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Polynomial bounds on the Sobolev norms of the solutions of the
nonlinear wave equation with time dependent potential

Vesselin Petkov and Nikolay Tzvetkov

Abstract. We consider the Cauchy problem for the nonlinear wave equa-
tion utt − Δxu + q(t, x)u + u3 = 0 with smooth potential q(t, x) ≥ 0
having compact support with respect to x. The linear equation without
the nonlinear term u3 and potential periodic in t may have solutions
with exponentially increasing H1(R3

x) norm as t → ∞. In Petkov and
Tzvetkov (IMRN, https://doi.org/10.1093/imrn/rnz014), it was estab-
lished that by adding the nonlinear term u3, the H1(R3

x) norm of the
solution is polynomially bounded for every choice of q. In this paper, we
show that the Hk(R3

x) norm of this global solution is also polynomially
bounded. To prove this, we apply a different argument based on the anal-
ysis of a sequence {Yk(nτk)}∞

n=0 with suitably defined energy norm Yk(t)
and 0 < τk < 1.
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1. Introduction. Consider for t ∈ R, x ∈ R
3, the Cauchy problem

∂2
t u − Δxu + q(t, x)u + u3 = 0, u(0, x) = f1(x), ∂tu(0, x) = f2(x), (1.1)

where 0 ≤ q(t, x) ∈ C∞(Rt × R
3), q(t, x) = 0 for |x| ≥ ρ > 0 and

sup
t∈R,|x|≤ρ

|∂k
t ∂α

x q(t, x)| ≤ Ck,α, ∀k,∀α. (1.2)

Set

‖u(t, x)‖H = ‖u(t, x)‖H1(R3) + ‖ut(t, x)‖L2(R3).

For the Cauchy problem for the linear operator ∂2
t u − Δxu + q(t, x)u, there

exist potentials q(t, x) ≥ 0 periodic in time with period T > 0 such that for
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suitable initial data f = (f1, f2) ∈ H(R3) = H1(R3) × L2(R3), we have

‖u(t, x)‖H1(R3) ≥ Ceα|t|

with C > 0, α > 0 (see [1,2]). This phenomenon is related to the so called
parametric resonance. On the other hand, adding a nonlinear term u3 for
the Cauchy problem (1.1), there are no parametric resonances and for every
potential q, the solution u(t, x) is defined globally for t ∈ R and satisfies a
polynomial bound

‖u(t, x)‖H1(R3) ≤ B1(1 + B0|t|)2
with constants B0 > 0, B1 > 0 depending on q and the initial data f ∈ H.
This result has been obtained in [2, Theorem 2], and the proof was based on
the inequality

X ′(t) ≤ CX(t)1/2,

where

X(t) =
1
2

∫

R3

(|∂tu|2 + |∇xu|2 + q|u|2 +
1
2
|u|4)dx.

In fact, the local Strichartz estimates and [2, Theorem 2] hold for every non-
negative potential q(t, x) ∈ C∞(Rt × R

3) with compact support with respect
to x satisfying the estimates (1.2) since in the proofs of these results the
periodicity of q with respect to t is not used.

In this paper, we study the problem (1.1) with initial data f ∈ Hk(R3) ×
Hk−1(R3), k ≥ 2. Throughout the paper, we consider Cauchy problems with
real-valued initial data f and real-valued solutions. First in Section 2, we
establish a local result and we show the existence and uniqueness of the solution
for t ∈ [s, s + τk] with initial data f ∈ Hk(R3) × Hk−1(R3) on t = s and

τk = ck(1 + ‖(f1, f2)‖H(R3))−γ , γ > 0,

where ck depends on q and k (see Proposition 2.1). It is important to notice
that τk depends on the norm ‖f‖H and since we have a global bound for the H
norm of (u, ut)(t, x), the interval of local existence depends on the H norm of
the initial data. We prove this result without using local Strichartz estimates.
Next we show that the global solution in R is in Hk(R3) for all t ∈ R and
the problem is to examine if the norm ‖u(t, x)‖Hk(R3), k ≥ 2, is polynomially
bounded. To do this, it is not possible to define a suitable energy Yk(t) ≥ 0
involving ∫

R3

(‖u(t, x)‖2Hk(R3) + ‖ut(t, x)‖2Hk−1(R3))dx

for which Y ′
k(t) ≤ CkY γk

k (t), 0 < γk < 1. To overcome this difficulty, we
follow another argument based on Lemma A.1 (see Appendix) which has an
independent interest and apply local Strichartz estimates for the nonlinear
equation. We first study the case k = 2 in Section 4 and by induction, one
covers the case k ≥ 3 in Section 5. Our principal result is the following
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Theorem 1.1. For every potential q and every k ≥ 2, the problem (1.1) with
initial data f ∈ Hk(R3) × Hk−1(R3) has a global solution u(t, x) and there
exist Ak > 0 and mk ≥ 2 depending on q, k, and ‖f‖H such that

‖u(t, x)‖Hk(R3) + ‖∂tu(t, x)‖Hk(R3) ≤ Ak(1 + |t|)mk , t ∈ R. (1.3)

We refer to [3] and the references therein for other results about polynomial
bounds for the solutions of Hamiltonian partial differential equations. The
method of the proof of Theorem 1.1 basically follows the approach in [3]. The
main difficulty compared to [3] is that in our situation, we do not have a
uniform bound on the H1(R3) norm and for that purpose, we need to apply
the estimate of Lemma A.1 in the Appendix.

2. Existence and uniqueness of local solutions in Hk(R3), k ≥ 3. In this
section, we study the existence and uniqueness of local solutions of the Cauchy
problem {

utt − Δxu + q(t, x)u + u3 = 0, t ∈ [s, s + τ ], x ∈ R
3,

u(s, x) = f1(x), ut(s, x) = f2(x),
(2.1)

where f = (f1, f2) ∈ Hk(R3) × Hk−1(R3), k ≥ 1, 0 < τ < 1. We assume
that [s, s + τ ] ⊂ [0, a], where a > 1 is fixed. The cases k = 1, 2 have been
investigated in [2, Section 3] by using the norms

‖u‖Sk−1 := ‖(u, ut)‖C([s,s+τ ],Hk(R3)×Hk−1(R3)).

For k = 1, the space S0 has been denoted as S. The number τ is given by

τ = c1(1 + ‖(f1, f2)‖H)−γ < 1 (2.2)

with some positive constants c1 > 0, γ > 0 depending on q. The case k ≥ 3 can
be handled by a similar argument and we will show that with τ = τk defined
by (2.2) with the constant c1 replaced by 0 < ck ≤ c1 depending on k and q,
one has a local existence and uniqueness in the interval [s, s + τk]. Consider
the linear problem{

∂2
t un+1 − Δun+1 + q(t, x)un+1 + u3

n = 0, n ≥ 0,

un+1(s, x) = f1(x), ∂tun+1(s, x) = f2(x)
(2.3)

for t ∈ [s, s+ τk] with u0 = 0. For the solution of the above problem with right
hand part −u3

n and f = (f1, f2), we have a representation

(un+1, (un+1)t) = U0(t − s)f −
t∫

s

[
U0(t − τ)Q(τ)un+1(τ, x)

+U0(t − τ)Q0u
3
n(τ, x)

]
dτ. (2.4)

Here U0(t, s) : H → H is the propagator related to the free wave equation in
R

3 (see [2, Section 2]) and

Q(τ) =
(

0 0
q(τ, x) 0

)
, Q0 =

(
0 0
1 0

)
.
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To estimate ‖un+1‖Sk
, we apply the operator

Lk =
(

(1 − Δ)k/2 0
0 (1 − Δ)(k−1)/2

)
.

Notice that this operator commutes with U0(t − τ) and ‖U0(t − s)‖H→H ≤ A
for |t − s| ≤ 1 with A > 0 independent of k. Therefore

‖U0(t − s)Lkf‖H ≤ C‖f‖Hk+1×Hk

and
∥∥∥

t∫

s

U0(t − τ)LkQ(τ)un+1(τ, x)dτ
∥∥∥

H

≤
t∫

s

‖U0(t − τ)LkQ(τ)un+1‖Hdτ ≤ Akτ‖un+1‖Sk
.

For Akτ ≤ 1/2 with Ak > 0, depending on k and q, the term involving
Q(τ)un+1 in (2.4) can be absorbed by ‖un+1‖Sk

and we deduce

‖un+1‖Sk
≤ C‖(f1, f2)‖Hk+1(R3)×Hk(R3) + C‖u3

n‖L1([s,s+τ ],Hk(R3)).

Here and below the constants C depend on k and q and they may change from
line to line but we will omit this in the notations. Next we define the norm

‖f‖Hs,p(R3) := ‖(1 − Δx)s/2f‖Lp(R3), 1 < p ≤ ∞.

We will use the following product estimate

‖fg‖Hs,p ≤ As,p‖f‖Lq1 ‖g‖Hs,q2 + As,p‖g‖Lr1 ‖f‖Hs,r2 , (2.5)

provided
1
p

=
1
q1

+
1
q2

=
1
r1

+
1
r2

, q1, r1 ∈ (1,∞], q2, r2 ∈ (1,∞].

For the proof of the classical estimate (2.5), we refer to [4]. We apply (2.5)
with p = 2, q1 = 3, q2 = 6, r1 = 6, r2 = 3 and get

‖u3
n‖Hk(R3) ≤ C‖un‖Hk,6(R3)‖un‖2L6(R3) + C‖u2

n‖Hk,3(R3)‖un‖L6(R3).

For the term involving u2
n in the above inequality, we apply the same estimate

with p = 3, q1 = q2 = r1 = r2 = 6 and deduce

‖u2
n‖Hk,3(R3) ≤ 2C‖un‖Hk,6(R3)‖un‖L6(R3).

Consequently, by the Sobolev embedding theorem,

‖u3
n‖Hk(R3) ≤ C1‖un‖Hk+1(R3)‖∇xun‖2L2(R3).

This implies
s+τ∫

s

‖u3
n(t, x)‖Hk(R3)dt ≤ C1τ‖un‖2L∞([s,s+τ ]),H1(R3))‖un‖Sk

.

On the other hand, for the solution un, we have the estimate

‖un‖C([s,s+τ ],H1(R3)) ≤ 2C0‖(f1, f2)‖H, ∀n ≥ 1
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with some constant C0 > 0 depending on q (see [2, Section 3]) and we deduce
the bound

C‖u3
n‖L1([s,s+τ ],Hk(R3)) ≤ CC1τ(2C0)2‖(f1, f2)‖2H‖un‖Sk+1 .

Thus choosing 2CC1τ(2C0)2‖(f1, f2)‖2H ≤ 1, we may prove by induction the
estimate

‖un‖Sk
≤ 2C‖(f1, f2)‖Hk+1(R3)×Hk(R3), ∀n ≥ 1. (2.6)

Next, let wn = un+1 − un be a solution of the problem

∂2
t wn − Δwn + q(t, x)wn = u3

n−1 − u3
n, wn(0, x) = ∂twn(0, x) = 0.

By using the inequality∣∣∣v3 − w3
∣∣∣ ≤ 2|v − w|

(
|v|2 + |w|2

)
,

we can similarly show that

‖un+1 − un‖Sk
≤ 1

2
‖un − un−1‖Sk

which implies the convergence of (un)n≥0 with respect to the ‖ · ‖Sk
norm.

Repeating the argument of [2, Section 3], we obtain local existence and unique-
ness. Thus we get the following

Proposition 2.1. For every k ≥ 1, there exist Ck > 0, ck > 0, and γ > 0
depending on q and k such that for every (f1, f2) ∈ Hk(R3)×Hk−1(R3), there
is a unique solution (u, ut) ∈ C([s, s+τk],Hk(R3)×Hk−1(R3)) of the problem
(2.1) on [s, s + τk] with τk = ck(1 + ‖(f1, f2)‖H)−γ . Moreover, the solution
satisfies

‖u‖Sk
≤ Ck‖(f1, f2)‖Hk(R3)×Hk1 (R3). (2.7)

It is important to note that for every k, τk depends on the H norm of the
initial data.

In [2], it was proved that one has a global solution (u, ut) ∈ C(R,H(R3))
with initial data (f1, f2) ∈ H(R3). It is natural to expect that for (f1, f2) ∈
Hk(R3) × Hk−1(R3), we have a global solution (u, ut) ∈ C(R,Hk(R3) ×
Hk−1(R3)).

Let a > 1 be fixed and let k ≥ 1. We wish to prove that the global solution
with initial data f ∈ Hk+1(R3) × Hk(R3) is such that

(u, ut)(t, x) ∈ Hk+1(R3) × Hk(R3), 0 ≤ t ≤ a. (2.8)

According to [2, Theorem 2], for 0 ≤ t ≤ a, we have an estimate

‖(u, ut)(t, x)‖H ≤ Ba = ‖f‖H + a(B1 + B2a),

where B1 > 0 and B2 > 0 depend only on ‖f‖H. Consider

τk(a) = ck(1 + Ba)−γ . (2.9)

First for 0 ≤ t ≤ τk(a), we apply Proposition 2.1. Next we apply Proposition
2.1 for the problem with initial data on t = 2

3τk(a) which is bounded by (2.7).
Thus we obtain a solution in [0, 5

3τk(a)] and we continue this procedure by step
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2
3τk(a). On every step, the norm Hk+1(R3) × Hk(R3) of (u, ut) will increase
with a constant Ck. Finally, if

3
2
a ≤ mτk(a) ≤ 3

2
(a + 1),

we deduce

‖(u, ut)(a, x)‖Hk+1×Hk ≤ Cm
k ‖(f1, f2)‖Hk+1×Hk

≤ e
3(a+1)
2τk(a) log Ck‖(f1, f2)‖Hk+1×Hk . (2.10)

Hence, we established (2.8) and one has a bound of the Hk+1×Hk norm. Since
a is arbitrary, we obtain (2.8) for t ∈ R and a global existence for t ∈ R. In
Section 5, we will improve (2.10) to polynomial bounds of the Sobolev norms.

3. Local Strichartz estimate for the nonlinear wave equation. Our purpose is
to establish a local Strichartz estimate for the solution of the Cauchy problem{

utt − Δxu + q(t, x)u + u3 = 0, t ∈]s, s + τ ], x ∈ R
3,

u(s, x) = f1(x), ut(s, x) = f2(x),
(3.1)

where f = (f1, f2) ∈ H2(R3) × H1(R3), 0 < τ ≤ 1. It is well known (see [2,
Proposition 1]) that for the solution of the Cauchy problem{

vtt − Δxv + q(t, x)v = F, (t, x) ∈]s, s + τ ] × R
3,

v(s, x) = h1(x), vt(s, x) = h2(x),
(3.2)

we have an estimate

‖v(t, x)‖Lp([s,s+τ ],Lr
x(R

3)) ≤ C
(
‖(h1, h2)‖H1(R3)×L2(R3)

+‖F‖L1([s,s+τ ],L2(R3))

)
,

where 1
p + 3

r = 1
2 , 2 < p ≤ ∞. We will later choose r = 4+2ε

ε with 0 < ε � 1
and this determines the choice of p > 2. For the solution of (3.1), we get

‖u(t, x)‖Lp([s,s+τ ],Lr
x(R

3)) ≤ C(p, r)
(
‖u(s, x), ut(s, x)‖H1(R3)×L2(R3)

+τ‖u(t, x)‖3L∞([s,s+τ ],H1(R3))

)
, (3.3)

where we have used the estimate

‖u3(t, x)‖L1([s,s+τ ],L2(R3)) ≤ τ‖u(t, x)‖3L∞([s,s+τ ],H1(R3)).

Next, for the solution u(t, x) ∈ H1(R3) of (3.1) in ]0, s + τ ] with initial data
f = (u, ut)(0, x) ∈ H(R3), we have a polynomial bound (see [2, Section 3])

sup
t∈[0,s+τ ]

‖u(t, x)‖H1(R3) ≤ ‖f‖H(R3) + s(B1 + B2s),

where B1 > 0, B2 > 0 depend only on ‖f‖H, and this implies

‖u(t, x)‖Lp([s,s+τ ],Lr
x(R

3)) ≤ C1(p, r, ‖f‖H)(1 + s)6. (3.4)

Now we will examine the continuous dependence on the initial data of the
local solution to (2.1) given in Section 2. Let gn = ((gn)1, (gn)2) ∈ Hk+1(R3)×
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Hk(R3) be a sequence converging in Hk(R3) × Hk−1(R3) to f = (f1, f2) ∈
Hk(R3) × Hk−1(R3). Let

wn(t, x) ∈ C([s, s + τ ],Hk+1(R3)) ∩ C1([s, s + τ ],Hk(R3))

be the local solution of (3.1) with initial data gn. Setting vn = wn − u, we
obtain for vn the equation

∂2
t vn − Δxvn + q(t, x)vn = u3 − w3

n.

By the local Strichartz estimates for the linear equation with respect to vn,
we get

‖(vn, (vn)t)‖C([s,s+τ ],Hk(R3)×Hk−1(R3)) + ‖vn‖L∞
t ([s,s+τ ],Hk−1,6

x (R3))

≤ Ck(a)‖gn − f‖Hk(R3)×Hk−1(R3) + Ck(a)‖u3 − w3
n‖L1

t ([s,s+τ ],Hk−1
x (R3)).

(3.5)

This estimate for k = 1, 2 has been proved in [2, Proposition 1]. The proof for
k ≥ 3 follows the same argument. The constant Ck(a) > 0 depends on k and
on the interval [0, a], where [s, s + τ ] ⊂ [0, a]. In the notations below we will
omit the dependence of the constants on k and a. Applying (2.5), we have

‖u3−w3
n‖Hk−1≤C‖vn‖Hk−1,6‖u2+uwn+w2

n‖L3

+C‖vn‖L6‖u2+uwn+w2
n‖Hk−1,3

≤ 2C‖vn‖Hk−1,6

(
‖u‖2L6 + ‖wn‖2L6

)
+ C‖vn‖L6

(
2‖u‖Hk−1,6‖u‖L6

+2‖wn‖Hk−1,6‖wn‖L6+‖u‖Hk−1,6‖wn‖L6 + ‖wn‖Hk−1,6‖u‖L6

)
= Pn + Qn.

To handle Pn, notice that the L∞([s, s + τ ], L6(R3)) norms of u and wn, by
local Strichartz estimates, can be estimated by ‖f‖H and ‖gn‖H. Therefore,
for n ≥ n0, we have

∣∣∣
s+τ∫

s

Pndt
∣∣∣ ≤ Akτ‖vn‖L∞([s,s+τ ],Hk−1,6(R3))

with a constant Ak depending on Ck(a) and ‖f‖H. Hence, we may absorb Pn

by the left hand side of (3.5) choosing 0 < τ ≤ 1
2Ak

small. The analysis of
Qn is easy since we proved in [2, Subsection 3.2] that for all t ∈ [s, s + τ ], we
have ‖∇xvn(t, x)‖L2(R3) → 0 as n → ∞ and the term in the braked

(
...

)
for

t ∈ [0, a] is uniformly bounded with respect to n according to the analysis in
Section 2 and estimate (2.10). Finally, we conclude that

‖(vn, (vn)t)‖C([s,s+τ ],Hk(R3)×Hk−1(R3)) →n→∞ 0. (3.6)

4. Polynomial bound of theH2(R3) norm of the solution. Let (u(t, x), ut(t, x))
∈ C([s, s + τ ],H2(R3)) × C([s, s + τ ],H1(R3)), where u(t, x) is the solu-
tion of the Cauchy problem (2.1) for t ∈ [s, s + τ ]. Taking the derivative
∂xj

= ∂j , j = 1, 2, 3, and noting uj = ∂ju, ujt = ∂j∂tu, one gets in the sense
of distributions

(ujt)t − Δxuj + (∂jq)u + quj + 3u2uj = 0. (4.1)
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It is easy to see that

(∂jq)u + quj + 3u2uj ∈ C([s, s + τ ], L2(R3)).

In fact, our assumption implies that u(t, x) ∈ C([s, s + τ ], L∞
x (R3)) and this

yields u2uj ∈ C([s, s + τ ], L2(R3)). Therefore

(ujt)t − Δxuj ∈ C([s, s + τ ], L2(R3)).

Multiplying the equality (4.1) by ujt, we have∫ (
(ujt)t − Δxuj

)
ujtdx = −

∫
(∂jq)uujtdx −

∫
qujujtdx

−3
∫

u2ujujtdx = I1(t) + I2(t) + I3(t). (4.2)

Assuming (u(t, x), ut(t, x)) ∈ C([s, s + τ ],H3(R3) × H2(R3)), we can write

I2(t) = −1
2

∫
q∂t(u2

j )dx = −1
2
∂t

(∫
qu2

jdx
)

+
1
2

∫
qtu

2
jdx,

I3(t) = −3
2

∫
u2∂t(u2

j )dx = −3
2
∂t

(∫
u2u2

jdx
)

+ 3
∫

uutu
2
jdx.

After an integration by parts in the integral
∫

Δx(uj)ujtdx for solutions
(u(t, x), ut(t, x)) ∈ C([s, s + τ ],H3(R3) × H2(R3)), the equality (4.2) can be
written as

1
2
∂t

3∑
j=1

[∫ (
(ujt)2+|∇x(uj)|2 + 3u2u2

j + qu2
j

)
(t, x)dx

]
= −

3∑
j=1

∫
(∂jq)uujtdx

+3
3∑

j=1

∫
uutu

2
jdx +

1
2

3∑
j=1

∫
qtu

2
jdx = I1(t) + J1(t) + J2(t), (4.3)

where the derivative with respect to t of the left hand side is taken in the sense
of distributions.

4.1. Justification of (4.3) for (u(t, x), ut(t, x)) ∈ C([s, s+τ ],H2(R3)×H1(R3)).
Introduce

X(t) :=
1
2

3∑
j=1

∫ (
(ujt)2 + |∇x(uj)|2 + 3u2u2

j + qu2
j

)
(t, x)dx.

Notice that the function X(t) is well defined. For the integral of u2u2
j , we have∫

u2u2
jdx ≤ ‖u‖2L4(R3)‖uj‖2L4(R3) ≤ ‖u‖1/2

L2 ‖∇xu‖3/2
L2 ‖uj‖1/2

L2 ‖∇xuj‖3/2
L2 .

(4.4)

Also a similar argument shows that the right hand side of (4.3) is well
defined and it is a continuous function of t. For example,∣∣∣

∫
uutu

2
j (t, x)dx

∣∣∣ ≤ ‖uj(t, x)‖2L6(R3)‖u(t, x)‖L6(R3)‖ut(t, x)‖L2(R3). (4.5)

This implies that the derivative with respect to t is taken in the classical
sense. Now let (gn, hn) ∈ H3(R3) × H2(R3) converge to (u(s, x), ut(s, x)) in
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H2(R3) × H1(R3) as n → ∞. Denote, as in Section 3, by wn(t, x) the local
solution of (3.1) with initial data (gn, hn). Therefore, for t ∈ [s, s+τ ], we have∫

w2
n((wn)j)2(t, x)dx →n→∞

∫
u2u2

j (t, x)dx,

∫
wn(wn)t((wn)j)2(t, x)dx →n→∞

∫
uutu

2
j (t, x)dx.

To justify these limits, we apply the estimates (4.4) and (4.5). For example,
∣∣∣
∫

wn(wn)t((wn)j)2(t, x)dx
∣∣∣ ≤

∣∣∣
∫

(wn − u)(wn)t((wn)j)2dx
∣∣∣

+
∣∣∣
∫

u((wn)t − ut)((wn)j)2dx
∣∣∣ +

∣∣∣
∫

uut(((wn)j)2 − u2
j )dx

∣∣∣
and we use (3.6) for k = 2. Passing to limit in the equality (4.3) for wn, we
obtain it for u.

Consequently, after an integration with respect to t in (4.3), one deduces

X(s + τ) = X(s) +

s+τ∫

s

(
J1(t) + J2(t) + I1(t)

)
dt.

4.2. Estimation of
∫ s+τ

s
J1(t)dt. Let 0 < ε � 1 be a small number. First by

the generalized Hölder inequality, one estimates

|J1(t)| ≤ 3
3∑

j=1

‖u(t, x)‖Lr(R3)‖ut(t, x)‖L2+ε(R3)‖uj(t, x)‖2L4(R3)

≤ 3
3∑

j=1

‖u(t, x)‖Lr(R3)‖ut(t, x)‖L2+ε(R3)‖uj(t, x)‖1/2
L2(R3)‖uj(t, x)‖3/2

L6(R3),

where
1
r

=
ε

4 + 2ε
.

According to the estimate (2.7), for s ≤ t ≤ s + τ, by the local existence of
a solution of (3.1) with initial data (u(s, x), ut(s, x)) ∈ H2(R3) × H1(R3) on
t = s, we obtain

‖uj(t, x)‖3/2
L6(R3)≤‖∇xuj(t, x)‖3/2

L2(R3)≤C2

(
‖u(s, x)‖H2(R3)+‖ut(s, x)‖H1(R3)

)3/2

with constant C2 > 0 depending on q. Next

‖u(s, x)‖2H2(R3) ≤ C
( 3∑

i,j=1

‖∂xi
∂xj

u(s, x)‖2L2(R3) + ‖u(s, x)‖2H1(R3)

)
,

‖ut(s, x)‖2H1(R3) ≤ C
( 3∑

j=1

‖ujt(s, x)‖2L2(R3) + ‖ut(s, x)‖2L2(R3)

)
.
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Notice that we have a polynomial bound with respect to s for the norms
‖u(s, x)‖H1(R3) and ‖ut(s, x)‖L2(R3) of the solution u(s, x) (see [2, Theorem
2]). Consequently, we obtain

sup
t∈[s,s+τ ]

‖uj(t, x)‖3/2
L6(R3)

≤ C1

(
X(s)3/4 + (1 + s)3

)
, sup

t∈[s,s+τ ]

‖uj(t, x)‖L2(R3) ≤ C0(1 + s),

where C0 > 0, C1 > 0 depend on ‖(u, ut)(0, x)‖H1(R3).
Now we pass to the estimate of ‖ut(t, x)‖L2+ε(R3). By the Hölder inequality,

we obtain∣∣∣
∫

u2+ε
t dx

∣∣∣ =
∣∣∣
∫

u
2(1− ε

4 )
t u

3ε
2

t dx
∣∣∣ ≤ ‖ut‖2(1−ε/4)

L2(R3) ‖ut‖
3ε
2

L6(R3)

≤ C3(1 + t)2‖∇xut‖
3ε
2

L2(R3) ≤ C4(1 + s)2
(
X(s)

3ε
4 + (1 + s)3ε

)
.

Hence, one deduces

sup
t∈[s,s+τ ]

∣∣∣
∫

u2+ε
t dx

∣∣∣
1

2+ε ≤ C5(1 + s)3/2
(
X(s)

3ε
8+4ε + 1

)
.

Taking into account the above estimates for the integral with respect to t,
one applies the Hölder inequality and for small ε, we have

∣∣∣
s+τ∫

s

J1(t)dt
∣∣∣ ≤ C6τ

1/p′
(1 + s)6‖u(t, x)‖Lp([s,s+τ ];Lr

x(R
3))

(
X(s)

3
4+

3ε
8 + 1

)
,

where
1
p

+
3ε

4 + 2ε
=

1
2
,

1
p′ +

1
p

= 1.

To complete the analysis, we apply the Strichartz estimate (3.4) and deduce

‖u(t, x)‖Lp([s,s+τ ];Lr
x(R

3)) ≤ C(ε)(1 + s)6.

Finally, for 0 < τ ≤ 1 with y = 12, we have

∣∣∣
s+τ∫

s

J1(t)dt
∣∣∣ ≤ C ′(ε)

(
X(s)

3
4+

3ε
8 + 1

)
(1 + s)y. (4.6)

4.3. Estimation of
∫ s+τ

s
I1(t)dt. We apply a similar argument.

|I1(t)|≤C

3∑
j=1

‖u(t, x)‖L2(R3)‖ujt(t, x)‖L2(R3)≤C7(1 + |t|)2
3∑

j=1

‖ujt(t, x)‖L2(R3).

By the local existence result for t ∈ [s, s + τ ], one has

‖ujt(t, x)‖L2(R3) ≤ C(‖u(s, x)‖H2(R3) + ‖ut(s, x)‖H1(R3))
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and repeating the above argument, we deduce

∣∣∣
s+τ∫

s

I1(t)dt
∣∣∣ ≤ C8(X(s)1/2 + 1)(1 + s)2. (4.7)

4.4. Estimation of
∫ s+τ

s
J2(t)dt. It is easy to find a bound for this term since

we have a polynomial estimate∫
u2

j (t, x)dx ≤ C0(1 + |t|)2

and this yields

∣∣∣
s+τ∫

s

J2(t)dt
∣∣∣ ≤ C9(1 + s)2. (4.8)

Combining (4.6), (4.7), (4.8), finally we get

X(s + τ) ≤ X(s) + C10

(
X(s)

3
4+

3ε
8 + 1

)
(1 + s)y. (4.9)

4.5. Growth of H2(R3) norm. Let a > 1 be a fixed number. According to [2]
and Proposition 2.1, there exists a solution in [s, s + τ(a)] ⊂ [0, a] with initial
data g ∈ H2(R3) × H1(R3) on t = s. Here

τ(a) = c
(
(1 + ‖f‖H1(R3)×L2(R3) + a(B1 + B2a)

)−γ

< 1,

where c > 0, γ > 0, B1 > 0, B2 > 0 are independent of a and f . We choose
N(a) ∈ N so that a−τ(a) < N(a)τ(a) ≤ a. Setting X(nτ(a)) = αn, n ≤ N(a),
and exploiting (4.9), one deduces

αn ≤ αn−1 + C10(α
7/8
n−1 + 1)(1 + n)12.

We are in the position to apply Lemma A.1 in the Appendix and obtain

X(N(a)τ(a)) ≤ C̃(N(a))104

≤ C̃
(a

c

)104(
1 + ‖f‖H1(R3)×L2(R3) + a(B1 + B2a)

)104γ

.

This estimate and the bound of the H1(R3) norm of the solution u(a, x) estab-
lished in [2] imply a polynomial with respect to a bound of ‖u(a, x)‖H2(R3) +
‖∂tu(a, x)‖H1(R3). This implies the statement of Theorem 1.1 for k = 2.

5. Polynomial growth of the Hk(R3) norm of the solution. To examine the
growth of the Hk(R3) norm of the solution, we will proceed by induction.
Assume that for 1 ≤ s ≤ k − 1, k ≥ 3, we have polynomial bounds

‖u(t, x)‖Hs
x(R

3) + ‖ut(t, x)‖Hs−1
x (R3) ≤ Ak(1 + |t|)ms , t ∈ R

for the global solution of the Cauchy problem of utt − Δxu + qu + u3 = 0 with
initial data (f1, f2) ∈ Hs(R3) × Hs−1(R3). Consider the equality

∂2
t ∂α

x u − Δx(∂α
x u) + ∂α

x (qu) + ∂α
x (u3) = 0
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with |α| = k − 1. After an integration by parts which we can justify as in
Section 4, we write

1
2

d

dt

∫ (
|∇x∂α

x u|2 + |∂t∂
α
x u|2

)
dx

= −
∫

∂α
x (qu)∂α

x ∂tudx −
∫

∂α
x (u3)∂α

x ∂tudx = K1(t) + K2(t). (5.1)

Clearly,
∣∣∣
∫ (

∂α
x (u3)∂α

x ∂tu
)
dx

∣∣∣ ≤ ‖∂α
x (u3)‖L2(R3)‖∂α

x ∂tu‖L2(R3).

Applying (2.5) two times, one gets

‖∂α
x (u3)‖L2(R3) ≤ C‖∂α

x u‖L2(R3)‖u‖2L∞(R3)

and by the Sobolev theorem, ‖u‖L∞(R3) ≤ C‖u‖H2(R3). Thus by our assump-
tion,

‖∂α
x (u3(t, x))‖L2(R3) ≤ CAk−1A

2
2(1 + |t|)mk−1+2m2 .

Therefore, using the notation of Subsection 4.5 for nτ(a) ≤ t ≤ (n + 1)τ(a),
one deduces

‖∂α
x (u3(t, x))‖L2(R3) ≤ CAk−1A

2
2(1 + n)mk−1+2m2 .

On the other hand, applying (2.7), one obtains

‖∂α
x ∂tu(t, x)‖L2(R3) ≤ Ck

(
(‖u(nτ(a), x)‖Hk(R3) + ‖ut(nτ(a), x)‖Hk−1(R3)

)
.

The analysis of K1(t) is easy and

|K1(t)| ≤ C‖u(t, x)‖Hk−1(R3)‖∂α
x ∂tu(t, x)‖L2(R3)

≤ CkAk−1(1 + n)mk−1(‖u(nτ(a), x)‖Hk(R3) + ‖ut(nτ(a), x)‖Hk−1(R3)).

Now define Yk(t) := ‖u(t, x)‖2Hk(R3) + ‖∂tu(t, x)‖2Hk−1(R3) and integrate the
equality (5.1) from nτk(a) to (n+1)τk(a) with respect to t, where 0 < τk(a) < 1
is defined by (2.9). Taking into account the above estimates, we have

Yk((n + 1)τk(a)) ≤ Yk(nτk(a)) + CqAk−1(1 + n)mk−1Y
1
2

k (nτk(a))

+CAk−1A
2
2(1 + n)mk−1+2m2Y

1/2
k (nτk(a)).

Applying Lemma A.1 and repeating the argument of Subsection 4.5, we obtain
a polynomial bound for Yk(t) and this completes the proof of Theorem 1.1.
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6. Appendix. The aim of this Appendix is to prove the following

Lemma A.1. Let {αn}∞
n=0 be a sequence of nonnegative numbers such that with

some constants 0 < γ < 1, C > 0, and y ≥ 0, we have

αn ≤ αn−1 + C((αn−1)1−γ + 1)(1 + n)y, ∀n ≥ 1.

Then there exists a constant C̃ > 0 such that

αn ≤ C̃(1 + n)
1+y

γ , ∀n ≥ 1. (A.1)

Remark A.1. A similar estimate has been established in [3] for sequences {αn}
satisfying the inequality

αn ≤ αn−1 + Cα1−γ
n−1.

Proof. We can choose a large constant C1 > 0 such that

(αn−1)1−γ + 1 ≤ C1(αn−1 + 1)1−γ , ∀n ≥ 1.

This implies with a new constant C2 > 0 the inequality

αn + 1 ≤ αn−1 + 1 + C2(αn−1 + 1)1−γ(1 + n)y, ∀n ≥ 1.

Setting βn = αn + 1, we reduce the proof to a sequence αn satisfying the
inequality

αn ≤ αn−1 + C2(αn−1)1−γ(1 + n)y, n ≥ 1.

We will prove (A.1) by recurrence. Assume that (A.1) holds for n − 1.
Therefore

αn ≤ C̃n
1+y

γ + C2

(
C̃n

1+y
γ

)1−γ

(1 + n)y

= C̃n
1+y

γ

[
1 + C2C̃

−γn−1−y(1 + n)y
]

= C̃(1 + n)
1+y

γ

(
1 − 1

n + 1

) 1+y
γ

[
1 + C2C̃

−γn−1
( n

n + 1

)−y]
.

To establish (A.1) for n, it is sufficient to show that for large C̃, one has

f(n) :=
(
1 − 1

n + 1

) 1+y
γ

[
1 + C2C̃

−γn−1
( n

n + 1

)−y]
≤ 1, n ≥ 1. (A.2)

Setting C2C̃
−γ = ε, a simple calculus yields

f ′(n) =
1 + y

γ

(
1 − 1

n + 1

) 1+y
γ −1 1

(n + 1)2
[
1 +

ε

n

( n

n + 1

)−y]

+ε
(
1− 1

n + 1

) 1+y
γ

[
− 1

n2

( n

n + 1

)−y

−yn−1 1
(n + 1)2

(
1 − 1

n + 1

)−y−1]

=
(
1 − 1

n + 1

) 1+y
γ −1 1

(n + 1)2
[1 + y

γ
+

ε

n

1 + y

γ

(
1 − 1

n + 1

)−γ

−[ε
n + 1

n
+

εy

n
]
(
1 − 1

n + 1

)−y]
.
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Notice that since 1
2 ≤ 1 − 1

n+1 , we have
(
1 − 1

n + 1

)−γ

≤
(1

2

)−γ

which implies
1 + y

γ
− ε[

n + 1 + y

n
]
(
1 − 1

n + 1

)−y

≥ 1 + y

γ
− ε[

n + 1 + y

n
]
(1

2

)−y

.

For small ε > 0, the right hand side of the above inequality is positive. Conse-
quently, for the derivative, we have f ′(n) > 0 and one deduces

f(n) < lim
n→+∞ f(n) = 1

This completes the proof of (A.2). �
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