 1

)ρ1ρ2
2κ

L∫

0

|ϕtt|2dx

−
(
N3 − 2N2

)ρ2
2

L∫

0

|ϕxt|2dx −
(

N2 − 2cpκ

α

)
α

2

L∫

0

|ψx|2dx

−
(

N3 − 3 − 3κcp

α
N2

)
κ

2

L∫

0

|ϕx + ψ|2dx − 1
2

(
c − d2/r

)
δ

L∫

0

|θ|2dx
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−1
2
δ

L∫

0

∣∣∣∣ d√
r
θ +

√
rP

∣∣∣∣
2

dx −
(

KN0 − 3γ2
1cp

2α
N2 − C2N3

) L∫

0

|θx|2dx

−
(

�N0 − 3γ2
2cp

2α
N2 − C3N3

) L∫

0

|Px|2dx.

By choosing N2 > max
{

1/2, 2cpκ/α
}

, N3 > max
{

2N2, 3 + 3κcpN2/α
}

and

N0 large enough such that N0 > max
{

3γ2
1cp

2Kα N2 + C2
K N3,

3γ2
2cp

2�α N2 + C3
�

N3

}
,

one can obtain that ξ1 := 2N2 − 1 > 0, ξ2 := N3 − 2N2 > 0, ξ3 := N2 −
2cpκ

α > 0, ξ4 := N3 − 3 − 3κcp

α N2 > 0, ξ5 := KN1 − 3γ2
1cp

2α N2 − C2N3 > 0,

ξ6 := �N1 − 3γ2
2cp

2α N2 − C3N3 > 0.

Now, we can conclude that there exists a positive constant ω := min
{

2,

ξ1, ξ2, ξ3, ξ4, δ
}

> 0 such that

d

dt
L(t) ≤ −ωE(t), ∀t ≥ 0. (3.22)

Combining (3.21) with (3.22), we obtain

d

dt
L(t) ≤ − ω

N0 + λ + c
L(t), ∀t ≥ 0. (3.23)

From this and using (3.21) again, we have after integrating over (0, t),

E(t) ≤ N0 + λ + c

N0 + λ − c
E(0)e− βt

N0+λ+c , ∀t ≥ 0 (3.24)

which gives (3.1) with M := N0+λ+c
N0+λ−c and η := β

N0+λ+c . This completes the
proof. �
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