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Abstract. In this note we classify rationally elliptic simply connected com-
pact toric orbifolds up to algebraic isomorphism.
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1. Introduction. In rational homotopy theory it is shown that there are two
types of simply connected spaces with finite dimensional rational cohomology:
rationally elliptic and rationally hyperbolic spaces. For rationally elliptic spaces
X the total dimension

∑
i≥2 dim πi(X) ⊗ Q of the rational homotopy groups

is finite, whereas for rationally hyperbolic spaces the sum
∑k

i=2 dim πi(X)⊗Q

grows exponentially (see for example [12]).
A toric variety X of complex dimension n is a normal complex algebraic

variety with an action of a complex torus (C∗)n having an open dense orbit.
If X is compact and smooth, we call it a toric manifold.

In the recent paper [1] rationally elliptic toric manifolds in complex dimen-
sion at most three were classified up to algebraic isomorphism. In toric topology
generalizations of toric varieties such as torus manifolds and torus orbifolds
are studied. A classification of rationally elliptic torus orbifolds up to ratio-
nal homotopy equivalence has been given in [14]. The aim of this note is to
explain how the methods of the latter paper lead to a classification result (up
to algebraic isomorphism) for rationally elliptic toric manifolds and orbifolds
in all dimensions. Our main result is as follows.

Theorem 1.1. Let X be a compact simply connected toric orbifold of complex
dimension n ≥ 1 which is rationally elliptic. Then there is an algebraic iso-
morphism X → X ′ where X ′ is a quotient of an almost free action of an
Abelian complex algebraic group G on Y =

∏
i(C

ni+1 −{0}) for certain ni > 0
(depending on X) with

∑
i ni = n.
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In case that X is a toric manifold, G is a complex torus acting freely on Y .
Therefore it follows that X ′ is a so-called generalized Bott manifold.

Generalized Bott manifolds are certain projective toric manifolds [3, pp.
300-302]. They can be constructed as total spaces of towers of fiber bundles

X = Xn → Xn−1 → · · · → X1 → X0 = {pt},

where each Xi is the projectivization of a Whitney sum of complex line bundles
over Xi−1. Generalized Bott manifolds have been studied intensively by the
Japanese–Korean school of toric topologists (see for example [4,6–8,10,16,19]).

We note that all generalized Bott manifolds are rationally elliptic so that
the above theorem gives a complete classification for rationally elliptic toric
manifolds.

The proof of this result combines the quotient construction of toric varieties
due to Cox [9] with a recent result on the combinatorics of orbit spaces of ratio-
nally elliptic torus orbifolds given in [14]. Note that in the manifold case the
arguments of [14] also hold for torus manifolds with invariant metrics of non-
negative sectional curvature (see [21]). Therefore Theorem 1.1 also holds for
toric manifolds admitting a non-negatively curved Riemannian metric which
is invariant under the action of the maximal compact torus in (C∗)n.

This note has three more sections. In the next Section 2 we recall the con-
struction of toric varieties as quotient spaces. Then in Section 3 we recall the
classification of rationally elliptic torus manifolds and orbifolds up to home-
omorphism and rational homotopy equivalence given in [21] and [14]. In the
last Section 4 we prove Theorem 1.1.

2. The quotient construction of toric varieties. In this section we recall the
basic notions of toric geometry and describe the quotient construction of toric
varieties.

For an introduction to toric geometry we refer the reader to [5,13], and
[18].

A toric variety X of complex dimension n is a normal complex algebraic
variety with an action of a complex torus (C∗)n having an open dense orbit.
If X is compact and smooth, we call it a toric manifold.

The equivariant isomorphism types of these varieties are in one-to-one cor-
respondence with combinatorial objects called fans (see for example [5, Section
3.1]). A fan F is a finite collection of convex polyhedral cones in Rn such that
all faces of a cone C ∈ F are again in F and the intersection of any two cones
C1, C2 ∈ F is a face of each C1 and C2.

If X is a toric variety and FX the fan corresponding to X, then, by [5,
Theorem 3.2.6], there is a bijection O �→ CO between the set of (C∗)n-orbits
in X and the set of cones in FX such that
(1) codimCO = dimR CO for all orbits O ⊂ X,
(2) if O1 and O2 are orbits in X, then O1 is contained in the closure of O2 if

and only if CO2 is a face of CO1 .
A k-dimensional cone C is called simplicial if it is spanned by k linearly

independent vectors v1, . . . , vk ∈ Rn. In case that the simplicial cone C belongs
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to a fan F , the rays spanned by the vi also belong to F . A toric variety X
is an orbifold if and only if its corresponding fan FX is simplicial, i.e. all its
cones are simplicial. X is compact if and only if the union of all cones in FX

is Rn [5, Theorem 3.1.19].
From a simplicial fan FX we can construct an abstract simplicial complex

ΣX as follows. Let I be the set of rays of FX . A subset σ = {i1, . . . , ik} ⊂ I is
a simplex of ΣX if and only if the rays i1, . . . , ik span a k-dimensional cone in
FX . Note that there is a natural one-to-one correspondence between the cones
of FX of positive dimension and the simplices of ΣX .

Let T = (S1)n ⊂ (C∗)n be the maximal compact torus. In case that X is a
compact toric orbifold, the above simplicial complex can also be described in
terms of the stratification of X/T by the identity components of the isotropy
groups of the T -action on X.

This goes as follows. For a closed connected subgroup H ⊂ T let SH be
the set of orbits Tx ∈ X/T of types T/Tx such that the identity component
of Tx is equal to H. We call the connected components of SH the open H-
strata of X/T . The closed H-strata are the closures of the open H-strata. The
codimension of an (closed or open) H-stratum is the dimension of H.

Since X is compact and the T -action has only finitely many orbit types,
the set P(X/T ) of all closed strata of positive codimension is finite. Moreover,
it is partially ordered by inclusion. Therefore P(X/T ) is a poset, the so-called
face poset of X/T .

It is easy to see that the open codimension-k strata of X/T are given by
the subsets O/T ⊂ X/T , where O runs through the (C∗)n-orbits of (complex)
codimension k in X. Therefore P(X/T ) is dual to the simplicial complex ΣX in
the following sense: There is an order reversing bijection ΣX → P(X/T ) such
that the (k − 1)-dimensional simplices of ΣX correspond to the codimension-k
strata of X/T . Here the simplicial complex ΣX is also partially ordered by
inclusion of simplices.

In particular, the intersection S1∩S2 of any two closed strata S1, S2 of X/T
is connected or empty. This follows from the fact that S1 ∩ S2 is the disjoint
union of those closed strata which are maximal among those strata which are
contained in both S1 and S2. Note here that for any two simplices σ1 and σ2

in ΣX there is at most one minimal simplex which contains both σ1 and σ2.
If such a simplex exists in ΣX , then it is given by σ1 ∪ σ2.

Cox [9] (see also [5, Chapter 5]) gave a description of X as a quotient of an
almost free action by an Abelian complex algebraic group G on an open dense
subset Y (ΣX) of CI .

The set Y (ΣX) can be defined as follows. For z ∈ CI let I(z) = {i ∈
I; z(i) = 0}. We then define

Y (ΣX) = {z ∈ CI ; I(z) ∈ ΣX ∪ {∅}}.
With this notation Cox’s description of a toric orbifold as a quotient can

be stated as follows.

Theorem 2.1. Let X be a toric orbifold. Then X is algebraically isomorphic
to a quotient of an almost free action of an Abelian complex algebraic group
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G on Y (ΣX). Moreover, in case X is a toric manifold, G is a complex torus
which acts freely on Y (ΣX).

We close this section by giving two examples of sets Y (ΣX) for special
choices of compact toric orbifolds X.

Example 2.2. Let X be a compact toric orbifold. If ΣX is dual to the face
poset of an n-dimensional simplex Δn, then Y (ΣX) = Cn+1 − {0}. This is for
example the case if X = CPn.

Example 2.3. Let X1,X2,X3 be compact toric orbifolds of complex dimensions
n1, n2, n3, respectively, such that n1 = n2 + n3. We equip X2 × X3 with the
natural product action by (C∗)n1 = (C∗)n2 ×(C∗)n3 . With this action X2×X3

becomes a compact toric orbifold of complex dimension n1 = n2 + n3.
If P(X1/Tn1) is isomorphic to P((X2 × X3)/Tn1), then Y (ΣX1) ∼=

Y (ΣX2) × Y (ΣX3). Note also that (X2 × X3)/Tn1 is strata preserving homeo-
morphic to (X2/Tn2) × (X3/Tn3).

3. Rationally elliptic torus manifolds revisited. In this section we recall the
definition of torus manifolds and orbifolds and classification results for simply
connected rationally elliptic torus manifolds and orbifolds. Torus manifolds
and orbifolds are studied in toric topology. Toric topology has its origin in
the paper [11]. We refer the reader to [2] and [3] for an overview over the
development of the subject since then.

A torus manifold M is a closed, connected, orientable manifold of (real)
dimension 2n equipped with an effective action of an n-dimensional compact
torus T = (S1)n such that the fixed point set MT is non-empty. Torus orbifolds
are natural generalizations of torus manifolds. One gets their definition if one
replaces the word “manifold” by the word “orbifold” in the above definition
of a torus manifold.

Note that toric manifolds (and compact toric orbifolds) equipped with the
action of the maximal compact torus T = (S1)n ⊂ (C∗)n are torus manifolds
(and torus orbifolds, respectively). Note, moreover, that the definition of the
face poset of the orbit space of a compact toric orbifold carries over without
changes to the situation of a torus orbifold. However, in this case it is no longer
true that the face poset is always dual to a simplicial complex.

A torus manifold M is called locally standard if the T -action on M is
locally modeled on effective T -representations on Cn. In this case the orbit
space M/T is naturally a nice manifold with corners and all isotropy groups
are connected.

Here a manifold with corners is called nice if all its codimension-k faces are
contained in exactly k codimension-one faces. In this case each codimension-k
face is a component of the intersection of exactly k codimension–one faces (see
[17] or [20] for more details).

The stratification of M/T by orbit types coincides with the stratification of
M/T by faces. In particular, the poset P(M/T ) is the poset of faces of M/T
(viewed as a nice manifold with corners). This justifies the name face poset
for P(M/T ).
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In [21] simply connected rationally elliptic torus manifolds M with
Hodd(M ;Z) = 0 have been classified up to homeomorphism. These manifolds
are all homeomorphic to quotients of free torus actions on products of spheres.

Note that by [17] the cohomological condition implies that M is locally
standard and that the faces F of M/T are acyclic over the integers, i.e.
H̃∗(F ;Z) = 0 for all faces F of M/T .

The proof of the classification result in [21] proceeds in two steps. First
it has been shown that the homeomorphism type of a torus manifold M as
above depends only on combinatorial data, namely on the face poset P(M/T )
and the characteristic function λ, which assigns to a face of M/T the isotropy
group of a generic orbit in that face [21, Theorem 3.4].

In a second step it has been shown, by a combinatorial argument (see [21,
Proposition 4.5] and Theorem 3.1 below), that P(M/T ) is isomorphic to the
face poset of a product

∏

i<r

Σni ×
∏

i≥r

Δni ,

where Δk is a k-dimensional simplex and Σk is the suspension of Δk−1. In
particular, Δk and Σk are orbit spaces of the natural action of a maximal
torus of the orthogonal group O(2k + 2) (O(2k + 1), respectively) on spheres
of dimensions 2k + 1 and 2k, respectively.

Note that Δk has k+1 codimension-one faces and the intersection of any k′

of them is non-empty and connected for any k′ ≤ k and empty for k′ = k + 1.
Therefore Σk has exactly k codimension-one faces and the intersection of any
k′ of them is connected for k′ < k and contains exactly two isolated points if
k′ = k.

By combining the above two steps it follows that M is homeomorphic to a
locally standard torus manifold M ′ with M ′/T =

∏
i<r Σni ×∏

i≥r Δni . Since
each such M ′ is the quotient of a free torus action on a product of spheres, it
follows that M is homeomorphic to such a quotient.

In [14] this argument was generalized to simply connected rationally ellip-
tic torus manifolds M with Hodd(M ;Z) = 0 and to simply connected ratio-
nally elliptic torus orbifolds O. While the combinatorial part of the proof goes
through with modifications, the proof of the first step does not. Therefore in
[14] we only get a classification up to rational homotopy equivalence. Indeed
all such O are rationally homotopy equivalent to quotients of almost free torus
actions on products of spheres.

However, from the discussion in that paper we have the following combi-
natorial result.

Theorem 3.1. Let O2n/T be the orbit space of a simply connected rationally
elliptic torus orbifold O2n. Then P(O2n/T ) is isomorphic to the face poset of
a product

∏
i<r Σni × ∏

i≥r Δni with ni > 0 and
∑

i ni = n.

The original proof of this result, given in [21] and [14], was very long and
technical. A much simpler proof has later been given in [15, Section 8].
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4. The proof of Theorem 1.1. Now assume that X is a simply connected ratio-
nally elliptic compact toric orbifold of complex dimension n. Then X is, in par-
ticular, a 2n-dimensional torus orbifold. Therefore, by Theorem 3.1, P(X/T )
is isomorphic to the face poset of a product

∏

i<r

Σni ×
∏

i≥r

Δni ,

with ni > 0 and
∑

i ni = n.
Note that the intersection of any two one-dimensional faces in Σk, k > 1,

is disconnected. Therefore (and because Σ1 = Δ1) all factors in the above
product are of type Δk.

In other words, ΣX is dual to the face poset of a product of simplices. In
particular, by Examples 2.2 and 2.3, we have

Y (ΣX) =
∏

i

(Cni+1 − {0}).

Hence, our Theorem 1.1 follows from Theorem 2.1.
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