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Abstract. In this work, we analyze a truncated version for the Timoshenko
beam model with thermal and mass diffusion effects derived by Aouadi
et al. (Z Angew Math Phys 70:117, 2019). In particular, we study some
issues related to the second spectrum of frequency according to a pro-
cedure due to Elishakoff (in: Advances in mathematical modelling and
experimental methods for materials and structures, solid mechanics and
its applications, Springer, Berlin, 2010). In Aouadi et al. (2019), the lack
of exponential stability for the classical Timoshenko beam with thermo-
diffusion effects without assuming the nonphysical condition of equal wave
speeds has be proved. By using the classical Faedo—Galerkin method com-
bined with the a priori estimates, we prove the existence and uniqueness of
a global solution of the truncated version of this problem. Then we prove
that this solution is exponentially stable without assuming the condition
of equal wave speeds.
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1. Introduction. Recently, Aouadi et al. [5] introduced a new Timoshenko
beam model with thermal and mass diffusion effects given by

P — k(e + ), =0 in 0, L[x]0,00[, (1.1)

pothy — Qg + K(0r + ) — 710, — 2Py, =0 in 0, L[x]0,00][, (1.2)
Oy +dP, — KOy — 102 =0 in ]0, L[x]0,00[, (1.3)

dfy + 1Py — hPpy — y21p = 0 in ]0, L[Xx]0, 0], (1.4)
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where ¢ is the transverse displacement, 1) is the rotation of the neutral axis
due to bending, 6 is the temperature, and P is the chemical potential. The
constants p1, p2, K, &, Y1, V2, ¢, T, d, h, and K are physical positive parameters.
They showed, without assuming the well-known equal wave speeds condition
X := k/p1 —b/pa = 0, the lack of exponential stability for the problem. Based
on [5] and the recent studies due to Almeida Junior et al. [1-4], we consider
the truncated version given by

prow — k(e + 1), =0 in ]0,L[x]0,00[, (1.5)

—p2Patt — Wuy + K(py + ) =10y —72P, =0 in ]0,L[x]0,00[,  (1.6)
chy +dP; — KOy — 10z =0 in ]0, L[x]0,00[, (1.7)

A0, + 1P, — iPsy — yother =0 in 10, L[x]0,00[,  (1.8)

with the initial conditions

e(x,0) = @o(x), i(2,0) = @1(x), u(r,0) = p2(z), z€(0,L),
¢($a0) = ¢0($)7 0(13,0) = 00(55)’ P(JC,O) = Po(l'), T e (O’L)v (19)

and boundary conditions of Dirichlet-Neumann-type

@(Ovt) :@(Lﬂt) :wm(()»t) :1/)37(L7t) :07 t>0
0(0,¢) = O(L,t) = P(0,£) = P(L,#) =0, 0. (1.10)

The truncated version (1.5)—(1.10) is obtained by following the procedure
of Elishakoff [7] which involves replacing the term ¢y in (1.2) by —p.++ based
on d’Alembert’s principle for dynamic equilibrium. This eliminates the second
spectrum of frequency and its damaging consequences for wave propagation
speed (see the first results in [1] and also in [9]). Therefore, the goal of this
work is to prove the well-posedness of problem (1.5)—(1.10) and the exponential
stability of solutions without assuming the nonphysical condition of equal wave
speeds.

In order to derive the dissipative nature of the system (1.5)—(1.10), we
define its functional energy of solutions

: p*/|90t 2d$+p1p2/|%t| d$+p2/‘¢zt|2d‘r

/|wz|dm+ /|<Pz+¢|dx+ c—d2/r/|9\daz

2
da, (1.11)

L
1
Loy
0
which preserves its positivity property for

er —d? > 0. (1.12)
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2. Well-posedness. In this section, the existence and uniqueness of weak and
strong solutions to (1.5)—(1.10) will be proved. To this end, we will use the
Faedo—Galerkin approximations and pass to the limit by using compactness
arguments (see also [6]).

We introduce the phase space

H:= Hy(0,L) x Hy(0,L) x L*(0,L) x H:(0,L) x L*(0, L) x L*(0, L),
and
Hy = (H?(0,L) N H (0, L))* x Hy (0, L) x H2(0, L) x Hy (0, L) x Hy (0, L),

where
L

L3(0,L0) := {ue L*0,L): /u(x)dw =0y,
0
and
HN0,L):= H'(0,L)n L%(0,L), H2(0,L):= H*(0,L)NH(0,L).

In order to state our main result, we begin with a precise definition of a
weak solution to (1.5)—(1.10).

Definition 2.1. Given initial data (g, ©1, 2, Y0, 00, Po) € H, a function U =
(¢, pt, 01,0, 0, P) € C(0,T;H) is said to be a weak solution of (1.5)—(1.10) if
for almost every t € (0,71,

155 o) + (a4 ,02) =0, (21)
155 (pus0) + K (o +16,00) =0, (22
2 (P ) b, ) slipa + 0, 0)+ (0 + 72 Pr) =0, (2)
S8+ dP,€) 4 K (B ) + 71 (,62) =0, (24)
S0+ 7P,) 4 A(Pr, ) + 2 (.G) = (25)

for all u,v,¢,¢ € HY(0,L), w € HX(0, L), and
(@(0)7@t(0)7@tt(0)7¢(0)79(0)7P(0)> = (¢O,<P17<P2,¢0,90,P0)-

Theorem 2.2. Suppose that condition (1.12) holds. Then we have:
(i) If the initial data (@0, @1, P2, %0, 00, Po) € H, then problem (1.5)—(1.10) has
a weak solution satisfying

¢ € L=(0,T; Hy(0,L)), ¢ € L=(0,T; H(0, L)),
@i € L=(0,T; H5(0,L)), ¢u € L>(0,T;L*(0,L)),
0 € L>(0,T;L*(0,L)), P e L>*(0,T;L*(0,L)).

(it) If the initial data (g, @1, 2, %0, 00, Py) € Hi, then problem (1.5)—(1.10)
has a unique stronger weak solution satisfying

€ L>(0,T;H*0,L) N Hy(0,L)), v € L>(0,T; HZ(0, L)),
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¢r € L(0,T; H?*(0,L) N Hy (0, L)),
@i € L®(0,T; H)(0,1)), 6 € L>=(0,T; H)(0, L)),
P e L>(0,T;Hj(0,L)).
(iii) In both cases, the solution (@, @i, i, ¥, 0, P) depends continuously on

the initial data in H. In particular, problem (1.5)=(1.10) has a unique weak
solution.

Proof. The proof is given by the Faedo-Galerkin method. We only briefly
present the main (six) steps.

Step 1 — Approximate problem. Let us consider the initial data (¢o, @1, P2,

0,00, Po) € H. Let {w;}52, and {u;}52, be orthogonal bases for H?(0, L) N

H}(0,L) and H2(0, L), respectively, Wthh are both orthonormal in L?(0, L).

Now we denote the finite-dimensional subspaces, for any integer n € N, by
Hn = Span{w17w27 "'7wn}7 V’n = Spa‘n{,ula M2 .eey ,un}

We will find an approximate solution of the form

0= Y (), U 0) = 30 by (), (26)
j=1 =1
t) = chynwj(m), P"(z,t) Zd inw;(z (2.7)
j=1
to the following approximate problem
P1(Pies ) + K (P + i v2) = 0, (2.9)
p2(P wa) + (¥ we) + k(@ +" w) + (10" +72 P we) = 0, (2.10)
(O +dP", &) + K(07, &) + (¥, &) =0, (2.11)
(dbF + P, Q) + WPy, G) + 72(¥f, C) =0, (2.12)

for all w,v,&,¢ € Hy, w € V,, with initial conditions
("(0), 1 (0), ¢1:(0),4"(0),6™(0), P*(0)) = (¥5,1, ¢35, %0, 05, Fo')  (2:13)
satisfying
(50(7)17 Sorllv @ga¢g79615 P(;L) - (@07 ©1, @27"/)07 907P0) Strongly in H

From the application of the standard ODE theory, we can obtain a local solu-
tion (" (t), @i (t), Pl (t), ¥ (t), 60™(t), P"(t)) on the maximal interval [0,t,)
with 0 < ¢, < T for every n € N.

Step 2 — A priori estimate. Replacing u by ¢} in (2.8), v by ¢, in (2.9), w by
¥ in (2.10), € by 6™ in (2.11), and ¢ by P™, we obtain

d
%E"(t) +K/|eg|2dx+h/|Pg|2dx =0, (2.14)
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where

L
E™( P1 n 0102
=% [lotPdo+ /|tt\d+ /|%|dx
0
L

1
+2 / [WiPde + 5 / ot 0" Pda + (e ) [ 107 P
0 0
2

L
;/’6)”+an
0

Then integrating (2.14) from 0 to t < ¢, we obtain from our choice of initial
data that for all ¢ € [0,T] and for every n € N,

t L t L
t)+ K// |07 (s)|?dxds + FL// |P(s)[2dxds < Oy, (2.15)
00 00

where C] is a positive constant depending on the initial data. Thus, approxi-
mate solutions are defined on the whole range [0, T7.

Step 3 — Passing to the limit. From (2.15) and definition of E™(t), we deduce
that
{¢™} is bounded in L>(0,T; Hj (0, L)),
{¢r} is bounded in L*(0,T; H}(0, L)),
{¢n} is bounded in L*>(0,T; L(0, L)),
{¥"} is bounded in L>(0,T; H}(0, L)),
{6} is bounded in L*>(0,T; L*(0, L)) N L*(0,T; H}(0, L)),
{P"} is bounded in L>(0,T; L?(0,L)) N L?(0,T; Hg (0, L)).
Then we can extract a subsequence of {¢"}, {™}, {0™}, and { P"} still denoted
by {©"}, {4}, {6™}, and {P"}, such that
@™ — ¢ weakly star in L>(0,T; H(0,L)),

py — ¢+ weakly star in L°°(0 T; HL(0, L) ),
<p" — ¢y weakly star in L>(0,T; L?(0, L)),
Y™ — 1 weakly star in L>(0,T; H}(0,L)),
0™ — 0 weakly star in L (O, T; L?(0, L)),
0" — 6 weakly in L?(0,T; Hg (0, L)),
P"™ — P weakly star in L> (O,T; L?(0, L))7
P" — P weakly in L? (O,T; H} (O,L)).

Therefore the above limits allow us to pass to the limit in the approximate
problem (2.8)—-(2.12) to get a weak solution satisfying

¢ € L>(0,T; Hy(0,L)), ¢ € L=(0,T; H(0, L)),
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L),
0,L)).

Step 4 — Initial data. By using Aubin-Lions lemma, see [8], we arrive at

¢r € L=(0,T; HY(0,L)), ¢ € L(0,T5L*(0

0
0 € L>(0,T;L*(0,L)), P e L>®(0,T; L*(

@™ — ¢ strongly in C(0,T; L*(0, L)), (2.16)
" — ¢, strongly in C(0,T; L?(0, L)). (2.17)
Consequently
(2(0), 0(0)) = (o, 1)
Now, we multiply (2.9) by a test function
n€H0,T), n(0)=1, n(T)=0,
and integrate the result over [0, 7] to obtain
T
~pr(eho) = o [(ehomdt + [ S+ "t =0
0 0
for all v € H}(0, L). Taking the limit n — oo, we obtain
T T
— p1(p2,v) — p1 /(wtt,v)ntdt + ﬁ/ %(% T, ug)ndt =0 (2.18)
0 0

for all v € H}(0, L). On the other hand, multiplying (2.2) by 1 and integrating
the result over [0, 7], we obtain

T T
d

= p1(pu(0),v) = p1 /(w, Jnedt 46 [ (e + b va)ndt =0 (2.19)
0

for all v € H}(0,L). Combining (2.18) and (2.19), we conclude that ¢ (0) =
2. Analogously, we obtain
(¢(0)v 0<0)a P(O)) = (U]Oa 907 PO)

Step 5—Stronger solutions. Suppose that the initial data in the approximate
problem (2.8)—(2.12) satisfies (¢o, ¢1, 2, %0, 6o, Py) € H1 and

o

(3087 %0?7 ¢3a 617987 POn) - (8005 1, 9027’(/)07 907P0) Strongly in Hl ( 20)
ReplaCing U by pr:ct in (2 8) v by ngtt in (29)a w by _ngt in (2 10)7 E

by —027, in (2.11), and ¢ by —P,, in (2.12), we see that
—F" +K/|9 | dx+h/|P§x|2dx:O, (2.21)
0

where

L
n P1P2 2 n
Fr(0) !ﬂ%fw+——/wmww%.ﬂ%awx
0
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L L L
1
+2 / i de+ 5 [ ot + 02Pde + (e /) [ 162Pda
0 0

2
/ ‘0" +VrP}

Then from (2.21), we obtain that for all t € [0,T], n € N,

+K//|9 |d:cds+h//| 9)[2duds < Cy,  (2.22)

where C5 is a positive constant independent of ¢ and n but depending on the
initial data. From (2.22), we deduce that
{¢™} is bounded in L>(0,7"; H*(0, L) N (}( )),
{¢7} is bounded in L> (0,77, H(0, L) N

{¢%} is bounded in L>(0, T Hy O,L)),

{¢"} is bounded in L>(0,7; HZ(0, L))
{6} is bounded in L>(0,T; H (0, L))
{P"} is bounded in L>(0,T’; Hg (0, L)
This implies that

@™ — ¢ weakly star in L>(0,T; H2(0,L) N H§(0,L)),
@ — ¢y weakly star in L>(0,T; H?(0,L) N Hg (0, L)),
O — o weakly star in L (0, T; H (0, L)),

Y™ — ¢ weakly star in L> (0,75 HZ(0,L)),

0" — 6 weakly star in L>°(0,7T; H} (0, L)),

6™ — 0 weakly in L?(0,T; H?(0,L) N H(0,L)),

P" — P weakly star in L* (O T; H (0, L )

P" — P weakly in L? (O,T, H?(0,L) N H} (O,L)).

NL2(0,T; H*(0,L) N Hg(0,L)),
NL?(0,T; H*(0,L) N H}(0,L)).

)

From the above limits, we conclude that (¢, ¢, v, 1,0, P) is a stronger weak
solution satisfying

¢ € L>(0,T; H*(0,L) N H(0,L)), v € L>(0,T; HZ(0,L)),
¢ € L>(0,T; H*(0,L) N Hy (0, L)),
¢u € L>(0,T; Hy(0,1)), 6 € L>(0,T; Hy (0, L)),
P e L>(0,T;Hy(0,L)).
Step 6 — Continuous dependence. Firstly, we consider the case of stronger

solutions. Let U(t) = (g, ¢4, i, 0,0, P) and V(t) = (@, §¢, Bues 1, 0, P) be
the stronger weak solutions of the problem (1.5)-(1.8) corresponding to the

initial data U(0) = (o, ¥1, 2, %0, 6o, Fo), V(0) = (@o, b1, P2, %0, 60, Fo) €
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H1, respectively. Then (®, &y, @y, U, 0,7) = U(t)—V (¢) satisfies the following
equations:

p1®Py — Kk(Py + V), =0, (2.23)

—p2Putt — Wy + K(Py + V) — 710, — 72T, =0, (2.24)
Oy +dY; — KO, — 1V, =0, (2.25)

A0, + 1Ty — KYpy — oWy = 0, (2.26)

with initial data (®(0), ®.(0), P (0), ¥(0),©(0), Y(0)) = U(0) — V(0).
We multiply (2.23) by ®;, (2.24) by ¥y, (2.25) by ©, and (2.26) by T and
integrate the result over (0, L) to derive

—E = —K/\@”Fdx /m |de, (2.27)

where E(t) is the energy corresponding to U(t) — V() defined by

L L L
- P1P2 P2 P1
E(t) = o /@ftdx—k E/Qitd:c—k ?/‘I)fdx
0 0
L L . L
—|—g/ Vidr + — 5 /\Pidz+§(c—d2/r)/|®”|2dx
0 0 0
1 2
- n T
2 '\[@ + VT

Integrating (2.27) over (0,t), we get that there exists a constant Cp > 0 such
that for any ¢ € [0, 7],

E(t) < CrE(0),

which implies the continuous dependence of stronger weak solutions on the
initial data. Then we know that the stronger weak solution of problem (1.5)-
(1.10) is unique. The continuous dependence and uniqueness for weak solu-
tions can be proved by using density arguments (weak solutions are limits of
stronger weak solutions). Combining the above analysis, we complete the proof
of Theorem 2.2. O

3. Exponential decay. In this section, we use the energy method to prove that
E(t), the energy of system (1.5)—(1.10) given by (1.11), decays exponentially.
For this, we assume that (¢, ¢, @, ¥, 0, P) is a solution of the system (1.5)—
(1.10) with the regularity stated in Theorem 2.2 and we suppose that condition
(1.12) holds true.

Theorem 3.1. Suppose that the hypotheses of Theorem 2.2 hold. Then there
ezist two positive constants M and 1 such that

E(t) < ME()e ™, ¥Yt>0. (3.1)
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The proof of Theorem 3.1 will be established through several lemmas. We
have the first lemma regarding the dissipative nature of the energy.

Lemma 3.2. The energy E(t) of the system (1.5)—(1.10) satisfies the energy
dissipation law given by

—E ——K/|9|dm—h/|P|dm £ 0. (3.2)
Proof. Multiplying Eq. (1.5) by ¢¢, (1.6) by ¢, (1.7) by 6, (1.8) by P, and
integrating the result over [0, L], we obtain the desired result. U
We set
L
Fi(t) = —p1 /%sodx- (3-3)
0

Lemma 3.3. Suppose that the hypotheses of Theorem 2.2 hold. Then we have

aﬂ ) < p1/|gpt 2dx+mp/|¢z|2dx+—/|<pm+¢|2dx (3.4)

where ¢, > 0 is the Poincaré constant.
Proof. Multiplying Eq. (1.5) by ¢, integrating over [0, L] using integration by
parts, and taking into account the boundary conditions (1.10), we have

L L

p1 /apttgo dx + n/(apz + ), dz = 0. (3.5)
0 0

0
Taking into account the identity @0 = a(gotgo)— l¢¢|? and Young’s inequality,

we arrive at

d L L L
—dt<p1/sot<pdw) < p1/|<pt| de+ - /Isox+1/)|2dx
0 0
L
+g/|g0x|2dx. (3.6)
0

Moreover, we consider the inequality given by fOL |pe|?dr < 2 fOL |z + ¥|2dx
+2¢, fOL |9x|?dx, we complete the proof. O

Lemma 3.4. Suppose that the hypotheses of Theorem 2.2 hold. Then we have

*-7:2 plpz/“ﬂtt\ dr — - /|¢z| dx+ﬂ2/|¥’xt| dx
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L L L
3K2 3~2 3~2
+25 % Cp/|<Pz+¢|2dx+771cp/|9z\2da:+7728p/\Pﬁ\Qdaz, (3.7)
2« 200 2
0 0 0

where
L

Fo(t) = pg/gpwtg% dx. (3.8)
0

Proof. Multiplying Eq. (1.6) by v and integrating by parts, we obtain
L L

pz/%tt/}zdwra/lwml dw+ﬁ/(%+d})wdw—%/9mdw

0 0
L

—72/Pm1/) dx = 0. (3.9)
0

It follows from Eq. (1.5) that ¢, = p—lgott — @zz- Then, substituting 1, into
K
(3.9), we obtain

L

d

pn (pz/%t%dfc> *pz/\th|2d$+ pLP2 /|<P | da
0

L L L
+a/ Wu|? di + n/(gam +Y)dr —n /Gm@/;dz: — VQ/PMMI =0,
0 0 0 0
and using Young’s and Poincare’s inequalities, we arrive at the desired result.
O
Let us introduce one more functional which is given by
S /1/1wg0tdx — —c/@gotdx — —d/ Pyidx

—p2 / Put(Pe +)dz. (3.10)

0

Lemma 3.5. Suppose that the hypotheses of Theorem 2.2 the hold. Then for all
e > 0, there are constants C; > 0 (i = 1,2,3) such that

d
& F / (ol — / [os + 9f2dz + O / 0. Pda

C’
0
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Proof. Multiplying Eq. (1.6) by (¢, + %), integrating over [0, L], and using
integration by parts, we have
L

L L
—pgf%t«oz +w)dx+a/wx(% +)e do + n/ oo + 2da
0 0
L

0

L
1 [ Oulpr 4 0)do = [ Pulipa +0)dz =0, (312)
0 0
Now, using Young’s inequality, it follows that
L

—p2/som(%+w>dx+a/wz 0n + 1) dx<—f/\soz+w\ da

Lo /|9 2ay + 2 /|P 2dz. (3.13)

On the other hand, it follows from Eq. (1.5) that (¢, + 1), = &gott and then
K

we can rewrite the above inequality as
L L

« K
_p2/80wtt(90m +1/)) dx + % Qott'(/}:c dr < _5 / “pz +¢|2d$
0

0 0
L L

2 2
+l1/|91|2dx+12/|131|2dx.
K K

0 0

0
Moreover, we consider the identity given by @1t (vr +1) = % [Spwt(SDa: _H/,)] _
@zt(Yz + )¢ from where we obtain

L

L
—( 2/% 0r + ) dw+p2/s0thdx) < pz/l%t| dx
0

0
L

_Cl/@ttwwdm_f/lww'i'wlzdm"" 71 /l‘9 ‘ dzx

0
el / P, 2da, (3.14)

where C = Oé(pl/h: + p2/a). On the other hand, multiplying Eq. (1.7) by
C17y tor, we have
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L L L L
ﬁc/@t(ptdnc—l— gd/Ptaptdﬂc—i— ﬁK/Gwapwtdyc—Cl/wmgotdyc =0.
n 0 n 0 n 0 0

0
- (Pyy) —

0
Taking into account the identities 6;p; = g(e%) — 00y, Proy = at(

0
Py and Y100 = — (Yp0r) — Yupre, we have
ot

L L L

d C C

<Cl/1pxcptda:— Jc/ﬂcptdx— ld/ngtdm)

dt Ba! Y1
0 0 0
c L » L » L

= ——10/9<pttdx - —1d/P<pttdx+ JK/em%dx

a! ) st ) et s

Adding (3.14) and (3 15), we obtain
L

L
SEO <= [ ol dx—f/mw\ tw+ [0
0

0
L
72 2 Gy
+ |P |“dx — —c ngttda? — —d Pyydr + —K waxtdx
0 0

and using again Young’s mequahty, we arrive at the desired result. O

Lemma 3.6. Suppose that the hypotheses of Theorem 2.2 hold. Then there are
constants A\, No, d > 0 such that

jt()\E( 04+ NoB() < 3 c—— /\9\ do

L
d:c—NOK/|9 |*dz — Noh /|P |*da.
0

_5/’ 0+ \/rP

Proof. First, we define the constant )y := max {dQCp/KT, rcp/h}. Then,
choosing A > Ao and using (3.2), we have

Z(AE( )—i—NOE(t)) - —)\K/ 10,|2da — Ah/ P, [2dx

—NOK/|9m\2dx—Noh/\Pdex. (3.16)
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Then, using the Poincaré inequality, we get

d K A K
& (ME() + NoB() <——/|o|d /|P|d A /|9|d

L
M
75/|P|2d:choK/|9x|2dfooh/|Px|2dx.
P
0 0 0

Since ‘;ii‘fz fOL |02dz > 0 and —3 fo |P|?dz < 0, we get the following esti-
mate
d _AK
—(A\F NoFE - —
= (MW + NoB(®) < (e 2Ccp/|9| do /|9| dx
L
AR 2 2 2
~ 5. |P|?dz — NoK |9¢| dx — Noh |PL| dr. (3.17)
P
0 0 0

Next, we add the term & [*[6]2dz > 0

L
d
%<)\E(t) +N0E(t)) < fNOK/|0m|2dfooh/|Pm|2dx
0 0

d2 L L
<1> /|P\ dz(/0|2dx+r/|P|2dx)
r
2
(c—= /|0|2d - <AKT - 1>d /|0|2dx (3.18)
QCcp

Since A > )\0 = max {d’c,/Kr, rc,/h}, we have {; := 252: -1 >
0 and (o:= =% —1>0. Using Young’s inequality, we have
L e L L
Qd/GPda: < 7/\9|2dgc+r/|P|2dx. (3.19)
0 0 0

Replacing (3.19) in (3.18), we have

L
jt(AE<)+NOE( )) (C—dQ/r AR /|9| dax 1%/|9|2dx
0

L L
—%r/|P|2dx—d/@Pdm—NOK/\Hm\de—Noh/\Pm\Qd;v.
0 0 0 0
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Therefore,

L
%(AE(t) +N0E(t)) < —%(c— ‘f)5/|9|2dx

L L L
1 d :
—5/‘9+\/?P dx—NOK/|9x|2dx—Noh/|Px|2d$a vt =0,
2 N
0 0 0

where ¢ := min{l, \K/cc,, (1, (2} O

Now we are ready to prove the main result of this paper.

Proof of Theorem 3.1. We consider the following Lyapunov functional defined
by

E(t) = ()\ + No)E(t) + .7:1(15) + Ngfg(t) + Ngfg(t), (320)
where A > )\ := max {d2cp/Kr, Tcp/h} and N;, ¢« = 0,2,3, are positive
constants to be fixed later. Moreover, the coefficients Ny and A will be chosen
large enough such that £(t) and E(t) are equivalent. Indeed, from Young’s and

Poincaré’s inequalities, we infer that there exists a constant 0 < ¢ < Ng + A
such that

IL(t) = (No + ME(t)| < [F1()] + Na| Fo ()] + N3|F(t)| < cE(t), vt > 0.
Consequently,
(No+A—0)BE(t) <L) < (No+ A+ c)E(t), Vt > 0. (3.21)

Substituting the results of Lemmas 3.3, 3.4, and 3.5 in the time derivative of

L(t), we obtain after selecting e := %,

L L
d
GO <= [loPdo— (282 = 1) 22 [P
0 0
L 9 L
CpR «
—(Ng—zNg)@/medx— N, — 2P f/|z/Jx|2dm
2 o 2
0 0

L L
_ _a 3KCp K 25 1 o2 2
(N3 3— = N2>2/|%+¢| dz 2(c d /r)5/|9| dz
0 0
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—5/’ 0+ /rP

L
3 2
_(hNO - 722:”1\[2 - 03N3) /|Px\2da:.
0

e (KN Sglc"N 02N3) /|9 da

By choosing Ny > max {1/2, QCpFE/Oé} N3 > max {QNQ, 3+ 3/<;cpN2/a} and

Ny large enough such that Ny > max{ 27]1(2" Ny + Ng, 3;22”N + SNg},
one can obtain that & = 2Ny — 1 > 0, & = N3 — 2N2 > 0, & := Ny —
20K 5 0, &y = Ny — 83— 252N, > 0, & = KNy — 2U2N, — CyNy > 0,

€ = hNy — 222N, — 3Ny > 0.

Now, we can conclude that there exists a positive constant w := min {2,

617 £27 537 647 6} > 0 such that

—L(t) < —wE(t), Vt>0. (3.22)
Combining (3.21) with (3.22), we obtain
L(t), vt > 0. (3.23)

From this and using (3.21) again, we have after integrating over (0, t),

No+X+c

O TATEC pg)e M, V>0 (3.24)
0 < .
No+A—c ¢ ’ -

E(t) <

which gives (3.1) with M := %gi;\fi and 7 := m This completes the

proof. O
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