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A second alternative approach for the study
of the Muckenhoupt class A1(R)
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Abstract. We find the exact best possible range of those p > 1 for which
any ϕ ∈ A1(R), with A1 constant equal to c, must also belong to Lp. In
this way, we provide an alternative proof of the corresponding result in
Bojarski and Sbordone (Studia Math 101(2):155–163, 1992) and Nikoli-
dakis (Ann Acad Scient Fenn Math 40:949–955, 2015).
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1. Introduction. The study of Muckenhoupt weights has been proved to be
important in analysis. One of the most important facts about these is their
self improving property. A way to express this is through the so-called reverse
Hölder inequalities (see [3,4,6]).

For an interval J on R, we define the class A1(J ) to be the set of all those
ϕ : J → R

+ for which there exists a constant c ≥ 1, such that the following
inequality is satisfied:

1
|I|

∫

I
ϕ(x)dx ≤ c · essinf

I
(ϕ) (1.1)

for every subinterval I of J , where | · | is the Lebesque measure on R. The least
constant c for which (1.1) holds, is called the A1-constant of ϕ and is denoted
by [ϕ]1. We will then say that ϕ belongs to the class A1(J ) with constant c,
and we will write ϕ ∈ A1(J , c).

The class A1(J , c) has been studied for the first time in [2]. In the present
paper, we work on such weights by using the notion of the non-increasing
rearrangement of ϕ, denoted by ϕ∗, which is a non-negative and non-increasing
function defined on (0, |J |]. It is characterized by the following two additional
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properties. It is equimeasurable to ϕ (in the sense that |{ϕ > λ}| = |{ϕ∗ > λ}|
for every λ > 0) and is also left continuous. All these properties uniquely define
ϕ∗ as can be seen in [1,5], or [8]. Nevertheless, an equivalent definition of ϕ∗

can be given by the following formula

ϕ∗(t) = sup
E⊆J
|E|=t

[ inf
x∈E

ϕ(x)], for t ∈ (0, |J |],

as can be seen in [8].
In [2], it is proved the following

Theorem 1. Let ϕ ∈ A1(J , c). ϕ∗ satisfies

1
t

t∫

0

ϕ∗(y)dy ≤ cϕ∗(t), for t ∈ (0, |J |]. (1.2)

That is ϕ∗ belongs to the class A1(J ), with A1-constant not more than c.

The above theorem describes the A1-properties of ϕ∗, in terms of those of
ϕ. It was used effectively by the authors in [2] in order to prove the following:

Theorem 2. Let ϕ ∈ A1(J , c). Then ϕ ∈ Lp for every p ∈ [1, c
c−1 ). Moreover,

the following inequality must hold for every subinterval I of J , and every p in
the above range,

1
|I|

∫

I
ϕp(x)dx ≤ 1

cp−1(c + p − pc)

( 1
|I|

∫

I
ϕ(x)dx

)p

. (1.3)

Additionally, the above inequality is sharp, that is the constant appearing in
the right side of (1.3) cannot be decreased.

The above two theorems have been proved in [2] for the first time and in
[10] alternatively. Our aim in this paper is to give a second alternative proof
of Theorem 2 by using Theorem 1 and certain techniques involving the well
known Hardy operator on R. Additionally, we need to mention that in [7]
and [9] related problems for estimates for the respective range of p in higher
dimensions have been treated. At last one can consult [11] for further reading.

The paper is organized as follows: In Section 2, we give a brief discussion of
the proof of the Theorem 1, as is presented in [2], and in Section 3, we provide
the proof of Theorem 2.

2. ϕ∗ as an A1 weight on R. A similar lemma as the one that is presented
below is proved in [2]. It’s proof is essentially the same and for this reason we
omit it.

Lemma 2.1. Let E be a measurable bounded subset of R and ε > 0. More
precisely, suppose that E ⊆ I for a certain bounded interval I of R for which
|I − E| > 0. Then there exists a sequence (Iν)∞

ν=1 of subintervals of I with
disjoint interiors and a subset E1 of E with the properties that |E1| = |E| and

(i) E1 ⊆ ⋃∞
ν=1 Iν ,

(ii) (1 − ε)|Iν | ≤ |Iν ∩ E| < |Iν | for every ν.
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We now proceed to the

Proof of Theorem 1. Suppose without loss of generality that J = (0, 1) and
that ϕ satisfies (1.1) for every subinterval I of J . Let t ∈ (0, 1) and ε > 0. Let
Et be a subset of (0, 1) such that |Et| = t and ϕ(x) ≤ ϕ∗(t) for any x /∈ Et.
Obviously |J −Et| > 0. Using Lemma 2.1, we produce a subset Et,1 of Et such
that |Et,1| = t and Et,1 ⊆ ⋃∞

ν=1 Iν , where for every ν = 1, 2, . . ., the following
holds:

(1 − ε)|Iν | ≤ |Iν ∩ Et| < |Iν | (2.1)

for a suitable family (Iν)∞
ν=1 of subintervals of (0, 1) with disjoint interiors. By

the strict inequality in (2.1), we conclude that Iν contains a set of positive
measure in the complement of Et, therefore we must have that

essinf
x∈Iν

ϕ(x) ≤ ϕ∗(t),

so using (1.1) and (2.1), we have as a consequence that

t∫

0

ϕ∗(y)dy =
∫

Et

ϕ(x)dx =
∫

Et,1

ϕ(x)dx ≤
∞∑

ν=1

∫

Iν

ϕ(x)dx ≤ c

∞∑
ν=1

|Iν | · ϕ∗(t)

≤ c

1 − ε

( ∞∑
ν=1

|Iν ∩ Et|
)

· ϕ∗(t) =
c

1 − ε
· t · ϕ∗(t)

⇒ 1
t

t∫

0

ϕ∗(y)dy ≤ c

1 − ε
ϕ∗(t)

for every ε > 0. Letting ε → 0+, we conclude (1.2) for any t ∈ (0, 1). The
case t = 1 is handled by letting t → 1− in (1.2) and noting that ϕ∗ is left
continuous on (0, 1]. �

3. Lp integrability of A1 weights on R. We will now prove the following

Lemma 3.1. Let g : (0, 1] → R
+ be a non-increasing, left continuous function

which satisfies the following inequality:

1
t

t∫

0

g(y)dy ≤ c · g(t), ∀t ∈ (0, 1], (3.1)

for a fixed c > 1. Then for any p ∈ [1, c
c−1 ), the following is true:

1∫

0

gp(y)dy ≤ 1
cp−1(c + p − pc)

( 1∫

0

g(y)dy
)p

. (3.2)

Moreover, inequality (3.2) is best possible.
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Proof. Fix a p such that 1 ≤ p < c
c−1 and let F =

∫ 1

0
gp(y)dy and f =∫ 1

0
g(y)dy. Then by Hölder’s inequality, fp ≤ F . We need to prove that

F ≤ 1
cp−1(c + p − pc)

· fp. (3.3)

We define the function

Hp :
[
1,

p

p − 1

]
→ [0, 1]

by Hp(z) = pzp−1 − (p − 1)zp. Then we easily see that Hp is one to one and
onto. We denote it’s inverse function by ωp defined on [0, 1], which is decreasing
as Hp also is. We shall prove that (3.3) holds, equivalently, Hp(c) ≤ fp

F ⇔ c ≥
ωp

(
fp

F

)
=: τ .

Suppose on the contrary that c < τ . We are going to reach a contradiction.
Define the function g1 on (0, 1] by g1(t) = f

τ t−1+ 1
τ . This is obviously non-

increasing and continuous (0, 1]. Additionally, it satisfies for any t ∈ (0, 1], the
following equality:

1
t

t∫

0

g1(y)dy = τ · g1(t). (3.4)

Indeed: 1
t

∫ t

0
g1(y)dy = 1

t
f
τ

∫ t

0
y−1+ 1

τ dy = f
t

[
y

1
τ

]t

y=0
= f

t ·t 1
τ = τ ·

(
f
τ t−1+ 1

τ

)
=

τg1(t). Moreover, it satisfies
∫ 1

0
g1(y)dy = f and

∫ 1

0
gp
1(y)dy = F . The first

equation is obvious, in view of (3.4). As for the second, it is equivalent to
fp

τp

∫ 1

0
y−p+ p

τ dy = F ⇔ fp

τp(1+ p
τ −p) = F ⇔ pτp−1 − (p − 1)τp = fp

F ⇔ Hp(τ) =
fp

F ⇔ τ = ωp( fp

F ), which is true by the definition of τ .
We are now aiming to prove that the following inequality is satisfied:

t∫

0

g(y)dy ≤
t∫

0

g1(y)dy, for any t ∈ (0, 1]. (3.5)

For this reason, we define the following subset of (0, 1):
G =

{
t ∈ (0, 1) :

∫ t

0
g(y)dy >

∫ t

0
g1(y)dy

}
, and we suppose that G is non-

empty. By the continuity of the involving integral functions on t, we have as
a consequence that G is an open subset of (0, 1). Since G �= ∅ ⇒ G =

⋃
ν Iν ,

where (Iν)ν is a (possibly finite) sequence of pairwise disjoint open intervals
on (0, 1). Let us choose one of them, Iν = (αν , bν). Since αν /∈ G,

αν∫

0

g(y)dy ≤
αν∫

0

g1(y)dy. (3.6)

Let now (xn)n ⊆ Iν be a sequence such that xn → αν , as n → ∞. Since
xn ∈ G,∀n = 1, 2, . . ., we must have that

∫ xn

0
g(y)dy >

∫ xn

0
g1(y)dy, so letting

n → ∞, we conclude that
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αν∫

0

g(y)dy ≥
αν∫

0

g1(y)dy. (3.7)

By (3.6) and (3.7), we see that
∫ αν

0
g(y)dy =

∫ αν

0
g1(y)dy. In the same way, we

prove that
∫ bν

0
g(y)dy =

∫ bν

0
g1(y)dy. As a consequence, we must have that

bν∫

αν

g(y)dy =

bν∫

αν

g1(y)dy. (3.8)

Let now t ∈ Iν = (αν , bν). Since t ∈ G and because of (3.1) and (3.4) and
the assumption on τ , we must have the following: cg(t) ≥ 1

t

∫ t

0
g(y)dy >

1
t

∫ t

0
g1(y)dy = τ · g1(t) > cg1(t) thus g(t) > g1(t) for every t ∈ Iν . This is

impossible in view of (3.8). Thus we have proved (3.5).

For the following, consult [5, page 88].

Lemma 3.2. Let ϕ1, ϕ2 : (0, 1] → R
+ be integrable functions. Then the follow-

ing are equivalent
(i)

∫ t

0
ϕ∗
1(y)dy ≤ ∫ t

0
ϕ∗
2(y)dy for every t ∈ (0, 1].

(ii)
∫ 1

0
G(ϕ1(x))dx ≤ ∫ 1

0
G(ϕ2(x))dx

for any convex, non-negative, increasing, and left continuous function G on
[0,+∞).

We consider now two cases:
(A) We have equality in (3.5) for every t ∈ (0, 1]. That is

∫ t

0
g(y)dy =∫ t

0
g1(y)dy for every t ∈ (0, 1]. This immediately gives as a consequence

that g(t) = g1(t) almost everywhere on (0, 1], and since g1 is continuous
on (0, 1], we must have that g(t) = g1(t) ∀t ∈ (0, 1] ⇒ g(t) = f

τ t−1+ 1
τ ∀t ∈

(0, 1] ⇒ 1
t

∫ t

0
g(y)dy = τg(t) ∀t ∈ (0, 1]. Then in view of (3.1), we con-

clude that c ≥ τ which is a contradiction since we have supposed the
opposite inequality.

(B) There exists a t0 ∈ (0, 1) such that
t0∫

0

g(y)dy <

t0∫

0

g1(y)dy.

Then, by continuity reasons, we have as a consequence that there exists
a δ > 0 such that

t∫

0

g(y)dy <

t∫

0

g1(y)dy, for any t ∈ (t0 − δ, t0 + δ) = Iδ. (3.9)

We define now the quantities d1, d2 by the following equations:

1
δ

t0∫

t0−δ

g1(y)dy = d1 and
1
δ

t0+δ∫

t0

g1(y)dy = d2. (3.10)
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Then by Hölder’s inequality on the interval (t0−δ, t0) for g1, we conclude that

1
δ

t0∫

t0−δ

gp
1(y)dy > dp

1, (3.11)

which is a strict inequality since g1 is strictly decreasing (therefore not con-
stant) on the interval (t0 − δ, t0). In the same way, we have

1
δ

t0+δ∫

t0

gp
1(y)dy > dp

2. (3.12)

Then since g1 is decreasing, we have that d2 < d1. We define now the following
non-increasing (as can easily be seen) function on (0, 1]:

g2(t) =

⎧⎨
⎩

g1(t), t ∈ (0, 1] \ (t0 − δ, t0 + δ),
d1, t ∈ [t0 − δ, t0),
d2, t ∈ [t0, t0 + δ].

(3.13)

By (3.9) and since g1 is decreasing, we easily see that we can choose δ > 0
small enough, so that

t∫

0

g(y)dy ≤
t∫

0

g2(y)dy, for any t ∈ (0, 1]. (3.14)

Additionally, because of (3.11) and (3.12), we must have that

1∫

0

gp
2(y)dy <

1∫

0

gp
1(y)dy = F.

Since (3.14) holds for any t ∈ (0, 1] and because of Lemma 3.2, we conclude
that

∫ 1

0
gp(y)dy ≤ ∫ 1

0
gp
2(y)dy < F by considering the function G(t) = tp. This

is obviously a contradiction according to the way that F is defined. In this
way, we derive the proof of our lemma. �

We now proceed to the

Proof of Theorem 2. Without loss of generality, we suppose that J = (0, 1).
Let p ∈ [1, c

c−1 ) and I ⊆ (0, 1) and let also ϕI = ϕ/I be the restriction of ϕ

to I. Consider now the function g : (0, |I|] → R
+, defined by g = (ϕI)∗. Then

since ϕI ∈ A1(I) with A1 constant not more than c, we must have, by using
Theorem 1, that 1

t

∫ t

0
g(y)dy ≤ cg(t) for any t ∈ (0, |I|]. Thus by Lemma 3.1,

it is easy to see that the following is true:

1
|I|

|I|∫

0

gp(y)dy ≤ 1
cp−1(c + p − pc)

( 1
|I|

|I|∫

0

g(y)dy
)p

,
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which is
1

|I|
∫

I
ϕp(x)dx ≤ 1

cp−1(c + p − pc)

( 1
|I|

∫

I
ϕ(x)dx

)p

.

The relation (1.3) is proved. �
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