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A note on rigidity of Riemannian manifolds with positive scalar
curvature

Guangyue Huang and Qianyu Zeng

Abstract. In this short note, we obtain an integral inequality for closed
Riemannian manifolds with positive scalar curvature and give some rigid-
ity characterization of the equality case, which generalizes the recent re-
sults of Catino which deal with the conformally flat case, and of Huang
and Ma which deal with the harmonic curvature case. Moreover, we ob-
tain an integral pinching condition with non-negative constant σ2(A

τ ),
which can be seen as a complement to Bo and Sheng who considered
conformally flat manifolds with constant quotient curvature of σk(Aτ ).
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1. Introduction. Let (Mn, g) be an n-dimensional Riemannian manifold with
n ≥ 3. It is well-known that for n ≥ 4, the metric g is conformally flat if and
only if its Weyl curvature tensor is zero. If n = 3, then it is conformally flat
if and only if the Cotton tensor is zero. In the last years, the classifications of
conformally flat manifolds under some geometrical or topological assumptions
have been paid much attention. For example, in [17], Tani proved that any
closed conformally flat manifold with positive Ricci curvature and constant
scalar curvature is covered isometrically by S

n with the round metric. For
complete conformally flat manifolds with non-negative Ricci curvature, Carron
and Herzlich [2] gave the following classifications: they are either flat, or locally
isometric to R × S

n−1 with the product metric; or are globally conformally
equivalent to R

n or to a spherical space form. For closed conformally flat
manifolds satisfying some integral pinching conditions, see [5,7,8,16,18]. On
the other hand, for some classifications with point-wise pinching condition on
the Ricci curvature, see [4,14,19] and references therein.
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Throughout this paper, all the calculations are carried out under the normal
coordinates. Denote by R, Rij the scalar curvature and the Ricci curvature
respectively. We let R̊ij = Rij − R

n gij be the trace-less Ricci curvature. With
the help of the properties of the Codazzi tensor, Catino [3] studied closed
conformally flat manifolds with positive constant scalar curvature (in this case,
the Ricci curvature is a Codazzi tensor) and satisfying an optimal integral
pinching condition. He proved the following

Theorem A. Let (Mn, g) be a closed conformally flat Riemannian manifold
with positive constant scalar curvature. Then∫

M

(
R −

√
n(n − 1)|R̊ij |

)
|R̊ij |n−2

n ≤ 0, (1.1)

and equality occurs if and only if (Mn, g) is covered isometrically by either S
n

with the round metric, S1 × S
n−1 with the product metric, or S

1 × S
n−1 with

a rotationally symmetric Derdziński metric.

Generalizing the above results of Catino, Huang and Ma [11] studied man-
ifolds with harmonic curvature tensor and positive scalar curvature. They
proved

Theorem B. Let (Mn, g) be a closed Riemannian manifold with harmonic cur-
vature tensor and positive scalar curvature. Then∫

M

(
R −

√
n(n − 1)|R̊ij |

)
|R̊ij |n−2

n ≤
√

(n − 1)(n − 2)
2

∫

M

|W ||R̊ij |n−2
n , (1.2)

and equality occurs if and only if (Mn, g) is either Einstein or isometrically
covered by one of:
(1) S

1 × S
n−1 with a product metric;

(2) S
1 × S

n−1 with a rotationally symmetric Derdziński metric.

The Cotton tensor is defined by

Cijk =Rkj,i − Rki,j − 1
2(n − 1)

(R,igjk − R,jgik), (1.3)

where the indices after the comma denotes the covariant derivatives, which is
related to the Weyl curvature tensor by

− n − 3
n − 2

Cijk = Wijkl,l. (1.4)

Thus, it is easy to see that for conformally flat manifolds with constant scalar
curvature and n ≥ 4, the Ricci curvature must be a Codazzi tensor, and hence
the curvature tensor is harmonic (since Rij,k − Rik,j = Rjkil,l, the curvature
tensor being harmonic is equivalent to the Ricci curvature being a Codazzi
tensor with constant scalar curvature). That is to say, conditions on harmonic
curvature are weaker than those on conformal flatness. On the other hand, the
key to prove Theorem A and Theorem B is the fact that the Ricci curvature
becomes a Codazzi tensor under assumptions.



Vol. 115 (2020) A note on rigidity of Riemannian manifolds 459

In this note, we will continue to generalize the above results by removing
the conditions on constant scalar curvature and that the Ricci curvature is a
Codazzi tensor. Our main results are stated as follows:

Theorem 1.1. Let (Mn, g) be a closed Riemannian manifold with positive scalar
curvature, where n ≥ 3. Then∫

M

[
R −

√
n(n − 1)|R̊ij |−

√
(n − 1)(n − 2)

2
|W |

]
|R̊ij |2

≤ (n − 2)2

4n

∫

M

|∇R|2 +
n − 1

2

∫

M

|Cijk|2,
(1.5)

and equality occurs if and only if (Mn, g) is either Einstein or isometrically
covered by S

1 × S
n−1 with the product metric.

The following modified Schouten tensor with a parameter τ was introduced
by Gursky and Viaclovsky [6] (see also Li and Li [13]):

Aτ
ij = Rij − τR

2(n − 1)
gij , (1.6)

where τ ∈ R is a constant. When τ = 1, the tensor A1
ij is exactly the Schouten

tensor. We denote by σ2(Aτ ) the 2nd-elementary symmetric function of the
eigenvalues of the so-called modified Schouten tensor. Then, for manifolds with
non-negative constant σ2(Aτ ), we have the following

Theorem 1.2. Let (Mn, g) be a closed Riemannian manifold with positive scalar
curvature, where n ≥ 3. If the function σ2(Aτ ) is a non-negative constant,
where τ < 1 or τ > 3 − 4

n , then∫

M

[
R −

√
n(n − 1)|R̊ij |−

√
(n − 1)(n − 2)

2
|W |

]
|R̊ij |2 ≤ n − 1

2

∫

M

|Cijk|2,

(1.7)
and equality occurs if and only if (Mn, g) is either Einstein or isometrically
covered by S

1 × S
n−1 with the product metric.

Remark 1.1. If we add the conditions Wijkl = 0 and that the scalar curvature
is constant in Theorem 1.1, then (1.5) becomes∫

M

(R −
√

n(n − 1)|R̊ij |)|R̊ij |2 ≤ 0. (1.8)

On the other hand, if we add the condition that the curvature tensor is har-
monic in Theorem 1.1, then (1.5) becomes

∫

M

[
R −

√
n(n − 1)|R̊ij | −

√
(n − 1)(n − 2)

2
|W |

]
|R̊ij |2 ≤ 0. (1.9)

Comparing (1.8) and (1.9) with (1.1) and (1.2), respectively, our Theorem 1.1
gives a new estimate.
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Remark 1.2. Since R =
√

n(n − 1)|R̊ij | on S
1×S

n−1 with the product metric,
Theorem 1.1 can also be interpreted as an interpolation curvature estimate.

Remark 1.3. In [1], Bo and Sheng gave some rigidity characterization for con-
formally flat manifolds with constant quotient curvature of σk(Aτ ). Our The-
orem 1.2 gives an integral pinching condition with the σ2(Aτ ) assumption,
which can be seen as a complement.

2. Proof of the results.

2.1. Proof of Theorem 1.1. Recall that the Riemannian curvature tensor and
Weyl curvature tensor are related by

Wijkl = Rijkl − 1
n − 2

(Rikgjl − Rilgjk + Rjlgik − Rjkgil)

+
R

(n − 1)(n − 2)
(gikgjl − gilgjk)

= Rijkl − 1
n − 2

(R̊ikgjl − R̊ilgjk + R̊jlgik − R̊jkgil)

− R

n(n − 1)
(gikgjl − gilgjk).

(2.1)

Using formula (2.1), it is easy to check that

R̊klRikjl =R̊klWikjl +
1

n − 2
(|R̊ij |2gij − 2R̊ikR̊jk) − 1

n(n − 1)
RR̊ij . (2.2)

It follows that

R̊kj,ik = R̊kj,ki + R̊ljRlkik + R̊klRljik

=
n − 2
2n

R,ij + R̊ikR̊jk +
1
n

RR̊ij −
[
R̊klWikjl

+
1

n − 2
(|R̊ij |2gij − 2R̊ikR̊jk) − 1

n(n − 1)
RR̊ij

]

=
n − 2
2n

R,ij +
n

n − 2
R̊ikR̊jk +

1
n − 1

RR̊ij

− R̊klWikjl − 1
n − 2

|R̊ij |2gij .

(2.3)

On the other hand, formula (1.3) is equivalent to

Cijk =R̊kj,i − R̊ki,j +
n − 2

2n(n − 1)
(R,igjk − R,jgik). (2.4)

Therefore, from (2.3) and (2.4), we have

Ckij,k = ΔR̊ij − R̊kj,ik +
n − 2

2n(n − 1)
(gijΔR − R,ij)

= ΔR̊ij −
(n − 2

2n
R,ij +

n

n − 2
R̊ikR̊jk +

1
n − 1

RR̊ij − R̊klWikjl

− 1
n − 2

|R̊ij |2gij

)
+

n − 2
2n(n − 1)

(gijΔR − R,ij),

(2.5)
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which shows

ΔR̊ij =
n − 2
2n

R,ij +
n

n − 2
R̊ikR̊jk +

1
n − 1

RR̊ij − R̊klWikjl

− 1
n − 2

|R̊ij |2gij − n − 2
2n(n − 1)

(gijΔR − R,ij) + Ckij,k,
(2.6)

and hence
1
2
Δ|R̊ij |2 =|∇R̊ij |2 + R̊ijΔR̊ij

=|∇R̊ij |2 +
n

n − 2
R̊ijR̊ikR̊jk − WikjlR̊ijR̊kl +

1
n − 1

R|R̊ij |2

+
n − 2

2(n − 1)
R,ijR̊ij + Ckij,kR̊ij .

(2.7)

We recall the following inequalies (cf. [12, Lemma 3.4]):

|WikjlR̊ijR̊kl| ≤
√

n − 2
2(n − 1)

|W ||R̊ij |2, (2.8)

and
R̊ijR̊ikR̊jk ≥ − n − 2√

n(n − 1)
|R̊ij |3, (2.9)

with equality in (2.9) at some point p ∈ M if and only if R̊ij can be diagonalized
at p and the eigenvalue multiplicity of R̊ij is at least n − 1 (see also [9,10], or
[15]). Thus, (2.7) becomes

1
2
Δ|R̊ij |2 ≥|∇R̊ij |2 −

√
n

n − 1
|R̊ij |3 −

√
n − 2

2(n − 1)
|W ||R̊ij |2 +

1
n − 1

R|R̊ij |2

+
n − 2

2(n − 1)
R,ijR̊ij + Ckij,kR̊ij .

(2.10)
Integrating both sides of (2.10) gives

0 ≥
∫

M

|∇R̊ij |2 +
∫

M

[
−

√
n

n − 1
|R̊ij |3 −

√
n − 2

2(n − 1)
|W ||R̊ij |2 +

1
n − 1

R|R̊ij |2
]

+
n − 2

2(n − 1)

∫

M

R,ijR̊ij +
∫

M

Ckij,kR̊ij . (2.11)

Using the definition of the Cotton tensor given by (2.4) and the fact that the
Cotton tensor is trace-less in any two indices, we obtain∫

M

Ckij,kR̊ij = −
∫

M

CkijR̊ij,k = −1
2

∫

M

|Cijk|2.

On the other hand,∫

M

R,ijR̊ij = −
∫

M

R,iR̊ij,j = −n − 2
2n

∫

M

|∇R|2,



462 G. Huang and Q. Zeng Arch. Math.

where we used the second Bianchi identity R̊ij,j = n−2
2n R,i. Hence, (2.11) be-

comes

0 ≥
∫

M

|∇R̊ij |2 +
∫

M

[
−

√
n

n − 1
|R̊ij | −

√
n − 2

2(n − 1)
|W | +

1
n − 1

R
]
|R̊ij |2

− (n − 2)2

4n(n − 1)

∫

M

|∇R|2 − 1
2

∫

M

|Cijk|2

≥
∫

M

[
−

√
n

n − 1
|R̊ij | −

√
n − 2

2(n − 1)
|W | +

1
n − 1

R
]
|R̊ij |2

− (n − 2)2

4n(n − 1)

∫

M

|∇R|2 − 1
2

∫

M

|Cijk|2, (2.12)

which yields the desired estimate (1.5).
Now, we consider the case of equality in (1.5), that is

∫

M

[
R −

√
n(n − 1)|R̊ij |−

√
(n − 1)(n − 2)

2
|W |

]
|R̊ij |2

=
(n − 2)2

4n

∫

M

|∇R|2 +
n − 1

2

∫

M

|Cijk|2.
(2.13)

In this case, the inequalities (2.8), (2.9), and (2.12) become equalities. In par-
ticular, the second equality in (2.12) implies

∇R̊ij = 0, (2.14)

which shows that R̊ij,j = 0 and hence the scalar curvature is constant. Fur-
thermore, the Ricci curvature is parallel and hence the metric g has harmonic
curvature. Thus, (2.13) becomes

∫

M

[
R −

√
n(n − 1)|R̊ij | −

√
(n − 1)(n − 2)

2
|W |

]
|R̊ij |2 = 0. (2.15)

As stated in the lines following (2.9), R̊ij has, at each point p, an eigenvalue of
multiplicity n − 1 or n. Writing R̊ij = avivj + bgij at p, with some scalars a, b
and a vector v, we see that the left-hand side of (2.8) is zero at every point p.
As (2.8) is an equality, the metric g must be conformally flat or Einstein. Our
claim about the equality case now follows from Theorem B of Huang and Ma
(or see the proof of Catino’s Theorem A) since the Ricci curvature is parallel.

This completes the proof of Theorem 1.1.
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2.2. Proof of Theorem 1.2. By virtue of the definition of σ2(Aτ ), we have

σ2(Aτ ) =
1
2
[(trAτ )2 − |Aτ

ij |2]

=
1
2

[4(n − 1)(1 − τ) + nτ2

4(n − 1)
R2 − |Rij |2

]

=
1
2

[ [2(n − 1) − nτ ]2

4n(n − 1)
R2 − |R̊ij |2

]
.

(2.16)

Since σ2(Aτ ) is a non-negative constant, we have (see [1, Proposition 2.11],

|∇Aτ
ij |2 ≥ |∇(trAτ )|2. (2.17)

By a direct calculation, we have

|∇Aτ
ij |2 =|∇Rij |2 +

nτ2 − 4(n − 1)τ
4(n − 1)2

|∇R|2

=|∇R̊ij |2 +
[2(n − 1) − nτ ]2

4n(n − 1)2
|∇R|2,

(2.18)

and

|∇(trAτ )|2 =
[2(n − 1) − nτ ]2

4(n − 1)2
|∇R|2, (2.19)

then (2.17) is equivalent to

|∇R̊ij |2 ≥ [2(n − 1) − nτ ]2

4n(n − 1)
|∇R|2. (2.20)

Inserting

|∇R|2 ≤ 4n(n − 1)
[2(n − 1) − nτ ]2

|∇R̊ij |2

with τ �= 2 − 2
n into (2.12) yields

0 ≥
(

1 − (n − 2)2

[2(n − 1) − nτ ]2

)∫

M

|∇R̊ij |2 +
∫

M

[
−

√
n

n − 1
|R̊ij |

−
√

n − 2
2(n − 1)

|W | +
1

n − 1
R

]
|R̊ij |2 − 1

2

∫

M

|Cijk|2.
(2.21)

It is easy to check that

(n − 2)2

[2(n − 1) − nτ ]2
< 1

is equivalent to τ < 1 or τ > 3 − 4
n . In this case, we have from (2.21),

0 ≥
∫

M

[
−

√
n

n − 1
|R̊ij | −

√
n − 2

2(n − 1)
|W | +

1
n − 1

R
]
|R̊ij |2 − 1

2

∫

M

|Cijk|2,

(2.22)
and the desired estimate (1.7) is attained.
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If the equality in (1.7) holds, then
∫

M

[
R −

√
n(n − 1)|R̊ij |−

√
(n − 1)(n − 2)

2
|W |

]
|R̊ij |2 =

n − 1
2

∫

M

|Cijk|2.

(2.23)
In this case, the inequalities (2.8), (2.9), and (2.22) become equalities, which
also shows that

∇R̊ij = 0, (2.24)

and the Ricci curvature is parallel. Since the rest of proof is the same as that
of Theorem 1.1, we omit it here.

Therefore, we complete the proof of Theorem 1.2.
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