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Abstract. Using the recent work of Bettiol, we show that a first-order
conformal deformation of Wilking’s metric of almost-positive sectional
curvature on S2 × S3 yields a family of metrics with strictly positive av-
erage of sectional curvatures of any pair of 2-planes that are separated by
a minimal distance in the 2-Grassmanian. A result of Smale allows us to
conclude that every closed simply connected 5-manifold with torsion-free
homology and trivial second Stiefel–Whitney class admits a Riemannian
metric with a strictly positive average of sectional curvatures of any pair
of orthogonal 2-planes.
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1. Introduction and main results. Let (M, g) be a compact Riemannian n-
manifold and let secg be the sectional curvature of the metric. We often abuse
notation and denote the Riemannian metric by (M, g) as well. For each 2-plane

σ ∈ Gr2(TpM) = {X ∧ Y ∈ Λ2TpM : ||X ∧ Y ||2 = 1}, (1.1)

let σ⊥ ⊂ TpM be its orthogonal complement. That is, there is a g-orthogonal
direct sum decomposition σ ⊕ σ⊥ = TpM at a point p ∈ M .

Definition 1. The biorthogonal curvature of a 2-plane σ ∈ Gr2(TpM) is

sec⊥
g (σ) := min

σ′∈Gr2(TpM)

σ′⊂σ⊥

1
2
(secg(σ) + secg(σ′)) (1.2)

(cf. [3, Section 5.4]). We say that (M, g) has positive biorthogonal curvature
sec⊥

g > 0 if (1.2) is positive for every σ ∈ Gr2(TpM) at every point p ∈ M .
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A stronger curvature condition is the following. Choose a distance on the
Grassmanian bundle Gr2(TM) that induces the standard topology.

Definition 2. The distance curvature of a 2-plane σ ⊂ TpM is

secθ
g(σ) := min

σ′∈Gr2(TpM)
dis(σ,σ′)≥θ

1
2
(secg(σ) + secg(σ′)) (1.3)

for each θ > 0 (cf. [3, Section 5.2]). We say that (M, gθ) has positive distance
curvature secgθ > 0 if for every θ > 0, there is a Riemannian metric (M, gθ)
for which (1.3) is positive for every σ ∈ Gr2(TpM) at every point p ∈ M .

Bettiol [4] classified up to homeomorphism closed simply connected 4-
manifolds that admit a Riemannian metric of positive biorthogonal curvature
by constructing metrics of positive distance curvature on S2×S2 [2, Theorem,
Proposition 5.1], [3, Theorem 6.1], and showing that positive biorthogonal cur-
vature is a property that is closed under connected sums [3, Proposition 7.11],
[4, Proposition 3.1].

In this paper, we extend Bettiol’s results to dimension five. More precisely,
we build upon Bettiol’s work and show that an application of a first-order
conformal deformation to Wilking’s metric (S2 × S3, gW ) of almost-positive
sectional curvature [11] yields the main result of this note.

Theorem A. For every θ > 0, there is a Riemannian metric (S2×S3, gθ) such
that
(a) secθ

gθ > 0;
(b) there is a limit metric g0 such that gθ → g0 in the Ck-topology as θ → 0

for k ≥ 0;
(c) gθ is arbitrarily close to Wilking’s metric gW of almost-positive curvature

in the Ck-topology for k ≥ 0;
(d) Ricgθ > 0;
(e) there is a 2-plane σ ∈ Gr2(TpS

2 × S3) with secgθ (σ) < 0;
In particular, there is a Riemannian metric of positive biorthogonal curva-

ture on S2 × S3.

The next corollary is a consequence of coupling Theorem A with a classi-
fication result of Smale [8].

Corollary B. Every closed simply connected 5-manifold with torsion-free ho-
mology and zero second Stiefel–Whitney class admits a Riemannian metric of
positive biorthogonal curvature.

The hypothesis imposed on the homology and the second Stiefel–Whitney
class of the manifolds of Corollary B are technical in nature; cf. Remark 2.
Indeed, an examination of the canonical metric on the Wu manifold yields the
following proposition.

Proposition C. The symmetric space metric (SU(3)/SO(3), g) has positive
biorthogonal curvature.

The Wu manifold has second homology group of order two and nontrivial
second Stiefel–Whitney class.
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2. Constructions of Riemannian metrics of positive biorthogonal curvature.

2.1. Wilking’s metric of almost-positive curvature on S2 × S3. We follow the
exposition in [11, Section 5] to describe Wilking’s construction of a metric
of almost-positive curvature on the product of projective spaces RP 2 × RP 3

and its pullback to S2 × S3 under the covering map; see [12, Section 5] for a
discussion relating these two constructions.

The unit tangent sphere bundle of the 3-sphere

T1(S3) = S2 × S3, (2.1)

embeds into R
4 × R

4 = H × H as a pair of orthogonal unit quaternions

S3 × S2 = {(p, v) ∈ H × H : |p| = |v| = 1, 〈p, v〉 = 0} ⊂ H × H, (2.2)

where 〈x, y〉 = Re(x̄y), |x|2 = 〈x, x〉, and x̄ denotes the quarternion conjuga-
tion of x. The group G = Sp(1) × Sp(1) 
 S3 × S3 acts on S2 × S3 by

(q1, q2) � (p, v) = (q1pq̄2, q1vq̄2) (2.3)

for q1, q2 ∈ Sp(1) and (p, v) ∈ S2 × S3. This action is effectively free and
transitive. The isotropy group of the point (1, i) ∈ S2 × S3 is

H = {(eiφ, eiφ) ∈ Sp(1) × Sp(1)} ⊂ G. (2.4)

Thus, S2 × S3 
 G/H is a homogeneous space.
In order to put a metric on S2 × S3, Wilking first defines a left invariant

metric g on G = Sp(1) × Sp(1) as follows. Let

g0((X,Y ), (X ′, Y ′)) = 〈X,Y 〉 + 〈X ′, Y ′〉, (2.5)

for (X,Y ), (X ′, Y ′) ∈ sp(1) ⊕ sp(1) = Im(H) ⊕ Im(H), denote a bi-invariant
metric. In terms of g0, the metric g is

g((X,Y ), (X ′, Y ′)) = g0(Φ(X,Y ), (X ′, Y ′)), (2.6)

where Φ is a g0-symmetric, positive definite endomorphism of sp(1) ⊕ sp(1)
given by

Φ = Id−1
2
P, (2.7)

and P is the g0-orthogonal projection onto the diagonal subalgebra

Δsp(1) ⊂ sp(1) ⊕ sp(1); (2.8)

see [11, p. 125].
Wilking’s doubling trick guarantees the existence of a diffeomorphism

G/H 
 ΔG\G × G/{1G} × H, (2.9)

where ΔG\ denotes the quotient by the left diagonal action of G on G×G and
H acts on the second factor from the right. Consider the product (G×G, g+g)
(cf. (2.6)) and the induced metric on S2 × S3 
 ΔG\G × G/{1G} × H that
we denote by gW . That is, Wilking’s metric (S2 × S3, gW ) is the metric that
makes the quotient submersion

(G × G, g ⊕ g) → (ΔG\G × G/{1G} × H, gW ) (2.10)



592 B. Stupovski and R. Torres Arch. Math.

into a Riemannian submersion. Wilking has shown that (S2 × S3, gW ) has
almost-positive curvature, with flat 2-planes located on two hypersurfaces.
These hypersurfaces are both diffeomorphic to S2 × S2, and they intersect
along an RP 3 [11, Corollary 3, Proposition 6]. However, except for points that
lie on four disjoint copies of S2 inside these two hypersurfaces, there is a unique
flat 2-plane. At each point in these four 2-spheres, there is a one parameter
family of flat 2-planes and neither the distance curvature nor the biorthogonal
curvature of the metric gW are strictly positive at any of these points.

3. Proofs.

3.1. Proof of Theorem A. We follow Bettiol’s construction of metrics of posi-
tive distance curvature on S2 × S2 [2, Theorem], [3, Theorem 6.1], and apply
a first-order conformal deformation to Wilking’s metric (S2 × S3, gW ) that
was described in Section 2.1. This yields metrics of positive distance curvature
as in Definition 2, which converge to a metric g0 as θ tends to zero in the
Ck-topology.

Definition 3. Let (M, g) be a compact Riemannian manifold, then, for any
function φ : M → R, and for any small enough s > 0, the following is also a
Riemannian metric on M

gs = (1 + sφ)g, (3.1)

called the first-order conformal deformation of g.

The variation of sectional curvature of a metric under the first order con-
formal deformation is given by the following lemma [9]; cf. [3, Chapter 3,
Corollary 3.4].

Lemma 1. Let (M, g) be a Riemannian manifold with sectional curvature
secg ≥ 0, and let X,Y ∈ TpM be g-orthonormal vectors such that secg(X ∧
Y ) = 0. Consider a first-order conformal deformation gs = (1+sφ)g of g. The
first variation of secgs

(X ∧ Y ) is

d
ds

secgs
(X ∧ Y )|s=0 = −1

2
Hess φ(X,X) − 1

2
Hess φ(Y, Y ). (3.2)

We will also need the following elementary fact [3, Chapter 3, Lemma 3.5].

Lemma 2. Let f : [0, S] × K → R be a smooth function, where S > 0 and K
is a compact subset of a manifold. Assume that f(0, x) ≥ 0 for all x ∈ K, and
∂f
∂s > 0 if f(0, x) = 0. Then there exists s∗ > 0 such that f(s, x) > 0 for all
x ∈ K and 0 < s < s∗.

Wilking’s metric (S2×S3, gW ) has positive sectional curvature away from a
hypersurface Z; see the discussion at the end of Section 2.1. The biorthogonal
and distance curvatures are positive inside Z except for points that lie in four
disjoint copies of S2. Every point in these four 2-spheres carries an S1 worth
of flat 2-planes. Denote these four 2-spheres by

{S2
i : i = 1, 2, 3, 4}. (3.3)
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We only deform Wilking’s metric near these four submanifolds. Let

χi : S2 × S3 → R (3.4)

denote a bump function of S2
i , i.e., a nonnegative function that is identically

zero outside a tubular neighborhood of S2
i , and identically one in a smaller

tubular neighborhood of S2
i . Finally, we define four functions

{ψi : S2 × S3 → R : i = 1, 2, 3, 4} (3.5)

as
ψi(p) = distgW

(p, S2
i )2 (3.6)

for p ∈ S2×S3, where distgW
is the metric distance function on (S2 ×S3, gW ).

Let φ : S2 × S3 → R be a function defined as

φ = −χ1ψ1 − χ2ψ2 − χ3ψ3 − χ4ψ4, (3.7)

and consider the first-order conformal deformation of gW given by

gs = (1 + sφ)gW . (3.8)

Note that at a point p ∈ S2
i , we have

Hess φ(X,X) = −Hess ψi(X,X) = −2gW (X⊥,X⊥)2 = −2‖X⊥‖2gW
, (3.9)

where X⊥ denotes the component of X perpendicular to S2
i . For each θ > 0,

consider the compact subset of (S2×S3)×Gr2(T (S2×S3))×Gr2(T (S2×S3))
given by

Kθ := {(p, σ, σ′) : σ, σ′ ∈ Gr2(Tp(S2 × S3)),dist(σ, σ′) ≥ θ}, (3.10)

and define
f : [0, S] × Kθ → R,

f(s, (p, σ, σ′)) :=
1
2
(secgs

(σ) + secgs
(σ′)).

(3.11)

Notice that f(0, (p, σ, σ′)) ≥ 0 since secgs
≥ 0. Furthermore, f(0, (p, σ, σ′)) = 0

only for
p ∈ S2

1 ∪ S2
2 ∪ S2

3 ∪ S2
4 (3.12)

since these are the only points of S2 × S3 that have vanishing biorthogonal
and distance curvatures. Let (p, σ, σ′) be such that f(0, (p, σ, σ′)) = 0 and let
σ = X ∧ Y and σ′ = Z ∧ W , where X,Y are gW -orthonormal, and Z,W are
gW -orthonormal. Then, by Lemma 1 and equation (3.9), at these points of Kθ,
we have
∂f

∂s
|s=0 =

d
ds

(secgs
(X ∧ Y ) + secgs

(Z ∧ W ))|s=0

= −1
2
Hess φ(X,X)− 1

2
Hess φ(Y, Y )− 1

2
Hess φ(Z,Z)− 1

2
Hess φ(W,W )

= ‖X⊥‖2gW
+ ‖Y⊥‖2gW

+ ‖Z⊥‖2gW
+ ‖W⊥‖2gW

> 0.

(3.13)
The previous expression is strictly greater than zero. Indeed, since X ∧ Y and
Z ∧ W are different 2-planes, span{X,Y,Z,W} is at least three-dimensional
while the submanifolds (3.3) are two-dimensional. Hence, at least one of the
perpendicular components X⊥, Y⊥, Z⊥,W⊥ is nonzero and (3.13) is greater
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than zero. Since the assumptions of Lemma 2 for the function (3.11) are sat-
isfied, we conclude that there is an s∗ such that f(s, (p, σ, σ′)) > 0 for all
(p, σ, σ′) ∈ Kθ and 0 < s < s∗. This is precisely the condition secθ

gs
> 0 of

item (a) of Theorem A. The claims of item (b) and item (c) follow from our
construction; cf. [2]. The claim of item (d) follows from [2, Proposition 4.1]. As
Bettiol observed in his construction of metrics of positive distance curvature
on S2 × S2 [2, Section 4.4], for every θ > 0, there are 2-planes in (S2 × S3, gθ)
with negative sectional curvature. This completes the proof of Theorem A. �
Remark 1. The metrics (S2 × S3, gθ) of positive distance curvature can be
made invariant under the action of certain Deck transformations including the
product Z/2 ⊕ Z/2-action. Indeed, it is possible to perform a local conformal
deformation on the orbit space (RP 2 × RP 3, gW ) equipped with Wilking’s
metric of almost positive curvature, and a similar statement to Theorem A
holds for (RP 2 × RP 3, gθ); cf. [2, Section 4.6].

3.2. Proof of Corollary B. We will use a case of the classification up to dif-
feomorphism of simply connected 5-manifolds with vanishing second Stiefel–
Whitney class due to Smale [8, Theorem A].

Theorem 1. A closed simply connected 5-manifold M with torsion-free homol-
ogy H2(M ;Z) = Z

k and zero second Stiefel–Whitney class w2(M) = 0 is deter-
mined up to diffeomorphism by its second Betti number b2(M). In particular,
M is diffeomorphic to a connected sum

{S5#k(S2 × S3) : k = b2(M)}. (3.14)

Theorem A and Bettiol’s result regarding the positivity of biorthogonal cur-
vature under connected sums [3, Proposition 7.11] imply that every 5-manifold
in the set (3.14) admits a Riemannian metric of positive biorthogonal curva-
ture. �
Remark 2. It is natural to ask if the hypothesis w2(M) = 0 of Corollary B
can be removed. Barden has shown that a closed simply connected 5-manifold
with torsion-free second homology group is diffeomorphic to a connected sum
of copies of S2 × S3 and the total space S3

˜×S2 of the nontrivial 3-sphere
bundle over the 2-sphere [1]. It is currently unknown if there is a metric of
almost-positive sectional curvature on S3

˜×S2. Unlike S2 × S3, the nontrivial
bundle does not arise as a biquotient that satisfies the symmetry hypothesis
needed to apply Wilking’s doubling trick; see DeVito’s classification of free
circle actions on S3 × S3 in [5].

3.3. Proof of Proposition C. The symmetric space metric on SU(3)/SO(3) is
the metric that makes the canonical surjection

π : SU(3) → SU(3)/SO(3),

u 
→ uSO(3),
(3.15)

into a Riemannian submersion, where SU(3) is equipped with a bi-invariant
metric. The left action of SU(3) on SU(3)/SO(3) induced from the left multi-
plication on SU(3) by (3.15) is transitive and isometric for the symmetric space



Vol. 115 (2020) Existence of Riemannian metrics 595

metric. This means that we can study curvature at one point of SU(3)/SO(3)
and isometrically translate the results to any other point. The Cartan decom-
position that corresponds to SU(3)/SO(3)

TeSU(3) 
 su(3) = so(3) ⊕ so(3)⊥ (3.16)

is orthogonal with respect to the bi-invariant metric and it is precisely the
decomposition of TeSU(3) into vertical and horizontal subspaces of the Rie-
mannian submersion (3.15). Hence, we have

TSO(3)(SU(3)/SO(3)) 
 so(3)⊥. (3.17)

To conclude that SU(3)/SO(3) has positive biorthogonal curvature, we need
to show that no two flat 2-planes are orthogonal to each other. A result of
Tapp [10, Theorem 1.1] implies that a 2-plane on SU(3)/SO(3) is flat if and
only if its horizontal lift is flat. Thus, it is enough to consider horizontal flat
2-planes at the identity of SU(3).

A horizontal 2-plane X ∧ Y ⊂ so(3)⊥ at the identity of SU(3) is flat if
and only if [X,Y ] = 0. Since the maximal number of linearly independent
commuting matrices in su(3) is two, every horizontal flat 2-plane corresponds
to a maximal abelian subalgebra of so(3)⊥

span
R
{X,Y } = a0 ⊂ so(3)⊥ . (3.18)

By a fundamental fact about the Cartan decomposition, see [7, Proposition
7.29] for the precise statement, any two maximal abelian subalgebras of so(3)⊥

are conjugate by an element of SO(3). This means that by fixing one maxi-
mal abelian subalgebra, or one horizontal flat 2-plane, we can parametrize all
horizontal flat 2-planes by SO(3). In what follows, we will obtain an explicit
parametrization of horizontal flat 2-planes at the identity of SU(3), and so a
parametrization of flat 2-planes at a point of SU(3)/SO(3) by choosing a basis
for su(3), fixing a horizontal flat 2-plane and parametrizing SO(3) by Euler
angles. We use this explicit parametrization to show that no two flat 2-planes
can be orthogonal. For the basis of su(3), we choose {−iλi}i=1,...,8, where the
λi’s are traceless, self-adjoint 3 by 3 matrices known as the Gell-Mann matrices
[6]. The scalar product on su(3) that corresponds to the bi-invariant metric is

〈X,Y 〉 = −1
2
Tr(XY ) (3.19)

for X,Y ∈ su(3) and the basis {−iλi}i=1,...,8 is orthonormal with respect to
(3.19). The Cartan decomposition (3.16) in this basis is

so(3) = span
R
{−iλ2,−iλ5,−iλ7} (3.20)

and
so(3)⊥ = span

R
{−iλ1,−iλ3,−iλ4,−iλ6,−iλ8}. (3.21)

Matrices λ3 and λ8 are diagonal, so we use −λ3∧λ8 for the reference horizontal
flat 2-plane. Every horizontal flat 2-plane, X ∧ Y , with X,Y ∈ so(3)⊥ such
that [X,Y ] = 0, can now be written as

X ∧ Y = −Adr(λ3 ∧ λ8) (3.22)
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for some r ∈ SO(3). Suppose that X ∧ Y and X ′ ∧ Y ′ are two such 2-planes
with X ∧ Y given by (3.22) and X ′ ∧ Y ′ by

X ′ ∧ Y ′ = −Adr′(λ3 ∧ λ8) (3.23)

for some r′ ∈ SO(3). For the 2-planes (3.22) and (3.23) to be orthogonal, it is
necessary and sufficient that the equations

〈Adrλ3,Adr′λ3〉 = 0, (3.24)
〈Adrλ3,Adr′λ8〉 = 0, (3.25)
〈Adrλ8,Adr′λ3〉 = 0, (3.26)

and
〈Adrλ8,Adr′λ8〉 = 0 (3.27)

hold. Using the Ad-invariance of the bi-invariant metric, equations (3.24),
(3.25), (3.26), and (3.27) can be rewritten as

〈λ3,Adr−1r′λ3〉 = 0, (3.28)
〈λ3,Adr−1r′λ8〉 = 0, (3.29)
〈λ8,Adr−1r′λ3〉 = 0, (3.30)

and
〈λ8,Adr−1r′λ8〉 = 0. (3.31)

We now use the Euler angle parametrization of SO(3) to write r−1r′ ∈ SO(3)
as

r−1r′ = exp(−iλ2x)exp(−iλ5y)exp(−iλ2z), (3.32)

where x, y, z ∈ R. Plugging (3.32) into equations (3.28), (3.29), (3.30), and
(3.31) and calculating the traces explicitly, we find

0 = 〈λ3,Adr−1r′λ3〉
=

1
4
cos(2x) (3 + cos(2y)) cos(2z) − sin(2x)cos(y)sin(2z), (3.33)

0 = 〈λ3,Adr−1r′λ8〉 = −
√

3
2

cos(2x)sin2(y), (3.34)

0 = 〈λ8,Adr−1r′λ3〉 = −
√

3
2

cos(2z)sin2(y), (3.35)

and

0 = 〈λ8,Adr−1r′λ8〉 =
1
4
(1 + 3cos(2y)) . (3.36)

Equations (3.34), (3.35), and (3.36) imply cos2(y) = 1/3 and cos(2x) =
cos(2z) = 0. Plugging this into equation (3.33), we obtain

〈λ3,Adr−1r′λ3〉 �= 0, (3.37)

and conclude that there is no solution to the system given by equations
(3.33), (3.34), (3.35), and (3.36). This shows that no two 2-flat planes are
orthogonal. �
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