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Quadratic Gorenstein algebras with many surprising properties

Jason McCullough and Alexandra Seceleanu

Abstract. Let k be a field of characteristic 0. Using the method of idealiza-
tion, we show that there is a non-Koszul, quadratic, Artinian, Gorenstein,
standard graded k-algebra of regularity 3 and codimension 8, answering
a question of Mastroeni, Schenck, and Stillman. We also show that this
example is minimal in the sense that no other idealization that is non-
Koszul, quadratic, Artinian, Gorenstein algebra, with regularity 3 has
smaller codimension. We also construct an infinite family of graded, qua-
dratic, Artinian, Gorenstein algebras Am, indexed by an integer m ≥ 2,
with the following properties: (1) there are minimal first syzygies of the
defining ideal in degree m + 2, (2) for m ≥ 3, Am is not Koszul, (3)
for m ≥ 7, the Hilbert function of Am is not unimodal, and thus (4)
for m ≥ 7, Am does not satisfy the weak or strong Lefschetz properties.
In particular, the subadditivity property fails for quadratic Gorenstein
ideals. Finally, we show that the idealization of a construction of Roos
yields non-Koszul quadratic Gorenstein algebras such that the residue
field k has a linear resolution for precisely α steps for any integer α ≥ 2.
Thus there is no finite test for the Koszul property even for quadratic
Gorenstein algebras.
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1. Introduction. Let k be a field and let S = k[x1, . . . , xc] be a standard
graded polynomial ring over k. Consider R = S/I an Artinian standard graded
quotient of S. A recent problem that has attracted some attention is to identify
what conditions on a quadratic Gorenstein algebra R force R to be Koszul.
While every such R with reg(R) ≤ 2 is Koszul [9], Mastroeni, Schenck, and
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Stillman [24] constructed quadratic, Gorenstein algebras with r = reg(R) = 3
and codim(R) = c for all c ≥ 9; this negatively answered a question of Conca,
Rossi, and Valla [9]. Mastroeni et al. pose the following question: For which
positive integers (r, c) does there exist a non-Koszul, quadratic, Gorenstein
algebra with regularity r and codimension c? In a second paper [25], they
settle the question in all cases except three, namely (r, c) = (3, 6), (3, 7), and
(3, 8). The first result of this paper, given in Sect. 3, is to settle the case
(r, c) = (3, 8) by finding a non-Koszul, quadratic, Gorenstein algebra with
these parameters. We do so by applying Nagata’s idealization construction to
a non-Koszul Artinian algebra of codimension 4, which comes from Roos’ list
of quadratic algebras in four variables [31]. Moreover, we show that the other
two cases (r, c) = (3, 6), (3, 7) cannot be similarly settled via idealizations.

Our second construction addresses the subadditivity property of Gorenstein
ideals. Set ti(R) = sup{j | TorS

i (R, k)j �= 0}. The numbers ti(R) measure the
maximal degree of a minimal generator of the i-th syzygy module of R as an S-
module. They are primarily of interest because of their relation to regularity as
reg(S/I) = maxi≥0{ti(S/I)− i}. The ring R is said to satisfy the subadditivity
property if ta(R) + tb(R) ≥ ta+b(R) for all a, b ≥ 1. It is easy to see that
complete intersections satisfy subadditivity (Proposition 4.1) while general
Cohen-Macaulay ideals do not (cf. [12, Example 4.4]). Several recent papers
have studied the subadditivity property for various classes of ideals [1,14,21].
It is conjectured that monomial ideals and Koszul ideals satisfy subadditivity
[2, Conjecture 6.4]. To our knowledge, there were no known counterexamples to
subadditivity for Gorenstein ideals; some positive results for Gorenstein ideals
are proved in [13]. In Sect. 4, we show that subadditivity fails in a strong
way for quadratic Gorenstein ideals. As a consequence of our methods, we
obtain an infinite family of quadratic Gorenstein ideals that are non-Koszul,
have arbitrarily high degree first syzygies, have non-unimodal Hilbert function,
and do not satisfy the strong or weak Lefschetz properties. This provides a
counterexample to a conjecture of Migliore and Nagel [28, Conjecture 4.5]; an
earlier counterexample was given by Gondim and Zappala [16].

The third construction modifies a separate example of Roos [30] to show
that there is no finite test of the Koszul property even for quadratic Gorenstein
algebras. In Sect. 5, we show that for any integer α ≥ 2, there is a quadratic,
Artinian, Gorenstein k-algebra Bα with codim(Bα) = 14 and reg(Bα) = 3
such that the resolution of k as a B-module is linear for precisely α many
steps.

2. Background. Here we collect notation and results needed in the rest of
the paper. Let k be a field, S = k[x1, . . . , xn] a standard graded polyno-
mial ring over k, and R = S/I, where I is a homogeneous ideal of S. Then
R inherits a decomposition R = ⊕i≥0Ri as K-vector spaces with the prop-
erty that Ri · Rj ⊆ Ri+j . The Hilbert function of R is HFR(i) = dimk(Ri).
If HFR(i) = 0 for i � 0, R is Artinian; this is equivalent to requiring
dimk(R) < ∞ or that R satisfies the descending chain condition on ideals.
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The generating function for the Hilbert function is the Hilbert series of R de-
fined as HSR(t) =

∑
i dimk(Ri)ti and similarly for a graded R-module. For a

graded Artinian ring R, the h-vector records the nonzero values of the Hilbert
function of R. The syzygy modules of R are denoted SyzS

i (R). The regularity
of R is reg(R) = max{j |βS

ij(R) �= 0}, where βS
ij(R) = TorS

i (R, k)j are the
graded Betti numbers of R over S. Regularity is one of the most well-studied
invariants of graded k-algebras and has connections to sheaf cohomology and
computational complexity [4]. In particular, if R = S/I as above, regS(S/I)+1
is an upper bound on the degrees of a minimal generating set of I; however,
there are examples showing that regS(S/I) can be doubly exponential in the
degrees of the generators of I [23].

The ring R is called Koszul if k has a linear free resolution over R; that
is, βR

ij(k) = 0 for all j > i. It is well-known that Koszul algebras are de-
fined by quadratic ideals and that ideals having a Gröbner basis of quadrics
define Koszul algebras, but both of these implications are irreversible [8, Re-
mark 1.10 and Example 1.20]. Every quadratic complete intersection (that is,
rings of the form S/(f1, . . . , fm), where f1, . . . , fm is a graded regular sequence
on S) is Koszul by a result of Tate [33]. There are many examples of Koszul
algebras in algebraic geometry and these algebras enjoy a rich duality theory.
The article [7] contains a modern introduction to the theory of (commutative)
Koszul algebras.

A graded Artinian k-algebra R is said to satisfy the weak Lefschetz property
if there is a linear form � ∈ R1 such that for each non negative integer i, the
k-linear map Ri → Ri+1, r �→ �r is either injective or surjective. Similarly, R
is said to satisfy the strong Lefschetz property if there is a linear form � ∈ R1

such that for each pair of non negative integers i, j, the k-linear map Ri →
Ri+j , r �→ �jr is either injective or surjective. Lefshetz properties of Artinian
k-algebras have been well-studied and we refer the reader to [18,29] for an
overview of the area.

If R is graded Artinian, then the canonical module of R is given by ωR =
Extn

S(R,S)(−n) and the canonical module of an R-module M is given by
ωM = Extn

S(M,S)(−n). In this case, R is called level if ωR is generated in
a single degree. The minimal number of generators of ωR is called the type
of R and denoted throughout this paper by type(R). If type(R) = 1, i.e. if
ωR is isomorphic to R, up to a shift in the grading, then R is Gorenstein.
Equivalently, R is Artinian and Gorenstein if it is injective as an R-module.
Gorenstein ideals have symmetric Betti tables and thus Gorenstein rings have
palindromic h-vectors. There are many examples of Gorenstein rings of interest
in algebraic geometry, such as coordinate rings of many canonical curves, rings
of invariants, and monomial curves. We refer the reader to [22] for a history
of Gorenstein rings.

Following [24], we say that R is superlevel if R is level and ωR is linearly
presented over R. Note that for R to be superlevel, it is sufficient for R to be
level and ωR be linearly presented over S. The idealization (sometimes called
the Nagata idealization or trivial extension) of R with respect to its canonical
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module is the ring

R̃ := R � ωR(− reg(R) − 1),

with multiplication given by (r1, z1) · (r2, z2) = (r1r2, r1z2 + r2z1). When R is
level, R̃ is a standard graded ring. It is well-known that when R is Artinian, R̃ is
Artinian and Gorenstein; see [5, proof of Theorem 3.3.6] or [18, Theorem 2.76].
Mastroeni, Schenck, and Stillman observed the following:

Theorem 2.1 ([24, Proposition 2.2, Lemma 2.3, Theorem 2.5]). Let R = S/I
be a standard graded, Artinian k-algebra.
1. If R is level, then R̃ is a standard graded, Artinian, Gorenstein k-algebra.

In this case,

codim(R̃) = codim(R) + type(R) and reg(R̃) = reg(R) + 1.

2. If R is quadratic and superlevel, then R̃ is quadratic.
3. If R is not Koszul, then R̃ is not Koszul.
4. R̃ ∼= S[y1, . . . , yt]/((I) + L + (y1, . . . , yt)2), where t = type(R) and

L =

(
t∑

i=1

fiyi

∣
∣
∣
∣
∣

(f1, . . . , ft) ∈ SyzS
1 (ωR)

)

.

Thus idealizations of superlevel, Artinian, quadratic algebras are a convenient
way of constructing quadratic Gorenstein algebras. All three of the construc-
tions in this paper use this idea.

3. A non-Koszul, quadratic, Gorenstein ring with codimension 8 and regular-
ity 3. A construction of Matsuda [26] shows that not every quadratic, Goren-
stein ideal is Koszul. Matsuda’s example had regularity 4. Conca, Rossi, and
Valla showed that every quadratic, Gorenstein algebra with regularity 2 was
Koszul [9, Proposition 2.12] and asked whether every such algebra with regular-
ity 3 was Koszul [9, Question 6.10]. It is known that all quadratic, Gorenstein
algebras of regularity 3 and codimension at most 5 are Koszul [6,9]. Mastroeni,
Schenck, and Stillman [24] constructed counterexamples in all codimensions
c ≥ 9. They then posed the following question:

Question 3.1 ([24, Question 1.3]). For which positive integers c and r is every
quadratic Gorenstein ring R with codim(R) = c and reg(R) = r Koszul?

In a second paper [25], Mastroeni, Schenck, and Stillman settle this question
for all ordered pairs (r, c) except for (3, 6), (3, 7), and (3, 8). In this section, we
show that the answer to Question 3.1 is negative for (r, c) = (3, 8). We con-
struct our example by starting with one of the 4-variable quadratic algebras
that Roos compiled in [31]. In particular, he constructed a non-Koszul, Ar-
tinian, quadratic, superlevel k-algebra of regularity 2. Applying Theorem 2.1
to it, we obtain the following result.

Theorem 3.2. Let k be a field of characteristic 0 and let S = k[u, x, y, z]. Let
I = (x2 +yz +u2, xu, x2 +xy, xz +yu, zu+u2, y2 +z2). Then R = S/I is non-
Koszul, Artinian, superlevel, with reg(R) = 2 and type(R) = 4. Consequently,
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its idealization R̃ = R � ωR(−3) is a non-Koszul, quadratic, Gorenstein, Ar-
tinian, graded k-algebra with reg(R̃) = 3 and codim(R̃) = 8.

Proof. That S/I is not Koszul follows from computations done by Roos [31].
A Macaulay2 [20] calculation shows that S/I has graded Betti table

0 1 2 3 4
0: 1 - - - -
1: - 6 4 - -
2: - - 9 12 4

In particular, S/I is superlevel and type(R) = 4. Therefore, by Theorem 2.1,
R̃ = R � ωR(−3) is a non-Koszul, quadratic, Gorenstein, standard graded
k-algebra with reg(R̃) = 3 and codim(R̃) = 8. �

The h-vector of R̃ is (1, 8, 8, 1). The above example comes from [31, Ex-
ample 57, Table 5]. Other examples can be constructed from [31, Exam-
ples 55 and 56, Table 5].

It is natural to ask whether one can use the idealization of a non-Koszul,
superlevel, Artinian algebra R to settle the two remaining cases (r, c) = (3, 6)
and (3, 7). We show next that this is impossible. Since the codimension of
the resulting idealization R̃ is codim(R) + type(R), we would need to find a
quadratic, superlevel, Artinian algebra with codim(R) + type(R) ≤ 7. This is
impossible in view of the following result.

Proposition 3.3. If R is a level, Artinian, quadratic non-Koszul algebra with
reg(R) = 2, then codim(R)+type(R) ≥ 8. Hence R̃ = R�ωR has codimension
at least 8.

Proof. Assume towards a contradiction that codim(R)+type(R) ≤ 7. Since R
is level with reg(R) = 2, type(R) = HFR(2). If HFR(2) ≤ 2, then R is Koszul
by [3, 4.8]. If HFR(2) = 3, we may appeal to [7, Theorem 1.1] to conclude that
R is Koszul. If HFR(2) ≥ 4, then c = codim(R) ≤ 3, which is impossible since
HFR(2) ≤ (

c+1
2

) − 3 ≤ 3 if R is Artinian and quadratic. �
4. Subadditivity fails for Gorenstein ideals. To place our second result in con-
text, we begin by showing that homogeneous complete intersection rings R en-
joy the subadditivity property, that is ta(R)+ tb(R) ≥ ta+b(R) for all a, b ≥ 1.

Proposition 4.1. Subadditivity holds for homogeneous complete intersections.

Proof. Let I = (f1, . . . , fc) be a homogeneous complete intersection ideal with
deg(fi) = di. Then S/I is resolved by a Koszul complex. We order the gener-
ators so that d1 ≥ d2 ≥ · · · ≥ dc. By the construction of the Koszul complex,
it follows that ti(S/I) =

∑i
j=1 dj . Hence for any positive integers a, b with

a + b ≤ c, we have

ta+b(S/I) =
a+b∑

j=1

dj =
a∑

j=1

dj +
a+b∑

j=a+1

dj ≤
a∑

j=1

dj +
b∑

j=1

dj = ta(S/I) + tb(S/I).

�
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On the other hand, subadditivity fails in general, even for Cohen-Macaulay
ideals, cf. [12, Example 4.4]. Note that to study subadditivity for Cohen-
Macaulay, and in particular, for Gorenstein rings, it suffices to consider Ar-
tinian rings R = S/I since the graded Betti numbers of R over S are the same
as those of R/(�) over S/(�) for any linear form � ∈ S regular on R.

The following lemma is similar to an example due to Caviglia [12, Exam-
ple 4.4]. We use the notation [−] : Z → N, [x] = max{x, 0}.

Lemma 4.2. Fix a natural number m and a field k with char(k) = 0 or char(k) >
2m + 1. Let S = k[x1, . . . , x2m] and consider the ideals C = (x2

1, . . . , x
2
2m) and

I = C +
(
(x1 + · · · + x2m)2

)
. Then for m ≥ 2, R := S/I is an Artinian,

quadratic algebra that has the following properties.

1. The Hilbert function of R is HFR(i) =
[(

2m
i

) − (
2m
i−2

)]
.

2. reg(R) = m.
3. βS

2,m+2(R) �= 0, and moreover, t2(R) = m + 2.
4. R is superlevel.
5. R is not Koszul.

Proof. Tensoring with a field extension of k, if necessary, one may assume
that k is infinite. Set L = C : I and note that L is directly linked to I. Let
� = x1+ · · ·+x2m and consider the homomorphism μ : (S/C) → (S/C), where
μ(x) = �2x for which Ker(μ) = L/C and Coker(μ) = S/I. Since �2 is a strong
Lefschetz element for S/C (see [18, Theorem 3.35] and the references therein for
the characteristic zero case and [10, Theorem 7.2] for positive characteristics),

the k-linear functions μi : (S/C)i
�2→ (S/C)i+2, obtained by restricting μ to

each of the graded components of S/C, are injective for i ≤ m−1 and surjective
for i ≥ m − 1. It follows that the Hilbert function of R = S/I is

HFR(i) = [dimk ((S/C)i) − dimk ((S/C)i−2)] =
[(

2m

i

)

−
(

2m

i − 2

)]

.

In particular, R is Artinian with HFR(m) �= 0, while HFR(m + 1) = 0 and so
reg(R) = m.

Moreover, the injectivity of the maps μi above shows dimk(Li/Ci) = 0
for i ≤ m − 1, so L has no minimal generators below degree m besides the
quadratic generators of C. The non-injectivity of μm shows that L has minimal
generators in degree m.

Consider the graded short exact sequence

0 → S/L(−2) �2−→ S/C−→ S/I → 0.

Since β1,m+2(S/C) = 0 and β1,m+2(S/L(−2)) = β1,m(S/L) �= 0, it follows
from the long exact sequence of Tor that β2,m+2(S/I) �= 0. Since the only
minimal generators for both C and L below degree m are those in the complete
intersection C, it follows that βi,j(S/C) = 0 for j < 2i and

βi,j(S/L(−2)) = βi,j+2(S/L) = 0 for j < min{m − 2 + i, 2i − 2}.

Again by the long exact sequence of Tor, we obtain that βi,j(S/I) = 0 for
j < min{2i,m + i}.
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On the other hand, since R = S/I is Artinian and its Hilbert function
satisfies

HFR(i) =

{[(
2m
i

) − (
2m
i−2

)]
= 0 for i > m and

(
2m
m

) − (
2m

m−2

) �= 0 for i = m,

it follows that reg(R) = m; so the vanishing of Betti numbers βi,j(R) = 0 for
j < min{2i,m + i} forces βi,m+i(R) �= 0 for m < i ≤ 2m. In particular, R is
superlevel.

Finally to see that R = S/I is not Koszul, note that if m ≥ 3, then
t2(R) = m + 2 > 4 = t1(R) + t1(R). If R were Koszul, then this would
contradict [2, Theorem 6.2]. For m = 2, the non Koszul property can be
checked by direct computation in Macaulay2 [20]. �

We now construct a family of quadratic, Artinian, Gorenstein graded rings
that have several bad properties.

Theorem 4.3. Fix an integer m ≥ 2 and let k be a field with char(k) = 0
or char(k) > 2m + 1. There exists a quadratic, Artinian, Gorenstein, graded
k-algebra A with the following properties.

1. codim(A) = 2m +
[(

2m
m

) − (
2m

m−2

)]
.

2. A is not Koszul.
3. t2(A) = m + 2.
4. reg(A) = m + 1.
5. The Hilbert function of A is

HFA(i) =
[(

2m

i

)

−
(

2m

i − 2

)]

+
[(

2m

m − i + 1

)

−
(

2m

m − i − 1

)]

.

In particular,
• A does not satisfy the subadditivity property if m ≥ 3, and
• A has a non-unimodal Hilbert function if m ≥ 7 and thus does not satisfy
the weak or strong Lefschetz properties.

Proof. Set A = R̃ = R � ωR(−m − 1), where R = S/I is the Artinian algebra
introduced in the statement of Lemma 4.2 for S = k[x1, . . . , x2m]. That A is
quadratic, Artinian, non-Koszul, and Gorenstein with the claimed regularity,
codimension, and Hilbert function follows from Theorem 2.1 and Lemma 4.2.

Also by Theorem 2.1, we can write a presentation for A as

A = T/M with M = ((I) + L + (y1, . . . , yt)2),

where t = type(R) =
[(

2m
m

) − (
2m

m−2

)]
and T = S[y1, . . . , yt]. It will be useful

at this time to view A as a bigraded ring with respect to the grading obtained
by assigning degree (1, 0) to the variables of S and degree (0, 1) to the variables
yi. The short exact sequence of bigraded T-modules

0 → L + (y1, . . . , yt)2 → T/IT → A → 0

gives rise to a long exact sequence containing the fragment

· · · → TorT
2 (L + (y1, . . . , yt)2, k) → TorT

2 (T/IT, k) → TorT
2 (A, k) → · · · .
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Since (L + (y1, . . . , yt)2)(∗,0) = 0, also (TorT
2 (L + (y1, . . . , yt)2, k))(∗,0) = 0

for all ∗ ∈ N. By contrast, since y1, . . . , yt is a regular sequence on T/IT ,
it follows that TorT

2 (T/IT, k) = TorS
2 (S/I, k) ⊗S T is concentrated in degrees

(∗, 0). It follows that the long exact sequence above splits inducing an injection
TorT

2 (T/IT, k) ↪→ TorT
2 (A, k). Hence t2(A) ≥ t2(S/I) = m.

On the other hand, since reg(S/I) = m, we get from Theorem 2.1 that
reg(A) = m + 1; i.e. ti(A) ≤ m + 1 + i for all i ≥ 0. Moreover, since A is
Gorenstein and quadratic, the symmetry of the Betti table of A over T forces
ti(A) ≤ m+i for all i < 2m+t. In particular, this implies that t2(A) = m+2 >
2+2 = t1(A)+ t1(A) and thus A fails the subadditivity property when m ≥ 3.

Finally, assume that m ≥ 7. If m = 7, then HFA(3) = 1988 < 2092 =
HFA(2). If m = 8, then HFA(3) = 6732 < 7191 = HFA(2). If m = 9, then
HFA(3) = 24054 < 25346 = HFA(2). We now show HFA(1) > HFA(

⌊
m
2

⌋
) for

m ≥ 10. By (5), we have

HFA(1) = 2m +
(

2m

m

)

−
(

2m

m − 2

)

= 2m +
2 · (2m + 1)!
m!(m + 2)!

and thus it suffices to show that 2·(2m+1)!
m!(m+2)! /HFA

(⌊
m
2

⌋)
> 1. Consider first the

case m = 2n, whence, by use of Pascal’s formula, one computes

HFA (n) =
(

4n

n

)

−
(

4n

n − 2

)

+
(

4n

n + 1

)

−
(

4n

n − 1

)

=
(

4n + 1
n + 1

)

−
(

4n + 1
n − 1

)

=
(4n + 1)! · 2(2n + 1)2

(3n + 2)!(n + 1)!
.

We deduce the desired inequality by considering the function
2·(2m+1)!
m!(m+2)!

HFA (n)
=

2 · (4n + 1)!
(2n)!(2n + 2)!

· (3n + 2)!(n + 1)!
(4n + 1)! · 2(2n + 1)2

=
(2n + 3)(2n + 4) · · · (3n + 1)(3n + 2)

(n + 2)(n + 3) · · · (2n)(2n + 1)2

=
2n+1∏

i=n+2

(

1 +
n + 1

i

)

· 1
2n + 1

>

(

1 +
n + 1
2n + 1

)n

· 1
2n + 1

≥
(

17
11

)n

· 1
2n + 1

.

Clearly the last function above attains arbitrarily large values asymptoti-
cally and one can check that its values surpass 1 for n ≥ 6. In the remaining
case, n = 5, the claim 58806 = HFA(1) > HFA (n) = 48279 can be checked
by direct computation. The case when m is odd is similar and we omit the
details. �

That the family of Artinian algebras in Theorem 4.3 fails to satisfy the
strong Lefschetz property can be deduced from [15, Proposition 2.1], however
the stronger statement regarding the failure of the weak Lefschetz property is
to our knowledge new.
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Example 4.4. Take m = 3 and consider S = k[x1, . . . , x6]. Applying Lemma 4.2,
we set C = (x2

1, . . . , x
2
6) and I = C + (x1 + · · · + x6)2. Then R = S/I has the

following Betti table over S:

0 1 2 3 4 5 6
0: 1 - - - - - -
1: - 7 - - - - -
2: - - 21 - - - -
3: - - 14 105 132 70 14

In particular, t1(S/I) = 2 and t2(S/I) = 5, so R is an Artinian algebra that
fails subadditivity; i.e. t2(R) > t1(R) + t1(R). Moreover, R is superlevel with
reg(R) = 3 and h-vector (1, 6, 14, 14).

Now we consider R̃ = R � ωR(−4). By Theorem 2.1, R̃ is Artinian, Goren-
stein with h-vector (1, 20, 28, 20, 1), and reg(R̃) = 4. As R̃ is quadratic, t1(R̃) =
2 while t2(R̃) = 5 by Theorem 4.3. Thus R̃ is an Artinian, Gorenstein algebra
for which subadditivity fails.

It is worth noting that while we know the Hilbert function of R̃ from
Theorem 4.3, the full Betti table of R̃, as a quotient of a polynomial ring in 20
variables, is not so clear. It would be very interesting to have a full description
of the resolution of the idealization R̃ in terms that of R.

Example 4.5. When m = 7, the Gorenstein k-algebra R̃ from Theorem 4.3
has non-unimodal h-vector (1, 1444, 2092, 1958, 1820, 1958, 2092, 1444, 1). Thus
R̃ is a quadratic Gorenstein algebra with codim(R̃) = 1444 and reg(R̃) = 8
and for which both the weak and strong Lefshetz properties fail. The first
example of a (non-quadratic) Gorenstein algebra with non-unimodal h-vector
was famously constructed by Stanley [32]. 1

5. Quadratic non-Koszul Gorenstein algebras with linear resolutions of arbi-
trarily high order. Let k be a field of characteristic 0. In [30, Theorem 1’]
Roos gave examples of graded, Artinian, non-Koszul, quadratic k-algebras Aα

for integers α ≥ 2 such that k has a linear resolution for precisely the first
α steps before a minimal non-linear syzygy. Here we note that these algebras
are superlevel and that their Gorenstein idealizations have the same property.
This removes any hope of a ‘finite test’ for the Koszul property in the context
of quadratic Gorenstein algebras.

To state the result, we first recall the definition of the graded Poincare
series of a module. Fix a graded module M over a graded ring R. The gen-
erating function for the bigraded k-vector space TorR

∗ (M,k)∗ is PM
R (x, y) :=∑

i,j βR
x,y(M)xiyj . Thus the graded Poincare series of R is P k

R(x, y), which
encodes the resolution of k over R.

Theorem 5.1. Let k be a field of characteristic 0 and fix a positive integer
α ≥ 2. Let S = k[u, v, w, x, y, z] and

1Stanley’s construction was also given via idealization for the ring A = k[x, y, z]/(x, y, z)4.

Since A has h-vector (1, 3, 6, 10), its idealization Ã = A � ωA has h-vector (1, 13, 12, 13, 1);

however, Ã is clearly not quadratic.
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I = (x2, xy, y2, yz, z2, zu, u2, uv, v2, vw, w2, xz + αzw − uw, zw + xu + (α − 2)uw).

Then the idealization R̃ of R = S/I is quadratic, Gorenstein, non-Koszul,
and k has linear resolution for precisely α steps in the resolution over R̃.

Proof. By [30, Theorem 1’], R has Hilbert series HSR(t) = 1+6t+8t2, whence
reg(R) = 2, and type(R) = 8, and it is easy to check with Macaulay2 [20] that
R is superlevel. Thus R̃ = R � ωR(−3) is Artinian, quadratic, and Gorenstein
with reg(R̃) = 3 and codim(R̃) = 6 + 8 = 14.

We need only argue that the resolution of k over R̃ is linear for exactly α
steps. To achieve this, we recall the details of the construction of R from [30].
It is shown therein that R itself is an idealization R = A � M(−1), where
A = k[x, y, u, v]/(x2, xy, y2, v2, vw,w2) = B ⊗k C, B = k[x, y]/(x, y)2, and
C = k[v, w]/(v, w)2 and M is an A-module with Hilbert series HSM (t) = 2+4t.
By a result of Gulliksen [17, Theorem 2] combined with the fact that M and
ωR are linearly presented, the relevant graded Poincaré series are related by

P k
R̃
(x, y) = P k

R(x, y)(1 − xyP
ωR(−2)
R (x, y))−1, (1)

PωR

R (x, y) = PωR

A (x, y)(1 − xyPM
A (x, y))−1. (2)

Since [30] shows that both the resolution of k over R and the resolution of M
over A are linear for exactly α steps, it suffices to show that the resolution of
ωR over A is linear.

By [19, proof of Claim 2], there is an isomorphism of R-modules ωR(−2) ∼=
ωM (−1)�ωA(−2), with the R = A�M(−1)-module structure given by (a,m)·
(s, t) = (as, at + s(m)), where we view s ∈ HomA(M,ωA) ∼= ωM . This induces
an isomorphism of A-modules ωR(−2) ∼= ωM (−1)⊕ωA(−2), and we note that
both ωM (−1) and ωA(−2) are generated in degree 0. Thus it suffices to show
that both ωA(−2) and ωM (−1) have linear resolutions over A. The former
module decomposes as a tensor product ωA(−2) ∼= ωB(−1) ⊗k ωC(−1). Thus
the minimal free resolution of ωA(−2) over A is in turn the tensor product
of the resolutions of ωB(−1) over B and ωC(−1) over C. Since the rings B
and C contain no elements of degree greater than one, the differentials in
the resolutions of ωB(−1) and ωC(−1) are linear. As B and C are level of
regularity 1, ωB(−1) and ωC(−1) are each generated in degree zero, hence
their resolutions are linear and so is the resolution of ωA(−2) over A.

Finally, in order to analyze the resolution of ωM (−1) over A, one must dig
deeper into the structure of the module M . Since A is Artinian, [11, Propo-
sition 21.1] shows that ωM (−1) ∼= Homk(M(+1), k) as an A-module. Conse-
quently, the Hilbert series of this module is HSωM (−1)(t) = 4 + 2t. Fix k-bases
{f∗

1 , f∗
2 , f∗

3 , f∗
4 } for (ωM (−1))0 and {e∗

1, e
∗
2} for (ωM (−1))1, where ei, fi refer

to the dual elements in M0 and M1 respectively. The A-module structures of
M and ωM can be completely described by the following dual tables, the first
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of which can be deduced from [31, Equation (3)]

f1 f2 f3 f4
e1 v w x + αw 0
e2 0 (α − 2)w − x w y

f∗
1 f∗

2 f∗
3 f∗

4

e∗
1 v w x + αw 0

e∗
2 0 (α − 2)w − x w y

The leftmost table should be interpreted to mean that, for example, ve1 = f1
in M , while the rightmost table should be interpreted to mean that, dually,
vf∗

1 = e∗
1 in ωM . (That, for instance, ye1 = 0 is thus implicit in the ta-

ble.) Equipped with this information, we implement a strategy for determin-
ing TorA(ωM (−1), k) inspired by Roos’ original approach: We compute the
homology of the tensor product of the bar resolutions for k over B and C
further tensored with ωM . Since ωM is concentrated in only two degrees, the
only potential nonzero components of TorA

i (ωM (−1), k) are in degrees i and
i + 1. Furthermore, TorA

i (ωM (−1), k)i+1 is the cokernel of

(ωM (−1))0 ⊗k

(
i⊕

q=0

B⊗i−q
1 ⊗k C⊗i

1

)

→ (ωM (−1))1 ⊗k

(
i−1⊕

q=0

B⊗i−q−1
1 ⊗k C⊗i

1

)

s ⊗ b1 ⊗ · · · ⊗ bi−q ⊗ c1 ⊗ · · · ⊗ cq

�→ sb1 ⊗ · · · ⊗ bi−q ⊗ c1 ⊗ · · · ⊗ cq

+(−1)i−qsc1 ⊗ b1 ⊗ · · · ⊗ bi−q ⊗ c2 ⊗ · · · ⊗ cq.

It is easily verified that this map is surjective as for arbitrary μ, λ ∈ k, bj ∈
B1, cj ∈ C1, we have

λf∗
4 ⊗ y ⊗ b2 ⊗ · · · ⊗ bi−q ⊗ c1 ⊗ · · · ⊗ cq + (−1)i−qμf∗

1 ⊗ b2 ⊗ · · ·
⊗bi−q ⊗ v ⊗ c1 · · · ⊗ cq �→

(μe∗
1 + λe∗

2) ⊗ b2 ⊗ · · · ⊗ bi−q ⊗ c1 ⊗ · · · ⊗ cq.

Thus TorA
i (ωM (−1), k)i+1 = 0 for i > 0, which concludes the proof. �
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