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1. Introduction. This paper is concerned with a characterization of the so-
lution sets of convex optimization programmings on Riemannian manifolds.
Characterizations of the solution sets of the nonlinear programming problems
with multiple solutions, provided that one minimizer is known, play an impor-
tant role in many fields, such as optimization problems, variational inequalities,
and equilibrium problems. Mangasarian [16] presented several characteriza-
tions of the solution sets for differentiable convex programs on linear spaces
and applied them to study monotone linear complementarity problems. Fur-
ther investigation has been done by Burke and Ferris [3]. In the last decade,
Mangasarian type characterizations were derived for several smooth and non-
smooth convex or generalized convex problems on linear spaces; see [12,13,23]
and references therein.

Extensions of concepts and techniques from Euclidean spaces to Riemann-
ian manifolds are natural and lead to successful tools in optimization, therefore
such topics with practical and theoretical purposes have been the subject of
several research papers. Udriste [22] and Rapscák [17] introduced the theory
of convex functions on Riemannian manifolds motivated by the fact that some
constrained optimization problems can be seen as unconstrained ones from the
Riemannian geometry point of view. In addition, another advantage is that
optimization problems with nonconvex objective functions can be written as
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convex optimization problems by endowing the space with an appropriate Rie-
mannian metric (see Example 2.1). Recently, a number of important results
have been obtained on various aspects of optimization theory and applications
on Riemannian manifolds, which introduced several important techniques and
methods for existence of solutions of optimization problems on Riemannian
manifolds; see [1,2,8,20].

The purpose of this paper is to present a simple characterization of solution
sets of convex optimization problems on Riemannian manifolds in terms of the
Riemannian gradient of the cost function. To the best of our knowledge, it has
not been given before and to formulate and prove this result on Riemannian
manifolds, we need to use several tools and techniques from Riemannian ge-
ometry. One of the applications of this characterization is for the problem of
minimizing convex quadratic functions defined on a convex subset of a sphere,
which arises in solving fixed point theorems, surjectivity theorems, existence
theorems for complementarity problems, and variational inequalities by calcu-
lating the scalar derivatives; for more details about these theorems and their
applications see [6] and references therein. In particular, some existence theo-
rems could be reduced to optimizing a quadratic function on a convex subset
of the sphere. Moreover, the minimization problems of quadratic functions
defined on the sphere occur as subproblems in methods of nonlinear program-
ming; see [18].

2. Preliminaries. In this section, we introduce some fundamental properties
and notations of Riemannian manifolds. These basic facts can be found in any
introductory book on Riemannian geometry; see for example [19]. Throughout
this paper, M is an n-dimensional Riemannian manifold with a Riemannian
metric 〈·, ·〉x on the tangent space TxM ∼= R

n for every x ∈ M . The corre-
sponding norm is denoted by ‖ · ‖. Let us recall that the length of a piecewise
C1 curve γ : [a, b] → M is defined by

L(γ) =

b∫

a

‖γ′(t)‖dt.

By minimizing the length functional over the set of all piecewise C1 curves
with γ(0) = x and γ(1) = y for x, y ∈ M , we obtain a Riemannian distance on
M denoted by d(x, y). The space of vector fields on M is denoted by X (M)
and ∇ is the Levi-Civita connection associated to M . A geodesic is a smooth
curve γ satisfying the equation ∇γ′(t)γ

′(t) = 0. The exponential mapping
exp : T̃M → M is defined as exp(v) = γ(1), where γ is the geodesic defined
by its starting point x and the velocity γ′(0) = v at x and T̃M is an open
neighborhood in TM . The restriction of exp to TxM in T̃M is denoted by
expx for every x ∈ M . For a minimizing geodesic γ : [0, l] → M connecting x
to y in M, and for a vector v ∈ TxM , there is a unique parallel vector field P
along γ such that P (0) = v, this is called the parallel translation of v along γ.
The mapping TxM 	 v 
→ P (1) ∈ TyM is a linear isometry from TxM onto
TyM . This map is denoted by P y

x .
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The Riemannian metric induces a map f 
→ grad f ∈ X (M) which asso-
ciates to each differentiable function f at x ∈ M , its gradient via the rule

〈grad f(x), v〉x = df(v) =
d

dt
f(expx(tv))|t=0, v ∈ TxM.

The Riemannian Hessian of f at a point x ∈ M is the linear mapping

Hess f(x) : TxM → TxM

defined by

Hess f(x)[v] = ∇v grad f

for every v ∈ TxM. Note that Hess f(x) satisfies

Hess f(x)(v, v) =
d2

dt2
f(expx(tv))|t=0, v ∈ TxM,

and this formula fully defines Hess f(x).
A subset S of a Riemannian manifold is called convex if any two points x,

y ∈ S can be joined by a unique minimizing geodesic (denoted by γxy) which
lies entirely in S. Note that there is little consistency in the meanings attached
to the terms “convex set” and “strongly convex set” (see page 105 in [9] and
page 2488 in [15] and references therein).

It is known that exp−1
x is well-defined on every convex set S, d(x, y) =

|| exp−1
x (y)|| for every x, y ∈ S, and

γxy(t) = expx(t exp−1
x y) for all t ∈ [0, 1];

see [11]. Let S be a nonempty convex subset of M , a function f : S → R is
said to be convex if for every x, y ∈ S and every t ∈ [0, 1],

f(γxy(t)) ≤ (1 − t)f(x) + tf(y).

The following example illustrates a nonconvex function which can be writ-
ten as a convex function on a Riemannian manifold with an appropriate metric
(see [4]).

Example 2.1. The function f : R2 → R defined by

f(x) = ex1(cosh(x2) − 1), x = (x1, x2),

is not convex. Endowing R
2 with the metric g(x) := diag(1, e2x1), we obtain a

Riemannian manifold Mg. The Hessian matrix

Hess f(x) = diag(ex1(cosh(x2) − 1), ex1 cosh(x2) + e3x1(cosh(x2) − 1)),

is positive semidefinite, therefore f is convex on Mg.
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3. Characterization of the solution sets. Our aim is to characterize the solu-
tion set of the following optimization problem

min
x∈S

f(x), (1)

where S ⊆ M is a convex subset of M and f is a twice continuously differen-
tiable convex function on some open convex set containing S. We denote the
solution set of the optimization problem (1) by

S̄ = argmin
x∈S

f(x),

and assume that S̄ 
= ∅. If x̄ ∈ S̄, then

S̄ = {x ∈ S : f(x) = f(x̄)},

and S̄ is a convex subset of S. The following theorem is a generalization of [7,
Proposition 15] from the sphere Sn to a general setting which describes the
relation between the solution sets of (1) and a variational inequality.

Theorem 3.1. Let S ⊆ M be a convex subset of M and f be a twice contin-
uously differentiable convex function on some open convex set containing S.
Then x̄ ∈ S̄ if and only if

〈grad f(x̄), exp−1
x̄ y〉x̄ ≥ 0 for all y ∈ S. (2)

Proof. Let x̄ ∈ S̄, y ∈ S, and γx̄y be the minimal geodesic connecting x̄ and
y. By convexity of S, f(γx̄y(t)) ≥ f(x̄) for all t ∈ [0, 1]. Therefore

〈grad f(x̄), exp−1
x̄ y〉x̄ = lim

t→0

f(γx̄y(t)) − f(x̄)
t

≥ 0.

Now suppose that (2) holds. By convexity of f , we have

f(y) − f(x̄) ≥ 〈grad f(x̄), γ′
x̄y(0)〉x̄ = 〈grad f(x̄), exp−1

x̄ y〉x̄ ≥ 0 for all y ∈ S.

�

Now we present a characterization for the solution set of a convex optimization
problem on a convex subset of a Riemannian manifold which is our main result.

Theorem 3.2. Let S ⊆ M be a convex subset of M , f be a twice continuously
differentiable convex function on some open convex set containing S, and x̄ ∈
S̄. Then

S̄ = {x ∈ S : 〈grad f(x̄), exp−1
x̄ x〉x̄ = 0, P x̄

x [gradf(x)] = grad f(x̄)}. (3)

Proof. We denote the right hand side of (3) by S∗. On the contrary, we assume
that x ∈ S∗ \ S̄. By convexity of f ,

〈grad f(x), exp−1
x (x̄)〉x̄ ≤ f(x̄) − f(x) < 0.

Now, by properties of the parallel translation, we get

〈grad f(x), exp−1
x (x̄)〉x = 〈P x̄

x [gradf(x)], P x̄
x [exp−1

x x̄]〉x̄

= 〈gradf(x̄),− exp−1
x̄ x〉x̄ = 0,

which is a contradiction.
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For the converse, let x ∈ S̄ and γx̄x(t) be the minimal geodesic connecting
x̄ and x. Since S̄ is convex, this geodesic lies entirely in S̄ so f(γx̄x(t)) = f(x̄)
for all t ∈ [0, 1]. Therefore

〈grad f(x̄), exp−1
x̄ x〉x̄ = lim

t→0

f(γx̄x(t)) − f(x̄)
t

= 0.

Similarly, we have 〈grad f(x), exp−1
x x̄〉x = 0. These two equations and prop-

erties of the parallel transport imply

〈grad f(x̄) − P x̄
x [grad f(x)], exp−1

x̄ x〉x̄ = 0. (4)

Now, we define F : [0, 1] → Tx̄M as follows

F (t) = P x̄
γxx̄(t)

[grad f(γxx̄(t))].

Note that γ′
xx̄(t) = P

γxx̄(t)
x [exp−1

x x̄] and

F (t − s) = P x̄
γxx̄(t)

P
γxx̄(t)
γxx̄(t−s)[grad f(γxx̄(t − s))] for all t ∈ [0, 1],

hence

F ′(t) = − d

ds
F (t − s)|s=0

= −P x̄
γxx̄(t)

d

ds
P

γxx̄(t)
γxx̄(t−s)[grad f(γxx̄(t − s))]|s=0

= P x̄
γxx̄(t)

[Hessf(γxx̄(t))(γ′
xx̄(t))].

Since F is C1 and by the previous equality, we get

grad f(x̄) − P x̄
x [grad f(x)] = F (1) − F (0) =

1∫

0

F ′(t)dt

=

1∫

0

P x̄
γxx̄(t)

Hess f(γxx̄(t))(γ′
xx̄(t))dt

=

1∫

0

P x̄
γxx̄(t)

Hess f(γxx̄(t))(P γxx̄(t)
x̄ (exp−1

x̄ x))dt

=

⎛
⎝

1∫

0

P x̄
γxx̄(t)

Hess f(γxx̄(t)

⎞
⎠ P

γxx̄(t)
x̄ (·)dt) exp−1

x̄ x

= A exp−1
x̄ x, (5)

where
1∫

0

P x̄
γxx̄(t)

Hess f(γxx̄(t))P γxx̄(t)
x̄ (·)dt : Tx̄M → Tx̄M

is a linear map. We claim that this linear map is positive semidefinite and
therefore corresponds to a positive semidefinite matrix A. To prove the claim,
note that Hess f(γxx̄(t)) is a positive semidefinite linear map, hence
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〈w,P x̄
γxx̄(t)

[Hess f(γxx̄(t))(P γxx̄(t)
x̄ (w))]〉x̄

= 〈P γxx̄(t)
x̄ (w),Hess f(γxx̄(t))[P γxx̄(t)

x̄ (w)]〉γxx̄(t) ≥ 0

for every w ∈ Tx̄M , therefore by integration with respect to t, it implies that

〈w,Aw〉x̄ =

〈
w,

1∫

0

P x̄
γxx̄(t)

[Hess f(γxx̄(t))(P γxx̄(t)
x̄ (w))]dt

〉

x̄

≥ 0,

which proves our claim. Combining (4) and (5), we deduce that

〈grad f(x̄) − P x̄
x [gradf(x)], exp−1

x̄ x〉x̄ = 〈A exp−1
x̄ x, exp−1

x̄ x〉x̄ = 0. (6)

Since A is symmetric positive semidefinite, it follows from (6) and [10, p. 431]
that

grad f(x̄) − P x̄
x [grad f(x)] = A exp−1

x̄ x = 0,

which completes the proof. �
The following corollary is an immediate consequence of Theorem 3.2.

Corollary 3.1. Let S ⊆ M be a convex subset of M , f be a twice continuously
differentiable convex function on some open convex set containing S, and x̄ ∈
S̄. Then

(i) the function x 
→ ‖grad f(x)‖ is constant on S̄.

(ii) S̄ = S̃ = {x ∈ S : 〈grad f(x̄), exp−1
x̄ x)〉x̄ ≤ 0, P x̄

x [grad f(x)] = gradf(x̄)}.

Proof. The first part is obtained by Theorem 3.2 and the isometric property of
the parallel translation. For proving the second part, we have that the inclusion
S̄ ⊆ S̃ holds by Theorem 3.2. For the converse, assume that x ∈ S̃. Since the
parallel translation is an isometry and f is convex, we deduce that

f(x̄) − f(x) ≥ 〈grad f(x), exp−1
x x̄〉x = 〈P x̄

x [grad f(x)], P x̄
x [exp−1

x x̄]〉x̄

= −〈grad f(x̄), exp−1
x̄ x〉x̄ ≥ 0.

This shows that f(x̄) ≥ f(x). Since x̄ is the minimizer of f on S, we have
f(x̄) = f(x), which proves that S̃ ⊆ S̄. �

Now, we present some examples to illustrate how our characterization of
solution sets of optimization problems works in particular nontrivial settings
of Riemannian manifolds.

Example 3.1. Let M be a Hadamard manifold and U be a nonempty open
convex subset of M . Pick x0, y0 ∈ U with x0 
= y0. Choose ε > 0 such that
S := B̄(x0, ε) ⊂ U , A := B̄(y0, ε) ⊂ U are convex and S ∩ A = ∅. Define the
function f : S → R by

f(x) :=
1
2
d2A(x).

Note that the function d2A(·) is convex and twice continuously differentiable
on U . Let x̄ ∈ S̄ and p := πA(x̄), where πA(x̄) is the metric projection of x̄ on
A. We have that

gradf(x̄) = − exp−1
x̄ p, ‖gradf(x̄)‖ = d(x̄, p) = d(x̄, A).



Vol. 114 (2020) Characterization of solution sets 221

Thus, by using Theorem 3.2, we deduce

S̄ =
{
x ∈ S : 〈exp−1

x̄ p, exp−1
x̄ x〉x̄ = 0, gradf(x) = −P x

x̄ [exp−1
x̄ p]

}
.

Example 3.2. The general matrix rank minimization problem (RMP) expressed
as

min rankX, X ∈ S ⊂ Pn,

where X ∈ R
n×n, Pn is the set of positive semidefinite n × n matrices, and S

is a convex set, is computationally hard to solve. This problem arises in many
areas such as control, system identification, statistics, signal processing, and
computational geometry; see [5] and references therein. Rather than solving
the RMP, one can use the function

log det(X + δI),

as a smooth surrogate for rankX and instead solve the following problem

min log det(X + δI), X ∈ S,

where δ > 0 can be interpreted as a small regularization constant; see [5]. Note
that this surrogate is not convex on the linear space R

n×n. This application
motivated us to consider the problem

min log det(X), X ∈ S = {X ∈ P+
n : 0 < A ≤ X}, (7)

which is not convex with respect to the Euclidean metric on R
n×n. Here P+

n

is the set of positive definite n × n matrices and A ∈ P+
n .

The set of symmetric positive definite matrices, as a Riemannian manifold,
is the most studied example of manifolds of nonpositive curvature. The tangent
space to P+

n at any of its points P is the space TP P+
n = {P} × Sn, where Sn

is the space of symmetric n × n matrices. On each tangent space TP P+
n , the

inner product is defined by

〈A,B〉P = tr(P−1AP−1B).

The Riemannian distance between P,Q ∈ P+
n is given by

dist(P,Q) =

(
n∑

i=1

ln2(λi)

)1/2

,

where λi, i = 1, ..., n, are eigenvalues of P−1Q. The exponential map

expP : Sn → P+
n

is defined by

expP (v) = P 1/2 exp(P−1/2vP−1/2)P 1/2.

Moreover, if P ∈ P+
n , then

exp−1
P : P+

n → Sn

is defined by

exp−1
P (Q) = P log(P−1Q),
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where log and exp denote the logarithm and exponential functions on the
matrix space; for more details see [21]. The parallel transport along the unique
geodesic connecting X and Y , is defined by

PY
X (Z) = (Y X−1)1/2Z(X−1Y )1/2.

Moreover, the Riemannian gradient of a function f defined on P+
n is given by

using the Euclidean gradient, denoted by ∇f , using the following formula,

grad f(X) = Xsymm(∇f(X))X,

where symm(∇f(X)) = 1/2(∇f(X) + ∇f(X)T ). For f(X) = log det(X),
∇f(X) = X−1, therefore grad f(X) = X. First we claim that S is a con-
vex subset of P+

n . Assume that X,Y ∈ S, then X ≥ A and Y ≥ A. The
unique geodesic connecting these two points is defined by

γ(t) := X1/2(X−1/2Y X−1/2)tX1/2,

by using the Löwner–Heinz inequality (see [14, Lemma 2.1]), we have γ(t) ≥ A
and therefore S is convex in P+

n . We claim that A is a solution for the problem
(7). By using Theorem 3.1, we need to prove that 〈A, exp−1

A (Y )〉A ≥ 0 for all
Y ∈ S. Note that

〈A, exp−1
A (Y )〉A = tr(A−1AA−1A log(A−1Y ))

= tr log(A−1Y ) = log det(A−1Y ) ≥ 0.

Therefore,

S̄ = {X ∈ S : log det A = log det X}.

To illustrate Theorem 3.2, we will see that

S̄ = {X ∈ S : 〈grad f(A), exp−1
A X〉A = 0, PA

X [grad f(X)] = gradf(A)}.

Note that grad f(X) = X, grad f(A) = A, and

PA
X (X) = (AX−1)1/2X(X−1A)1/2 = A for all X ∈ S.

Moreover,

〈grad f(A), exp−1
A X〉A = 〈A,A log(A−1X)〉A

= tr(A−1AA−1A log(A−1X))

= tr log(A−1X) = log det(A−1X),

which shows the required equation.

Recall that the unit sphere S2 := {x ∈ R
3 : ||x|| = 1} is a 2-dimensional

manifold with the usual Riemannian distance function defined as

d(x, y) = arccos〈x, y〉 for all x, y ∈ S2.

For every x̄ ∈ S2, it follows from the definition of the Riemannian metric on
S2 that

〈u, v〉x̄ = 〈u, v〉 for all u, v ∈ Tx̄S2,
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where 〈·, ·〉 denotes the standard inner product in R
3. For x ∈ S2, the expo-

nential map expx : TxS2 → S2 is defined by

expx(v) = cos(||v||)x + sin(||v||) v

||v|| , v ∈ TxS2. (8)

Moreover, exp−1
x : S2 → TxS2 is

exp−1
x (y) =

θ

sin θ
(y − x cos θ), y ∈ S2, (9)

where θ = arccos〈x, y〉. Let t → γ(t) be the unique minimal geodesic in S2

joining γ(0) = x to γ(0) = y, and let u := γ′(0)
||γ′(0)|| . The parallel translation of

a vector v ∈ TxS2 along the geodesic γ is given by

P γ(t)
x (v) =

( − sin(||γ′(0)||t)u′v
)
x

− (
cos(||γ′(0)||t)u′v

)
u + (I − uu′)v;

(10)

see [1]. In the following example, which is an improvement of [16, Corollary 1,
p. 1988], we consider the optimization problem on convex subsets of the unit
sphere involving quadratic cost functions.

Example 3.3. Let S be a convex subset of S2 and f be the quadratic convex
function on an open convex subset of S2 containing S defined by

f(x) := 〈Ax, x〉 = xT Ax, (11)

where A ∈ R
n×n is an n × n matrix. Suppose that x̄ ∈ S̄. By using formulas

(8)–(10) and [1, p. 74], for every x ∈ S̄, we get

grad f(x) = 2(Ax − (xxT )Ax),

and

exp−1
x̄ (x) =

θ

sin θ
(x − x̄ cos θ),

where θ = arccos〈x̄, x〉. Therefore, by Theorem 3.2, we obtain

S̄ = {x ∈ S : 〈c, x − x̄ cos θ〉x̄ = 0, (I − xxT )Ax = d},

where c = Ax̄ − (x̄x̄T )Ax̄ and d = P x
x̄ (c).

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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