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On conjectures regarding the Nekrasov–Okounkov hook length
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Abstract. The Nekrasov–Okounkov hook length formula provides a fun-
damental link between the theory of partitions and the coefficients of
powers of the Dedekind eta function. In this paper we examine three
conjectures presented by Amdeberhan. The first conjecture is a refined
Nekrasov–Okounkov formula involving hooks with trivial legs. We give
a proof of the conjecture. The second conjecture is on properties of the
roots of the underlying D’Arcais polynomials. We give a counterexample
and present a new conjecture. The third conjecture is on the unimodality
of the coefficients of the involved polynomials. We confirm the conjecture
up to the polynomial degree 1000.
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1. Introduction. In 2006 Nekrasov and Okounkov [10,19,24] published a new
type of hook length formula. Based on their work on random partitions and
the Seiberg–Witten theory, they obtained an unexpected identity relating the
sum over products of partition hook lengths [6,18] to the coefficients of com-
plex powers of Euler products [14,20,22], which is essentially a power of the
Dedekind eta function. This paper is devoted to three open conjectures stated
by Amdeberhan [2, Section 2].

Let λ be a partition of n denoted by λ � n with weight |λ| = n. We denote
by H(λ) the multiset of hook lengths associated to λ and P be the set of all
partitions. The Nekrasov–Okounkov hook length formula is given by

∑

λ∈P
q|λ| ∏

h∈H(λ)

(
1 − z

h2

)
=

∞∏

m=1

(1 − qm)z−1
. (1)
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Let q := e2πiτ and τ be in the upper complex half-plane. The identity (1) is
valid for all z ∈ C. The Dedekind eta function η(τ) is given by q

1
24

∏∞
m=1 (1 − qm)

(see [21]).
The first conjecture is a refinement of the Nekrasov–Okounkov hook length

formula [2].

Conjecture 1. Let H(λ)� be the multiset of hook lengths with trivial legs. Then
∑

λ�n

∏

h∈H(λ)�

(
h + z

h

)
=

∑

λ�n

∏

h∈H(λ)

(
h2 + z

h2

)
. (2)

The second conjecture is on the roots of the polynomials given in (2). Note
that this is also related to the Lehmer conjecture [14,17].

Conjecture 2. Let n be a positive integer. Then the polynomial

Qn(z) :=
∑

λ�n

∏

h∈H(λ)

(
h2 + z

h2

)
∈ C[z] (3)

has (i) only simple roots, (ii) only real roots, (iii) only negative roots.

The third conjecture is on the coefficients of the polynomials defined in (3).

Conjecture 3. Let n be a positive integer. Then Qn(z) is unimodal.

In 1913 D’Arcais [5] studied a sequence of polynomials Pn(x):
∞∑

n=0

Pn(z) qn =
∞∏

n=1

(1 − qn)−z
. (4)

The coefficients are called D’Arcais numbers [4]. Independently from D’Arcais,
Newman and Serre [20,22] studied the polynomials in the context of modular
forms. Serre proved a famous theorem on lacunary modular forms, utilizing
the factorization of Pn(x) for 1 ≤ n ≤ 10 over Q. All authors mentioned so far
introduced slightly different normalized polynomials: D’Arcais [5], Newman
[20], Serre [22], and Amdeberhan [2]. D’Arcais definition fits best to the new
Conjecture 2.

In this paper we prove Conjecture 1. We use the Nekrasov–Okounkov hook
length formula and combinatorial arguments. It is sufficient to show the for-
mula evaluated at negative integer values. This follows from the Lagrange
interpolation formula. We have been alerted1 that Keith [15, page 4] proved
an identity equivalent to Conjecture 1. After the substitution z → −b, noting
that his Me = H(λ′)�, and expanding

∑
λ�n

∏
h∈H(λ)�

(
h+z

h

)
with respect to

the variable z, the identity (2) is proven (we followed the notation of [15]). The
proof is based on the calculation of the coefficients of the involved polynomials,
which utilizes an infinite sum (generalized binomial formula).

The proof given in this paper is different. It is based on two varying in-
terpretations of the contribution of the multiplicities kj(λ) for 1 ≤ j ≤ l(λ)

1The reviewer kindly put our attention on the paper of William Keith.
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to the final formula. We refer to the proof in Section 2 and Corollary 2. Only
finite sums and short calculations are needed.

We give a counterexample to Conjecture 2. In the degree 10 case, P10(x),
non-real complex roots exist. The simplicity of the roots was already studied
in [12]. Finally we give evidence for Conjecture 3.

2. New partition Hook length formula. A partition of n (for an introduction
we refer to [3,9,18,23]) is a finite decreasing sequence λ = (λ1, λ2, . . . , λl) of
positive integers such that |λ| :=

∑
j λj = n. We write λ � n. The set of all

partitions of n is denoted P(n) and the set of all partitions for all n ∈ N is
denoted P.

The integers λj are called the parts of λ and l = l(λ) the length of the
partition. Partitions are presented by their Young diagram. Let λ = (7, 3, 2).
Then l (λ) = 3 and n = |λ| = 12.

4
.

We attach to each cell u of the diagram the arm au(λ), the amount of cells in
the same row of u to the right of u. Further we have the leg �u (λ), the number
of cells in the same column of u below of u. The hook length hu(λ) of the cell
u is given by hu(λ) := au(λ) + �u (λ) + 1. The hook length multiset H(λ) is
the multiset of all hook length of λ. Our example gives

H(λ) = {9, 8, 6, 4, 3, 2, 1, 4, 3, 1, 2, 1}.

The list is given from the left to the right and from the top to the bottom
in the Young diagram. Cells have the coordinates (i, j) following the same
procedure, hence 4 is in the cell (2, 1) with � = 1 and a = 2 (we usually
simplify the notation). Let fλ denote the number of standard Young tableaux
of shape λ. These are all possible combinations of filling a Young diagram
with the numbers {1, 2, . . . , n} for λ � n, such that each number occurs once
and in each row and column (from the left to the right and from the top to
the bottom) the numbers are strictly increasing. The famous classical hook
formula (Frame, Robinson, Thrall) states

fλ =
n!∏

h∈H(λ) h
. (5)

In the following we prove Conjecture 1. Let H(λ)� be the multiset of hook
lengths with trivial legs. Then Conjecture 1 states

Qn(z) :=
∑

λ�n

∏

h∈H(λ)�

(
h + z

h

)
= Pn(z + 1). (6)

It can easily be verified for z = −1 and z = 0. Since there always exists a hook
length h = 1 for λ, the product in Qn(−1) always has a factor which is zero.
Hence Qn(−1) = Pn(0) = 0 for n ≥ 1. Let z = 0. Then

Qn(0) =
∑

λ�n

1,
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which is equal to the number of partitions of n. By Euler it is known that this
is the coefficient of qn in the product

∏∞
m=1 (1 − qm)−1, hence equal to Pn(1).

Proof of Conjecture 1. The Nekrasov–Okounkov hook length formula states
that

∑

λ�n

∏

h∈H(λ)

(
h2 + z

h2

)
(7)

is equal to Pn(z + 1). Hence it is sufficient to prove that

∑

λ�n

∏

h∈H(λ)�

(
h − (m + 1)

h

)
= Pn(−m) (8)

for all m ∈ N. Let λ = (λ1, . . . , λl) be a partition of n. We count all parts of λ
with value j and put

aj(λ) := �{i |λi = j}.

This leads to the bijection

ψ :
{
λ � n

} −→
{

(a1, . . . , an) ∈ N0 |
n∑

k=1

k ak = n

}
, (9)

where λ maps to a(λ) = (a1(λ), . . . , an(λ)). We collect all the terms in

∞∏

d=1

(1 − qd)m

contributing to Pn(−m). Then ψ(λ) contributes with multiplicity
(

m

a1(λ)

)
· · ·

(
m

an(λ)

)
.

Hence we obtain

Pn(−m) =
∑

λ�n

(−1)l(λ)

(
m

a1(λ)

)
· · ·

(
m

an(λ)

)
. (10)

Next we study the hook length term

Cm(n) :=
∑

λ�n

∏

h∈H(λ)�

(
h − (m + 1)

h

)
. (11)

Note that if h ∈ H(λ)�, then 1, . . . , h − 1 are also elements of H(λ)� for
h > 1. Let λc denote the conjugate of λ, which is also a partition of n. Since
{λ � n} = {λc |λ � n}, we have

∑

λ�n

∏

h∈H(λ)�

(
h − (m + 1)

h

)
=

∑

λc�n

∏

h∈H(λ)�

(
h − (m + 1)

h

)
. (12)
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We consider the Young diagram of λc. For example let λ = (4, 3, 3, 2, 1, 1).
Then we have

2 1
1

2 1
1 .

The numbers denote the hook length for all cells with no leg. Let

bj(λ) := �{i |λi = j}.

Then b1(λ), . . . , bn(λ) contributes to Cm(n) with multiplicity
(

m

b1(λ)

)
· · ·

(
m

bn(λ)

)
.

Here we used the simple identity
h∏

k=1

(
k − (m + 1)

k

)
= (−1)h

(
m

h

)
.

Hence we obtain

Cm(n) =
∑

λ�n

(−1)l(λ)

(
m

b1(λ)

)
· · ·

(
m

bn(λ)

)
. (13)

Comparing (10) and (13) proves Conjecture 1. �
Corollary 1. Let H(λ)�� be the multiset of hook lengths with trivial arms. Then

∑

λ�n

∏

h∈H(λ)�

(
h + z

h

)
=

∑

λ�n

∏

h∈H(λ)��

(
h + z

h

)
. (14)

Let λ � n. Let kj := kj(λ) = aj(λ) = bj(λ). Since
(

k + z

k

)
= (−1)k

(−z − 1
k

)
(15)

for k ∈ N0 and z ∈ C, we obtain (put z = −(m + 1)):

Corollary 2. Let H(λ)� be the multiset of hook lengths with trivial legs. Then
∑

λ�n

∏

h∈H(λ)�

(
h + z

h

)
=

∑

λ�n

n∏

j=1

(
kj + z

kj

)
=

∑

λ�n

n∏

j=1

(−1)l(λ)

(−z − 1
kj

)
.

This completes the proof of Conjecture 2.1 given in [2]. For the conve-
nience of the reader and recommended by the reviewer of this article, we recall
Conjecture 2.1 as stated in [2, Section 2] and [2, Section 13].

Conjecture 2.1 [2]. For a partition λ � n and its Young diagram, let hu, au, lu
denote the hook-length, arm and legs of cell u ∈ λ. Note hu = au + lu + 1. Let
kj(λ) = �{i : λi = j}. Then we have variants linked to Nekrasov–Okounkov
hook formula [19]

∑

λ�n

∏

u∈λ
au=0

hu + t

hu
=

∑

λ�n

∏

j≥1

(
kj + t

kj

)
=

∑

λ�n

∏

u∈λ

h2
u + t

h2
u

=
∑

λ�n

∏

u∈λ

lu=0

hu + t

hu
.
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We also quote Amdeberhan [2, Section 13]: “In Conjecture 2.1, the middle
two are immediate from [8] that

∑
n xn

∏
u∈λ

t+h2
u

h2
u

=
∏

j(1−xj)−t−1; and the
extreme-left and right sides are equal by duality. The main wish here is to
prove the rest; a combinatorial argument is strongly desired.”

It would be also interesting to study the conjecture in terms of t-cores [7]
to finally obtain a new proof of the Nekrasov–Okounkov hook length formula,
but this seems to be very difficult and beyond the scope of this paper.

3. D’Arcais type polynomials. The Nekrasov–Okounkov hook length formula
[10,19] states

∑

λ∈P
q|λ| ∏

h∈H(λ)

(
1 − z

h2

)
=

∞∑

n=0

Pn(1 − z) qn. (16)

The polynomials Pn(x) can also be recursively defined by

Pn(x) :=
x

n

n∑

k=1

σ(k)Pn−k(x).

Here P0(x) := 1 and σ(n) :=
∑

d|n d. This makes it possible to calculate the
coefficients of the polynomials directly. The first 20 polynomials can be found
in [13]. Note that the first 10 were published in 1955 by Newman [20] (see also
[22]). We claim that P10(x) does not only have real but also non-real roots.
Numerically this was already shown in [13]. There we were interested in good
numerical approximations for the values of the roots of the polynomials and
it turned out that two of them had a (numerically) non-zero imaginary part.
We want to note that we also had been not aware of [2]. In this paper we
use a theorem of Aissen–Schoenberg–Whitney and Edrai [1] to give a rigorous
algebraic proof. This leads to a counterexample for Conjecture 2. We also hope
that this approach will give to the reader some deeper insight into the topic.
Finally a third proof is given by involving derivatives that Conjecture 2 in the
present form is not correct.

Let us first recall the definition of a totally nonnegative matrix. Then we
give a bijection between the set of infinite real sequences and certain Toeplitz
matrices. We define (finite) Polya frequency sequences and state a well-known
characterization of polynomials with real roots.

Let A = (a∞
i,j=0) be a two way infinite matrix with real entries. The matrix

A is called totally nonnegative (TN) if all minors are nonnegative.

Definition 1. Let a0, a1, . . . be an infinite sequence of real numbers. We attach
the matrix A = (ai,j)∞

i,j=0 given by ai,j := ai−j for 0 ≤ j ≤ i and ai,j = 0
otherwise.
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Example 1. Let the sequence 2, 2, 1, 0, 0, . . . be given, then the attached matrix
A is given by

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 . . .
2 2 0 0 0 . . .
1 2 2 0 0 . . .
0 1 2 2 0
0 0 1 2 2
...

...
. . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

We consider finite sequences as infinite sequences. Note that A is not a TN
since the minor, the determinant of

⎛

⎜⎜⎝

2 2 0 0
1 2 2 0
0 1 2 2
0 0 1 2

⎞

⎟⎟⎠ ,

is negative.

Definition 2. Let a0, a1, . . . , an be a finite sequence of nonnegative real num-
bers. Then the sequence is called Polya frequency sequence if the attached
(infinite) matrix A is a totally nonnegative matrix.

The following result is well known [16]. It gives a sufficient and necessary
criterion for polynomials with nonnegative coefficients to have only real roots.
Note that this can be applied to the D’Arcais polynomials Pn(x). We recall
from [11] that Pn(x) = x

n!

∑n−1
k=0 a

(n)
k xk, where a

(n)
k ∈ N. Here a

(n)
n−1 = 1.

Theorem 1 (Aissen–Schoenberg–Whitney, Edrai). A finite sequence a0, . . . , an

of nonnegative real numbers is a Polya frequency sequence if and only if the
attached polynomial

∑n
k=0 akxk has only real roots.

We have shown that the example (2, 2, 1) is not a Polya frequency sequence,
which directly reflects that the polynomial 2 + 2x + x2 has a non-real root.

Now we apply the theorem to the polynomial P10(x). Actually [13,20]

P10(x) =
x

10!
(x + 1)R(x).

Here R(x) =
∑8

k=0 ak xk with ak ∈ N. Hence it is sufficient to show that the
coefficients of R(x) are not a Polya frequency sequence.

a0 = 6531840, a1 = 29758896, a2 = 28014804, a3 = 10035116,
a4 = 1709659, a5 = 147854, a6 = 6496, a7 = 134, a8 = 1.
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Then the attached matrix A (infinite rows and columns) is given by
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6531840 0 0 0 0 0 0 0 0 . . .
29758896 6531840 0 0 0 0 0 0 0 . . .
28014804 29758896 6531840 0 0 0 0 0 0 . . .
10035116 28014804 29758896 6531840 0 0 0 0 0 . . .
1709659 10035116 28014804 29758896 6531840 0 0 0 0 . . .
147854 1709659 10035116 28014804 29758896 6531840 0 0 0 . . .
6496 147854 1709659 10035116 28014804 29758896 6531840 0 0 . . .
134 6496 147854 1709659 10035116 28014804 29758896 6531840 0
1 134 6496 147854 1709659 10035116 28014804 29758896 6531840

0 1 134 6496 147854 1709659 10035116 28014804 29758896
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A matrix that violates the condition of the theorem (i.e. has negative deter-
minant) is the following 26 × 26 matrix:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10035116 28014804 29758896 6531840 0 0 0 0 0 . . .
1709659 10035116 28014804 29758896 6531840 0 0 0 0 . . .
147854 1709659 10035116 28014804 29758896 6531840 0 0 0 . . .
6496 147854 1709659 10035116 28014804 29758896 6531840 0 0 . . .
134 6496 147854 1709659 10035116 28014804 29758896 6531840 0
1 134 6496 147854 1709659 10035116 28014804 29758896 6531840

0 1 134 6496 147854 1709659 10035116 28014804 29758896
. . .

0 0 1 134 6496 147854 1709659 10035116 28014804
. . .

0 0 0 1 134 6496 147854 1709659 10035116
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It contains the rows 4–29 and columns 1–26 of the infinite Toeplitz matrix A.
Hence P10(x) has non-real roots.

For the convenience of the reader we give a second proof using the derivative
R′(x). Inserting the limiting values of the following intervals into R (x) we
observe that R (x) has (at least) one root z1 ∈ (−59,−58), z2 ∈ (−33,−32),
z3 ∈ (−18,−17), z4 ∈ (−14,−13), z7 ∈ (−2,−1), and z8 ∈ (−1, 0). Similarly
for the derivative R′ (x) we find a root z′

1 ∈ (−53,−52), z′
2 ∈ (−29,−28), z′

3 ∈
(−16,−15), z′

4 ∈ (−11,−10), z′
5 ∈ (−6,−5), z′

6 ∈ (−4,−3), and z′
7 ∈ (−1, 0).

The degree of R′ (x) is 7. Hence each of these intervals contains exactly one
(simple) root.

Firstly we note that in particular the root z′
7 ∈ (−1, 0) of R′ (x) is unique,

R′ (x) does not have a root in (−2,−1], and there is a root z7 ∈ (−2,−1) of
R (x). Since the roots of R′ (x) are simple, z′

7 could be a double root of R (x).
But this would contradict the opposite signs of the values of R (x) for the
limits of (−1, 0). (Note that there is only one root of R′ (x) in (−1, 0).) Hence
we must have z7 < z′

7 < z8. Thus a root smaller than z1 and larger than z8
of R (x) is not possible since this would imply a root of R′ (x) for x < z1 or
x > z8 and we have found that there are no such roots.

From the distribution of the roots of R′ (x) we can observe that R (x) is
increasing on (z′

3, z
′
4), decreasing on (z′

4, z
′
5), and increasing on (z′

5, z
′
6). Since

R (−6) > 0 and R (−5) > 0 with a minimum at z′
5 in between, the only chance

for the ‘missing’ zeros of R (x) would be to be in the interval (−6,−5).
We show next that R (x) is strictly positive on (−6,−5). Thus the second

derivative R′′ (x) has exactly one root in (z′
4, z

′
5) ⊃ (−10,−6) and (z′

5, z
′
6) ⊃
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Figure 1. Graph of R (x)

(−5,−4). Checking the limiting values shows that there is exactly one root of
R′′ (x) in (−9,−8) and (−5,−4). This means for the third derivative R′′′ (x)
that in between these two roots of R′′ (x) there is exactly one root of R′′′ (x).
Checking the limiting values shows that this root is in the interval (−7,−6),
which means that there is no sign change of R′′′ (x) on (−6,−5), i.e. R′′′ (x) < 0
for x ∈ (−6,−5). Expanding R (x) around −5 yields R (x) = 1632960 +
1690056 (x + 5)+1663164 (x + 5)2 + terms of higher degree. Since the third de-
rivative is negative on (−6,−5), we obtain R (x) > 1632960+1690056 (x + 5)+
1663164 (x + 5)2 for x ∈ (−6,−5). The discriminant of this quadratic polyno-
mial is negative so it does not have real roots and the same holds for R (x) on
x ∈ (−6,−5) (Fig. 1).

Similarly it is possible to show for

P11 (x) =
x

11!
(x + 1) (x + 2) (x + 3) (x + 8) R̃ (x)

with R̃ (x) an irreducible polynomial of degree 6 that it has only real roots.
This can be done by checking the limits of the intervals (−67,−66), (−39,−38),
(−22,−21), (−17,−16), (−8,−7), and (−1, 0).

Since Qn(z) = Pn(1 + z), we have found a counterexample to Conjecture 2
(ii). This implies that also (iii) has to be revised. Based on numerical investi-
gations [13,14] we propose the following revised version of Conjecture 2.
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Conjecture 2 (New). Let n be a positive integer. Then the polynomial

Pn(z) =
∑

λ�n

∏

h∈H(λ)

(
h2 + z − 1

h2

)
∈ C[z] (17)

has (i) only simple roots and (ii) real part of all non-trivial roots is negative.

Remark 1. (a) The first part of the conjecture has been proven for integral
roots and n or n − 1 equal to a prime power [12].

(b) The second part of the conjecture has been verified for n ≤ 700 ([13]).
Polynomials satisfying (ii) are called Hurwitz polynomials or stable poly-
nomials. They play an important role in the theory of dynamical systems.

4. Unimodality. Let a0, a1, . . . , an be a finite sequence of nonnegative real
numbers. The sequence is denoted unimodal if a0 ≤ a1 ≤ · · · ≤ ak−1 ≤ ak ≥
ak+1 ≥ · · · ≥ an for some k. It is denoted log-concave if a2

j ≥ aj−1 aj+1 for all
j > 0. A sequence is called ultra-log-concave if the attached sequence ak/

(
n
k

)
is

log-concave. Due to Newton (1707), a finite sequence a0, a1, . . . , an of nonneg-
ative real numbers with real roots is log-concave. Actually it is already ultra-
log-concave. The Qn(x) are polynomials with nonnegative real coefficients, but
with potentially non-real roots. This makes Conjecture 3 considerably compli-
cated.

Nevertheless, numerical calculations provide the following result.

Theorem 2. Let 1 ≤ n ≤ 1000. Then Qn(x) is ultra-log-concave. This implies
Conjecture 3 (for n ≤ 1000).

Note that for a general polynomial P (x) we do not have the property:
P (x) is unimodal if and only if P (x + 1) is unimodal. For example x2 + 2 is
not unimodal as a2 = 1 > 0 = a1 < a0 = 2 but (x + 1)2 + 1 = x2 + 2x + 3 is
unimodal.
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