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Abstract. Let d be a non-square positive integer such that the period of
the continued fraction expansion of

√
d is even. We give some relations

between some properties of partial quotients of the continued fraction
expansion of

√
d, which emerge from numerical experiments.
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1. Introduction and main theorem. Throughout this paper, let d be a non-
square positive integer so that the minimal period � := �(d) = 2L of the
continued fraction expansion√

d = [a0, a1, . . . , an, . . . ] = [a0, a1, . . . , aL−1, aL, aL−1, . . . , a1, 2a0]

is even and greater than 2. We call the sequence a1, . . . , aL−1, aL the primary
symmetric part of the continued fraction expansion of

√
d. It is known that

the partial quotients an (1 ≤ n ≤ L) satisfy

an <
2
3
a0 (1 ≤ n ≤ L − 1) (1.1)

and

aL ≤ 2
3
a0 or aL ∈ {a0, a0 − 1}

(see, for example, Perron [9, Satz 3.14]). Define ω0 :=
√

d and ωn+1 :=
(ωn − [ωn])−1 for n ≥ 0; then an = [ωn], where [ ] denotes the greatest
integer function. Moreover, we can uniquely write ωn = (Pn +

√
d)/Qn with
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positive integers Pn, Qn for each n ≥ 1. Put Δ := 4d; then Δ is a quadratic
discriminant. Define

QΔ := {Q1, . . . , QL}. (1.2)

As we will state in Section 2, QΔ is the set which appears in a criterion for
a real quadratic field Q(

√
Δ) to have class number one (cf. Louboutin [7]).

Furthermore, from the partial quotients an (n ≥ 0), we define non-negative
integers pn, qn, rn by

⎧
⎪⎨

⎪⎩

p0 = 1, p1 = a0, pn = an−1pn−1 + pn−2 (n ≥ 2),
q0 = 0, q1 = 1, qn = an−1qn−1 + qn−2 (n ≥ 2),
r0 = 1, r1 = 0, rn = an−1rn−1 + rn−2 (n ≥ 2).

There are some relations between them and Qn (cf. Lemma 2.1).
In the case where both of the conditions (c) and (d) below hold, it must

hold that d ≡ 2, 3 (mod 4) ([3, Theorem 2 (2)]). Thus, for any even positive
integer �, we consider the positive integer d′

� which is defined by

d′
� := min{d > 0 | �(d) = �, d ≡ 2, 3 (mod 4)}.

We have stated in our previous paper [3] that for any even integer � in the
range 8 ≤ � ≤ 73478, the following four conditions hold for d = d′

� without
exception:
(a) d is square-free.
(b) The class number of Q(

√
d) is equal to 1.

(c) d is a positive integer with period � of minimal type for
√

d.
(d) The primary symmetric part of the continued fraction expansion of

√
d

is of ELE type.
Here, let us state the definitions of “minimal type” and “ELE type” in our

situation.
For brevity, we put

A := q�, B := q�−1, C := r�−1,

and define

g(x) = Ax − (−1)�BC, h(x) = Bx − (−1)�C2, f(x) = g(x)2 + 4h(x).

Moreover, let s0 be the least integer for which g(s0) > 0. Then d can be written
uniquely as d = f(s)/4 with some integer s ≥ s0 ([4, Theorem 3.1]).

Definition 1.1 ([4, Definition 3.1]). Under the above setting, if s = s0, that is,
d = f(s0)/4 holds, then we say that d is a positive integer with period � of
minimal type for

√
d.

By using qL−1, qL, qL+1 and rL−1, rL, rL+1, define integers u1, u2, w, v1,
v2, z, δ by

(r2
L − (−1)L)(rL+1 + rL−1) = qLv1 + u1 (0 ≤ u1 < qL),

(−1)L(rL − qL−1)rL = qLz + w (0 ≤ w < qL),



Vol. 114 (2020) On some properties of partial quotients 651

(−1)L(qL − rL+1) + z = qLv2 + u2 (0 ≤ u2 < qL),

δ =

{
0 if u1 ≤ u2,

1 if u1 > u2,

and put

γ := qL(δqL + u2 − u1) + w,

μ :=
1
qL

{γ(qL+1 + qL−1) + 2(qL−1 − rL)}.

Definition 1.2 ([3, Definition 1.1]). Under the above setting, if either “aL ≥ 2
and μ = aL” or “aL ≥ 4 and μ = aL + 2” holds, we say that the primary
symmetric part a1, a2, . . . , aL of the continued fraction expansion of

√
d is of

ELE type.

In [3, Theorem 1], we proved theoretically that for a non-square positive
integer d, if �(d) is even and greater than 4, we have

(c) and (d) ⇐⇒ QL = 2 ⇐⇒ aL ∈ {a0, a0 − 1} (1.3)

except for d = 19 (= d′
6).

Remark 1.1. For the exceptional case d = d′
6 = 19, we have QL = 2, aL = a0−

1, and the conditions (a), (b), and (c) hold, but not (d) (cf. [3, Remark 1.1]).

From more numerical experiments, the authors have verified that all of the
above four conditions (a)–(d) hold for d = d′

� for any even � in the range
8 ≤ � ≤ 83552 without exception, and all of the following four conditions (e)–
(h) hold for d = d′

� for any even � = 2L in the range 6 ≤ � ≤ 83552 except for
� = 14:
(e) d ≡ 1 (mod 3).
(f) max{a1, . . . , aL−1} is equal to the largest integer less than 2a0/3.
(g) There is only one index k (1 ≤ k ≤ L − 1) such that ak =

max{a1, . . . , aL−1}.
(h) 3 ∈ {Q1, . . . , QL−1} (⊂ Q4d = QΔ).

Remark 1.2. To create the database necessary for our numerical experiment,
we needed to calculate about 10 years using PARI/GP on a workstation
equipped with Intel Xeon (R) X5550 dual processor. We think that if mul-
tiple devices equipped with recent processors are used, the database could be
created in shorter time. We have performed this verification using the created
database and Math::Pari the library of Perl. If the database is prepared on a
solid-state drive, the verification time takes about 10 hours or less.

The aim of this paper is to prove the following theorem which gives some
relations between the above conditions:

Theorem 1. Under the above setting, assume that the minimal period � = �(d)
is greater than 4.
(1) The conditions (f) and (h) are equivalent.
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(2) Suppose that both of the conditions (c) and (d) hold. If either the condi-
tions (f) or (h) holds, then (g) holds.

(3) Assume that d ≡ 2, 3 (mod 4) and both of the conditions (a) and (b)
hold. Then (c) and (d) hold except for the case d = 19. Moreover, the
conditions (e) and (h) are equivalent.

Remark 1.3. For the exceptional case � = 14, we have d′
14 = 134 ≡ 2 (mod 3).

Put Δ := 4 · 134. Then L = 7, 2a0/3 = 7 + (1/3), 〈a1, . . . , aL−1〉 =
〈1, 1, 2, 1, 3, 1〉, QΔ = {13, 10, 7, 14, 5, 17, 2}, and none of the conditions (e),
(f), and (h) holds. Moreover, we can verify that the conditions (c), (d), and
(g) hold, so this is a counter-example to the converse of Theorem 1 (2).

2. Preliminaries. First we review a part of the works of Perron [9] and Halter-
Koch [2].

Lemma 2.1. Under the above setting, the following holds:
(1) Pn + Pn+1 = anQn (n ≥ 0) ([9, §20, (10), p.69], [2, Theorem 2.2.6.1.b]).
(2) QnQn+1 = d−P 2

n+1 (n ≥ 0) ([9, §20, (11), p.69], [2, Theorem 2.2.6.1.c]).
(3) Suppose that 1 ≤ n ≤ � − 1. Then Pn+1 = Pn if and only if � = 2n ([9,

§25, Satz 3.11, p.82], [2, Theorem 2.3.5.6]).
(4) Qn ≥ 3 (1 ≤ n ≤ L − 1) ([9, §25, Satz 3.13, p.84]).
(5) anQn ≤ 2a0 (1 ≤ n ≤ � − 1) ([9, §25, (8), p.85], [4, Lemma 2.2]).
(6) (−1)nQn = p2

n − dq2
n (n ≥ 0) ([9, §27, (2), p.92], [2, Theorem 2.3.5.1.e]).

(7) q� = qL(qL+1 + qL−1) ([5, (3.2)], [2, Theorem 2.3.5.6.b]).
(8) pL = QL(qL+1 + qL−1)/2 ([5, (3.5)], [2, Theorem 2.3.5.6.a]).

Now, let us prove the following proposition.

Proposition 2.1. Under the above setting, let c be the largest integer less than
2a0/3 and assume d �= 14. For 1 ≤ k ≤ L − 1, Qk = 3 if and only if c = ak =
max{a1, . . . , aL−1}.
Proof. We note that

a0 <
√

d < a0 + 1; ak < ωk < ak + 1.

Assume that Qk = 3 for some k, 1 ≤ k ≤ L − 1. Since ωk = (Pk +
√

d)/Qk

is reduced ([2, Theorems 2.3.5, 2.2.2.2]) and Qk = 3, we have

−1 <
Pk − √

d

3
and

√
d − 3 < Pk. Since a0 <

√
d, we have a0 − 3 < Pk and

a0 − 2 ≤ Pk. (2.1)

Hence,

2a0 − 2 < a0 − 2 +
√

d ≤ Pk +
√

d = 3ωk < 3(ak + 1)

and 2a0 − 1 ≤ 3(ak + 1). Hence,
2
3
a0 ≤ ak +

4
3
. (2.2)
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On the other hand, inequality (1.1) leads to

ak <
2
3
a0. (2.3)

By (2.2) and (2.3), therefore, we obtain

ak <
2
3
a0 ≤ ak +

4
3

and
2a0 = 3ak + δ (2.4)

for some δ ∈ {1, 2, 3, 4}. If δ �= 4, then ak < 2a0/3 ≤ ak + 1 and c = ak. Then
by (1.1), we get

ak = max{a1, . . . , aL−1}.

Now, we prove δ �= 4.
In the case 2 � ak, we easily see δ �= 4 by taking (2.4) modulo 2.
Next, let us create a contradiction by assuming that 2 | ak and δ = 4.

Putting ak = 2t with some t ∈ N, we have

a0 = 3t + 2

by (2.4). Then by a0 <
√

d, ωk < ak + 1, and Qk = 3, we have

Pk + 3t + 2
3

=
Pk + a0

3
<

Pk +
√

d

3
= ωk < ak + 1 = 2t + 1

and Pk < 3t + 1. Hence,
Pk ≤ 3t. (2.5)

On the other hand, it follows from (2.1) that

3t ≤ Pk. (2.6)

By (2.5) and (2.6), we get Pk = 3t. Thus, we see from Lemma 2.1 (1) that

Pk+1 = akQk − Pk = 2t · 3 − 3t = 3t = Pk.

Then by Lemma 2.1 (3), we get k = L, which is a contradiction.
Conversely, we assume c = ak, where ak := max{a1, . . . , aL−1}. Then the

inequalities ak < 2a0/3 ≤ ak + 1 hold. Hence, by Lemma 2.1 (5), we have

ak + 1 ≥ 2
3
a0 ≥ akQk

3
. (2.7)

Now we suppose that Qk ≥ 4. Then (2.7) implies that 3 ≥ ak and

[
√

d] = a0 ≤ 3
2
(ak + 1) ≤ 3

2
(3 + 1) = 6.

Thus we obtain d < 72. Therefore, if d ≥ 72 = 49, then Qk ≤ 3, and Qk = 3
by Lemma 2.1 (4). Finally, there are only 16 positive integers d < 49 such that
the minimal period � = �(d) is even and greater than 2. In each case, �, a0, c,
〈a1, . . . , aL−1〉, and Qn (1 ≤ n ≤ L − 1) are as follows:
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d � a0 c 〈a1, . . . , aL−1〉 Q1 Q2 Q3 Q4 Q5

7 4 2 1 〈1〉 3
14 4 3 1 〈1〉 5
19 6 4 2 〈2, 1〉 3 5
21 6 4 2 〈1, 1〉 5 4
22 6 4 2 〈1, 2〉 6 3
23 4 4 2 〈1〉 7
28 4 5 3 〈3〉 3
31 8 5 3 〈1, 1, 3〉 6 5 3
32 4 5 3 〈1〉 7
33 4 5 3 〈1〉 8
34 4 5 3 〈1〉 9
43 10 6 3 〈1, 1, 3, 1〉 7 6 3 9
44 8 6 3 〈1, 1, 1〉 8 5 7
45 6 6 3 〈1, 2〉 9 4
46 12 6 3 〈1, 3, 1, 1, 2〉 10 3 7 6 5
47 4 6 3 〈1〉 11

From this, we see that c = ak if and only if d = 7, 14, 19, 22, 28, 31, 43, 46,
where k = 1, 1, 1, 2, 1, 3, 3, 2, respectively. We easily verify that Qk = 3 except
for d = 14. This completes the proof. �

Next we review the fundamental properties of orders of real quadratic fields
(cf. [2]). Let ΔK be the discriminant of the real quadratic field K := Q(

√
Δ).

Then there is a unique positive integer fΔ such that Δ = ΔKf2
Δ ([2, Theorem

1.1.6.2]). We call fΔ the conductor of Δ. Moreover, we define the quadratic
order OΔ with discriminant Δ by

OΔ := Z + Z

√
Δ
2

= Z + Z
√

d.

Here we note that Δ = 4d in our situation.
For the generators of the unit group O×

Δ, the following holds:

Proposition 2.2 ([2, Theorems 2.2.9.2, 2.3.5.4, 5.2.1.2]). Let Δ, ωn, pn, qn (n ≥
0) be as above, and put

εΔ :=
�∏

n=1

ωn (> 1).

Then we have O×
Δ = 〈−1, εΔ〉 and εk

Δ = pk� + qk�

√
d for any k ≥ 0.

For a non-zero ideal a of OΔ, we denote the absolute norm of a by

NΔ(a) := (OΔ : a).

Regarding the ideal decomposition, let us introduce the following three
propositions.



Vol. 114 (2020) On some properties of partial quotients 655

Proposition 2.3 ([2, Theorem 5.8.1]). Let a be a non-zero ideal of OΔ with
(NΔ(a), fΔ) = 1. Then a can be written as a product of prime ideals of OΔ in
a unique way.

Proposition 2.4 ([2, Theorem 5.8.8]). For a quadratic discriminant Δ > 0 and
a prime p, define the Kronecker symbol χΔ using the Legendre symbol by

χΔ(p) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
Δ
p

)

if p � Δ and p �= 2,

(−1)(Δ
2−1)/8 if p � Δ and p = 2,

0 if p | Δ.

(1) If χΔ(p) = 1, then there are only two prime ideals p and p′ of OΔ con-
taining p, which satisfy pOΔ = pp′, p �= p′, and NΔ(p) = NΔ(p′) = p.

(2) If χΔ(p) = −1, then pOΔ is the only prime ideal of OΔ containing p.
(3) If χΔ(p) = 0, then there is a unique prime ideal p of OΔ containing p.

Moreover, if p � fΔ, then we have pOΔ = p2 and NΔ(p) = p.

Remark 2.1. For any prime p, the value of χΔ(p) coincides with the one of the
quadratic symbol QΔ(p), as in [2, Theorem 5.8.8].

Proposition 2.5 ([2, Theorem 2.3.5.3]). Let pn, qn (n ≥ 0) be as above. Then
we have

pn+k� − qn+k�

√
d = (pn − qn

√
d)(p� − q�

√
d)k

for any n ≥ 1, k ≥ 0.

Now, we can prove the following proposition.

Proposition 2.6 Let the notation be as above. For 1 ≤ n ≤ L − 1, assume that
Qn is a prime greater than QL. Then we have Qn1 �= Qn for any n1 �= n, 1 ≤
n1 ≤ L − 1.

Proof. For brevity, we put p := Qn. By Lemma 2.1 (4), we note that p ≥ 3.
Suppose that p | fΔ. Then we have p2 | ΔKf2

Δ = Δ = 4d, and hence p2 | d.
By Lemma 2.1 (6), we obtain the congruence

(−1)np = (−1)nQn = p2
n − dq2

n ≡ p2
n (mod p2),

which is impossible. Thus we get p � fΔ. Since NΔ(pOΔ) = p2 is coprime to
fΔ, it follows from Proposition 2.3 that pOΔ can be written as a product of
prime ideals of OΔ in a unique way.

Let n1 �= n, 1 ≤ n1 ≤ L−1. Without loss of generality, we can assume that
n1 < n. Now we will create a contradiction by assuming that Qn1 = Qn.
(I) The case where p � Δ = 4d. Noting that Qn = p �= 2, we have d ≡

P 2
n+1 (mod p) by Lemma 2.1 (2) and

χΔ(p) =
(

4d

p

)

=
(

d

p

)

= 1.

Hence by Proposition 2.4, we have the decomposition

pOΔ = pp′, p �= p′, NΔ(p) = NΔ(p′) = p.
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On the one hand, by putting α := pn + qn

√
d and α′ := pn − qn

√
d,

it follows from Lemma 2.1 (6) that (−1)np = αα′, and so pOΔ =
(αOΔ)(α′OΔ). Now we let p = αOΔ. Then p′ = α′OΔ. On the other
hand, by putting β := pn1 + qn1

√
d and β′ := pn1 − qn1

√
d, we

get (−1)n1p = (−1)n1Qn1 = ββ′ similarly. Then we obtain pOΔ =
(βOΔ)(β′OΔ). By the uniqueness of the decomposition into prime ideals,
we have βOΔ = p (= αOΔ) or β′OΔ = p. Thus, there is η ∈ O×

Δ such
that

pn1 ± qn1

√
d = (pn + qn

√
d)η.

By Proposition 2.2, we can express η = ±εk
Δ for some integer k.

(I-A) Assume that k ≥ 0. Then by Propositions 2.2 and 2.5, we have

pn1 ± qn1

√
d = ±(pn + qn

√
d)(p� + q�

√
d)k = ±(pn+k� + qn+k�

√
d),

and hence, pn1 = ±pn+k�. Since pn1 > 0 and pn+k� > 0, it must hold
that pn1 = pn+k�. Since the sequence {pn}n≥1 is strictly monotonically
increasing, we have n1 = n + k�. Then by n1 ≤ L − 1 < 2L = �, we get
k = 0, and hence, n1 = n. This is a contradiction.

(I-B) Next, we consider the case k < 0. Then by (I-A), we have

(pn1 ± qn1

√
d)ε−k

Δ = ±(pn + qn

√
d), −k > 0.

Assume that the sign on the left hand side is +. By a similar argument
as in (I-A), we have

pn1+(−k)� + qn1+(−k)�

√
d = ±(pn + qn

√
d),

and hence, pn1+(−k)� = ±pn. Thus we get pn1+(−k)� = pn. Since the
sequence {pn}n≥1 is strictly monotonically increasing, we obtain n =
n1 + (−k)� ≥ n1 + � > �, which is a contradiction. Therefore, the sign
on the left hand side must be − and we have

(pn1 − qn1

√
d)ε−k

Δ = ±(pn + qn

√
d).

Multiplying both sides by pn1 + qn1

√
d, we obtain

(−1)n1pε−k
Δ = ±(pn + qn

√
d)(pn1 + qn1

√
d).

Then by Proposition 2.2, we obtain

(−1)n1p(p−k� + q−k�

√
d) = ±{(pnpn1 + dqnqn1) + (pnqn1 +pn1qn)

√
d)}.

Hence, (−1)n1 = ±1 and

p · q−k� = pnqn1 + pn1qn.

From the assumption n1 < n, we have

p · q� ≤ p · q−k� < pnqn + pnqn = 2pnqn. (2.8)

On the other hand, by using (7), (8) of Lemma 2.1 and the assumption
p > QL, we have

2pLqL = QL(qL+1 + qL−1)qL = QLq� < p · q�. (2.9)

By (2.8) and (2.9), we have pLqL < pnqn, which contradicts L > n.
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(II) The case where p | Δ. Since χΔ(p) = 0 and p � fΔ, we have the
decomposition

pOΔ = p2, NΔ(p) = p

by Proposition 2.4. By putting α := pn + qn

√
d and α′ := pn − qn

√
d,

it follows from Lemma 2.1 (6) that (−1)np = αα′, and so pOΔ =
(αOΔ)(α′OΔ). We let p = αOΔ. Then by the uniqueness of the decom-
position into prime ideals, we have α′OΔ = p′ = p. On the other
hand, by putting β := pn1 + qn1

√
d and β′ := pn1 − qn1

√
d, we get

pOΔ = (βOΔ)(β′OΔ) similarly. Hence, also by the uniqueness of the
decomposition into prime ideals, we have

βOΔ = p = p′ = αOΔ.

Thus, there exist some η ∈ O×
Δ and k ∈ Z such that

pn1 + qn1

√
d = (pn + qn

√
d)η, η = ±εk

Δ.

By the same argument as in (I-A) and the first half of (I-B), we get
respectively n1 = n and n > �, which is a contradiction. The proof is
now completed. �

In the final part of this section, we introduce a result of Louboutin. Let hΔ

denote the class number of the real quadratic order OΔ with discriminant Δ
(cf. [2, Theorem 5.5.8]).

Theorem 2 ([7, Theorem 3]). Under the above setting, assume that d is a
square-free positive integer with d ≡ 2, 3 (mod 4) and put K := Q(

√
Δ).

Then we have fΔ = 1,Δ = ΔK , and hΔ coincides with the class number of
K. Furthermore, define the set SΔ by

SΔ := {p | p is a prime, χΔ(p) �= −1, p <
√

Δ/2}.

Then we have

hΔ = 1 ⇐⇒ SΔ ⊂ QΔ,

where QΔ is defined as in (1.2).

3. Proof of Theorem 1.

Proof of (1) of Theorem 1. The assertion is given by Proposition 2.1 immedi-
ately. �

Proof of (2) of Theorem 1. Assume that both of (c) and (d), and at least one
of (f) and (h) hold. Since �(d) ≥ 6, we have d �= 14 (cf. the proof of Proposi-
tion 2.1). Then by Proposition 2.1, there exists some k, 1 ≤ k ≤ L − 1, such
that

ak = max{a1, . . . , aL−1} and Qk = 3.

On the other hand, it follows from (1.3) that QL = 2. Since 3 is a prime
number and 3 > 2 = QL, the uniqueness of k follows from Proposition 2.6.
Thus the condition (g) holds. �
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Proof of (3) of Theorem 1. Assume that d ≡ 2, 3 (mod 4) and both of the
conditions (a) and (b) hold. From assumptions (a) and (b) and genus theory, d
is of the form d = q, 2q, q1q2, p, or 2, where q, qi ≡ 3 (mod 4) and p ≡ 1 (mod 4)
are primes (cf. [2, Theorem 5.6.13.4]). Since d ≡ 2, 3 (mod 4) and �(d) > 1,
d must be of the form d = q, 2q. Golubeva [1, Proof of Corollary 2] (resp.
Kubo [6, Theorem A], Louboutin [8, Lemma 3]) proved that if d = q (resp.
d = 2q), then QL = 2 holds. Hence by (1.3), if d �= 19, then both of the
conditions (c) and (d) hold. Moreover, we note that 3 � d, so 3 � Δ since we
have d ≥ 19 as � ≥ 6 (cf. the proof of Proposition 2.1) and d is of the form
d = q, 2q.

Next, we assume that the condition (e) holds. Then by 3 � Δ, we have

χΔ(3) =
(

Δ
3

)

=
(

d

3

)

= 1 �= −1.

Moreover, we have 3 <
√

d =
√

Δ/2. Hence 3 ∈ SΔ. The assumptions (a) and
(b) imply, by Theorem 2, that SΔ ⊂ QΔ. Therefore, we get 3 ∈ QΔ. Since
QL = 2, we have 3 ∈ {Q1, . . . , QL−1}, that is, the condition (h) holds.

Conversely, we assume that the condition (h) holds. By Lemma 2.1 (2), we
have d ≡ P 2

k+1 (mod 3) for some k, 1 ≤ k ≤ L − 1. From this together with
3 � d, we easily see that the condition (e) holds. �

4. Remarks and examples. We give an example showing that the indices of
max{a1, . . . , aL−1} and min{Q1, . . . , QL−1} do not always coincide with each
other in the case where the condition (f) does not hold. Let d = 858854366 ≡
2 (mod 4). Then we have
√
858854366 = [29306, 4, 1, 1, 1, 1, 8, 1, 3, 1, 4, 9, 29306, 9, 4, 1, 3, 1, 8, 1, 1, 1, 1, 4, 58612]

and Qn (1 ≤ n ≤ 11) are as follows:

n 1 2 3 4 5 6 7 8 9 10 11

Qn 12730 30769 25189 23890 33367 6235 42503 12470 39077 11945 6365

From these, we see that a11 = max{a1, . . . , aL−1}, Q6 = min{Q1, . . . ,
QL−1}, and (f) does not hold. We can also verify that both of the conditions
(c) and (d) hold.

Example 4.1. For each even �, 6 ≤ � ≤ 83552 except for � = 14, as we
have stated in Section 1, max{a1, . . . , aL−1} is equal to the largest integer
less than 2a0/3 for d = d′

�. In Table 1, we list the minimal element d′
� with

period �, the largest integer c less than 2a0/3, and a part of the partial quo-
tients 〈a1, . . . , aL−1〉 of the continued fraction expansion of

√
d′

� for each even
integer � with 6 ≤ � ≤ 32. We can observe that the maximal elements in
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Table 1. A part of the partial quotients of the continued
fraction expansion of

√
d′

�

� d′
� c 〈a1, . . . , aL−1〉

6 19 2 〈2, 1〉
8 31 3 〈1, 1, 3〉
10 43 3 〈1, 1, 3, 1〉
12 46 3 〈1, 3, 1, 1, 2〉
14 134 7 〈1, 1, 2, 1, 3, 1〉
16 94 5 〈1, 2, 3, 1, 1, 5, 1〉
18 139 7 〈1, 3, 1, 3, 7, 1, 1, 2〉
20 151 7 〈3, 2, 7, 1, 3, 4, 1, 1, 1〉
22 166 7 〈1, 7, 1, 1, 1, 2, 4, 1, 3, 2〉
24 271 10 〈2, 6, 10, 1, 4, 1, 1, 2, 1, 2, 1〉
26 211 9 〈1, 1, 9, 5, 1, 2, 2, 1, 1, 4, 3, 1〉
28 334 11 〈3, 1, 1, 1, 2, 5, 1, 2, 2, 11, 1, 3, 7〉
30 379 12 〈2, 7, 3, 2, 2, 6, 12, 1, 4, 1, 1, 1, 3, 4〉
32 463 13 〈1, 1, 13, 1, 5, 4, 1, 1, 1, 1, 2, 2, 6, 1, 3〉

{a1, . . . , aL−1}, which are underlined in the table, coincide with c except for
� = 14.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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