Arch. Math. 112 (2019), 437–445 © 2019 Springer Nature Switzerland AG 0003-889X/19/040437-9 published online January 16, 2019 https://doi.org/10.1007/s00013-018-1286-6

Archiv der Mathematik

Height estimates for constant mean curvature graphs in Nil_3 and $\widetilde{PSL_2}(\mathbb{R})$

Antonio Bueno

Abstract. In this paper we obtain height estimates for compact, constant mean curvature vertical graphs in the homogeneous spaces Nil₃ and $\widetilde{PSL}_2(\mathbb{R})$. As a straightforward consequence, we announce a structuretype result for complete graphs defined on relatively compact domains.

Mathematics Subject Classification. 53A10, 53C30.

Keywords. Homogeneous three manifold, Height estimate, Constant mean curvature graph.

1. Introduction. In the last decades, height estimates have become a powerful tool when studying the global behavior of a certain class of immersed surfaces in some ambient space, see for instance [3,9-13,15,17]. Heinz [9] proved that if M is a compact graph in the euclidean space \mathbb{R}^3 with positive constant mean curvature H (H-surface in the following) and boundary ∂M lying on a plane II, then the maximum height that M can reach from Π is 1/H. This estimate is optimal, since it is attained by the H-hemisphere intersecting orthogonally Π . Applying the Alexandrov reflection technique yields that a compact embedded H-surface in \mathbb{R}^3 with boundary on Π has height from Π at most 2/H.

These height estimates for H-surfaces in \mathbb{R}^3 were the cornerstone for Meeks [13] in his global study of H-surfaces in \mathbb{R}^3 ; for example, he showed that there do not exist properly embedded H-surfaces with one end in \mathbb{R}^3 , and if a properly embedded H-surface has two ends, then the surface stays at bounded distance from a straight line. Later, Korevaar, Kusner, and Solomon [12] proved that a properly embedded H-surface lying inside a solid cylinder must be rotationally symmetric and hence a cylinder or an onduloid.

The author was partially supported by MICINN-FEDER Grant No. MTM2016-80313-P, Junta de Andalucía Grant No. FQM325 and FPI-MINECO Grant No. BES-2014-067663.

In [11] Korevaar, Kusner, Meeks, and Solomon obtained optimal bounds for the height of *H*-graphs and of compact, embedded *H*-surfaces when H > 1in the *hyperbolic space* \mathbb{H}^3 with boundary lying on a totally geodesic plane. In the formulation of the problem in both *space forms* \mathbb{R}^3 and \mathbb{H}^3 , the plane where ∂M lies can be chosen without specifying its orthogonal direction, as \mathbb{R}^3 and \mathbb{H}^3 are *isotropic*; in general, a riemannian manifold is isotropic if its isometry group acts transitively on the tangent bundle.

In this context, the product spaces $\Sigma^2 \times \mathbb{R}$ defined as the riemannian product of a complete riemannian surface Σ^2 and the real line \mathbb{R} are closely related to the space forms in the sense that they are highly symmetric. In [10] Hoffman, de Lira, and Rosenberg obtained height estimates for compact embedded *H*surfaces with boundary contained in a slice $\Sigma^2 \times \{t_0\}$. This result was improved by Aledo, Espinar, and Gálvez [3], exhibiting *sharp* bounds for the height of compact, embedded *H*-surfaces in $\Sigma^2 \times \mathbb{R}$ with boundary in a slice, and characterizing when equality holds. As happened in \mathbb{R}^3 and \mathbb{H}^3 , the *H*-graph in $\Sigma^2 \times \mathbb{R}$ with boundary in a slice $\Sigma^2 \times \{t_0\}$ attaining the maximum height over $\Sigma^2 \times \{t_0\}$ corresponds to the rotational *H*-hemisphere intersecting orthogonally $\Sigma^2 \times \{t_0\}$.

For the particular case when the base Σ^2 is a complete, simply connected surface with constant curvature κ , the spaces arising are the product spaces $\mathbb{M}^2(\kappa) \times \mathbb{R}$. Such product spaces belong to a two parameter family of homogeneous, simply connected 3-dimensional manifolds, the $\mathbb{E}(\kappa, \tau)$ spaces. In Section 2, we will introduce these spaces and give a geometric sense to the constants κ and τ . For instance, the product spaces correspond to the case $\tau = 0$ in the $\mathbb{E}(\kappa, \tau)$ family. In the last decade, the theory of immersed surfaces in the $\mathbb{E}(\kappa, \tau)$ spaces, and more specifically constant mean curvature and minimal surfaces, have become a fruitful theory focusing the attention of many geometers. See [1,2,5–7] and references therein for an outline of the development of this theory.

Our objective in this paper is to obtain height estimates for vertical Hgraphs in the Heisenberg space Nil₃ and in the space $\widetilde{PSL}_2(\mathbb{R})$, the universal cover of the positively oriented isometries of the hyperbolic plane \mathbb{H}^2 , which correspond to the particular choices in the $\mathbb{E}(\kappa, \tau)$ family of $\kappa = 0, \tau > 0$ and $\kappa < 0, \tau > 0$, respectively. To obtain the height estimates we will use the fact that H-graphs (or more generally, H-surfaces transverse to a Killing vector field) are stable, hence have bounded curvature at any fixed positive distance from their boundary. This behavior of the stability of H-surfaces has been exploited widely in the literature; see the proof of the Main Theorem in [18] for a global understanding of this technique in arbitrary complete 3-manifolds with bounded sectional curvature.

2. Homogeneous 3-dimensional spaces with 4-dimensional isometry group. Let $\mathbb{M}^2(\kappa)$ be the complete, simply connected surface of constant curvature $\kappa \in \mathbb{R}$. The family of homogeneous, simply connected 3-dimensional manifolds \mathbb{E} with a 4-dimensional isometry group can be defined as a family of riemannian submersions $\pi : \mathbb{E} \longrightarrow \mathbb{M}^2(\kappa)$. The *fibre* that passes through a point $p \in \mathbb{M}^2(\kappa)$ is defined as $\pi^{-1}(p)$, and translations along these fibres are ambient isometries generated by the flow of a unitary Killing vector field, ξ . The Killing vector field is related to the Levi-Civita connection $\overline{\nabla}$ of \mathbb{E} and the cross product by the formula

$$\overline{\nabla}_X \xi = \tau X \times \xi,$$

where τ is a constant named the *bundle curvature*. Both κ and τ satisfy $\kappa - 4\tau^2 \neq 0$, and after a change of orientation of \mathbb{E} we can suppose that $\tau > 0$. These spaces are denoted by $\mathbb{E}(\kappa, \tau)$, where κ, τ are the constants defined above. Depending on the value of κ and τ , we obtain the following geometries:

- If $\tau = 0$, then we have the product spaces $\mathbb{M}^2(\kappa) \times \mathbb{R}$, i.e. the space $\mathbb{S}^2(\kappa) \times \mathbb{R}$ if $\kappa > 0$, and the space $\mathbb{H}^2(\kappa) \times \mathbb{R}$ if $\kappa < 0$.
- If $\tau > 0$ and $\kappa = 0$, the $\mathbb{E}(\kappa, \tau)$ space arising is the Heisenberg group Nil₃, the Lie group of matrices

$$\left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}; a, b, c \in \mathbb{R} \right\},\$$

endowed with a one-parameter family of left-invariant metrics.

- When $\tau > 0$ and $\kappa < 0$, we obtain the space $\widetilde{PSL}_2(\mathbb{R})$, the universal cover of the positively oriented isometries of the hyperbolic plane \mathbb{H}^2 , endowed with a two-parameter family of left-invariant metrics. Up to a homothetic change of coordinates, the family of left-invariant metrics turns out to depend on one parameter.
- When $\tau > 0$ and $\kappa > 0$, the $\mathbb{E}(\kappa, \tau)$ spaces are the Berger spheres. These spaces can be realized as the 3-dimensional sphere \mathbb{S}^3 endowed with a one-parameter family (again, after a homothetic change) of metrics, which are obtained in such a way that the Hopf fibration is still a riemannian fibration, but the length of the fibres is modified.

We can give a unified model for the $\mathbb{E}(\kappa, \tau)$ spaces; when $\kappa \leq 0$ the model is global and when $\kappa > 0$ we get the universal cover of $\mathbb{E}(\kappa, \tau)$ minus one fibre. We endow \mathbb{R}^3 (if $\kappa \geq 0$) and $(\mathbb{D}(2/\sqrt{-\kappa}) \times \mathbb{R})$ (if $\kappa < 0$) with the metric

$$ds^{2} = \lambda^{2} \left(dx^{2} + dy^{2} \right) + \left(dz + \tau \lambda (ydx - xdy) \right)^{2},$$

where λ is defined as

$$\lambda = \frac{4}{4 + \kappa (x^2 + y^2)}.$$

The riemannian submersion is given by the projection onto the first two coordinates. The vector field ∂_z is the unitary Killing vector field whose flow generates the *vertical translations*. The integral curves of this flow are the fibres of the submersion, and they are complete geodesics. The fields given by

$$E_1 = \frac{1}{\lambda}\partial_x - \tau y\partial_z, \quad E_2 = \frac{1}{\lambda}\partial_y + \tau x\partial_z, \quad E_3 = \partial_z,$$

are an orthonormal basis at each point. In this framework, the angle function of an immersed, orientable surface M is defined as $\nu = \langle \eta, \partial_z \rangle$, where η is a unit normal vector field defined on M.

Henceforth, we will denote simply by $(\mathbb{E}, \langle \cdot, \cdot \rangle)$ any of the $\mathbb{E}(\kappa, \tau)$ spaces with the model given above. A *section*¹ of \mathbb{E} is a subset of the form $\{z = z_0; z_0 \in \mathbb{R}\}$, where z_0 is called the height of the section. Every such a section is a minimal surface, and when $\tau = 0$, they are totally geodesic copies of $\mathbb{M}^2(\kappa)$ that differ one from the other by a vertical translation. A *vertical graph* in \mathbb{E} is a surface with the property that it intersects each fibre of the submersion at most once. As a matter of fact, each vertical graph in \mathbb{E} can be parametrized as

$$\{(x, y, f(x, y)); (x, y) \in \Omega\},\$$

for a certain smooth function f defined in a domain Ω contained in some section $\{z = z_0\}, z_0 \in \mathbb{R}$. Note that after a vertical translation, the domain of a vertical graph can be contained in a section with any height. A graph is compact if Ω is compact and f extends to $\partial\Omega$ continuously. The *boundary* of a compact graph is defined as $f(\partial\Omega)$. A compact graph has boundary in a section if its boundary has constant height. This is equivalent to the fact that f restricted to $\partial\Omega$ is a constant function.

2.1. Stability of *H*-surfaces in the $\mathbb{E}(\kappa, \tau)$ spaces. It is a well-known fact that an *H*-surface *M* immersed in an arbitrary riemannian 3-manifold is a critical point for the area functional associated to compactly supported variations of the surface that preserve the enclosed volume. Equivalently, *M* is an *H*-surface if and only if it is a critical point for the functional Area-2*H*Vol [4]. The second variation of this functional is given by the quadratic form

$$\mathcal{Q}(f,f) = -\int_{M} \left(\Delta_M f + f(|\sigma|^2 + \operatorname{Ric}(\eta)) f dA, \quad \forall f \in C_0^{\infty}(M), \quad (2.1) \right)$$

where Δ_M is the Laplace-Beltrami operator of the surface M, $|\sigma|^2$ is the squared length of the second fundamental form of M, η is the unit normal of M, and $\operatorname{Ric}(\eta)$ is the *Ricci curvature* along the direction η . Equation (2.1) can be rewritten by defining the elliptic operator

$$\mathcal{L} = \Delta_M + |\sigma|^2 + \operatorname{Ric}(\eta) \tag{2.2}$$

and thus (2.1) is equivalent to

$$\mathcal{Q}(f,f) = -\int_{M} f\mathcal{L}f dA, \quad \forall f \in C_0^{\infty}(M).$$
(2.3)

The operator \mathcal{L} is the *Jacobi operator*, or *stability operator* of M. An orientable immersion M in an $\mathbb{E}(\kappa, \tau)$ space is said to be *stable* if and only if

$$-\int_{M} f\mathcal{L}f dA \ge 0, \quad \forall f \in C_0^{\infty}(M).$$

The non-vanishing functions $f \in C^{\infty}(M)$ lying in the kernel of \mathcal{L} are called *Jacobi functions*. If M is an orientable immersed surface in an $\mathbb{E}(\kappa, \tau)$ space and ν denotes the angle function of M, then ν is a Jacobi function for the

¹Abresch and Rosenberg also call these surfaces *umbrellas*, see [2].

stability operator \mathcal{L} [5], i.e. the elliptic equation $\mathcal{L}\nu = 0$ holds. This equation reads as

$$\Delta_M \nu + \nu \left((1 - \nu^2)(\kappa - 4\tau^2) + |\sigma|^2 + 2\tau^2 \right) = 0.$$
(2.4)

A classical theorem due to Fischer-Colbrie [8] asserts that the existence of a positive Jacobi function defined on a surface M is equivalent to the stability of the surface.

Consider now a vertical graph M in $\mathbb{E}(\kappa, \tau)$. As by definition M intersects each fibre of the space $\mathbb{E}(\kappa, \tau)$ at most once, then M is transversal to the vertical Killing vector field ∂_z at every interior point. This is equivalent to the fact that the angle function $\nu = \langle \eta, \partial_z \rangle$ has no zeros at any interior point of the graph. As a matter of fact, each vertical H-graph in an $\mathbb{E}(\kappa, \tau)$ space is a stable surface, since either the function ν or $-\nu$ is positive.

3. Height estimates. In this section, H will denote a positive constant and $(\mathbb{E}, \langle \cdot, \cdot \rangle)$ will be either the space Nil₃ or $\widetilde{PSL_2}(\mathbb{R})$ with the corresponding metric. In particular, as in both spaces we have $\kappa \leq 0$, \mathbb{E} is given by the global model defined in Section 2. The theorem that we prove is the following:

Theorem 1. Let H be a positive constant and suppose that

$$4H^2 + \kappa > 0.$$

Then, there exists a constant $C = C(H, \kappa, \tau) > 0$, such that for every vertical H-graph M in \mathbb{E} whose positive height is realized and with boundary contained in a section, the height that M reaches over that section is at most C.

In the space $\widetilde{PSL}_2(\mathbb{R})$, the hypothesis $4H^2 + \kappa > 0$ has a relevant geometric sense, since this condition for H and κ ensures the existence of a rotationally symmetric H-sphere. In general, in an $\mathbb{E}(\kappa, \tau)$ space the quantity $\sqrt{-\kappa}/2$ is known as the *critical mean curvature*. There exists an H-sphere in an $\mathbb{E}(\kappa, \tau)$ space if and only if $H > \sqrt{-\kappa}/2$.

Before proving Theorem 1 we recall a technical lemma that guarantees a uniform bound of the second fundamental form for *H*-graphs in \mathbb{E} . See [18] for a detailed proof.

Lemma 2. Let M be a vertical H-graph in \mathbb{E} , with boundary of M in $\{z = 0\}$. If d > 0, there is a constant K, depending on d and \mathbb{E} , such that $|\sigma(p)| < K$ for all p in M with $d(p, \partial M) > d$.

Now, we stand in position to prove Theorem 1.

Proof. Arguing by contradiction, suppose that the height estimate in the statement of the theorem does not hold. Then, there exists a sequence of compact vertical *H*-graphs M_n , whose boundaries are contained in sections of the form $\{z = z_n\}$, and such that if we denote by h_n the height of each M_n from $\{z = z_n\}$, then $\{h_n\} \to \infty$. After a vertical translation we can suppose that all the boundaries are contained in the section $\Pi = \{z = 0\}$. By the mean curvature comparison principle, each graph is contained in one of the half-spaces $\{z \ge 0\}$ or $\{z \le 0\}$. Passing to a subsequence we can suppose that all the graphs lie above Π , i.e. they lie in the half-space $\{z \ge 0\}$. Let η_n be the unit normal to each M_n such that the mean curvature with respect to η_n is H. In particular, each M_n is downwards oriented as a consequence again of the mean curvature comparison principle, and thus every angle function $\nu_n = \langle \eta_n, \partial_z \rangle$ is a negative function on M_n . Fix some positive number d and let us now denote $M_n^* := \{p \in M_n; d(p, \partial M_n) > 2d\}$. As the heights of M_n from Π tend to infinity, it is clear that M_n^* is a non-empty, possibly non-connected, graph over Π for n large enough. In this situation, Lemma 2 ensures us that there exists a positive constant Λ in such a way that the second fundamental form $\sigma_{M_n^*}$ of each surface M_n^* satisfies $|\sigma_{M_n^*}| < \Lambda$.

Consider for each n the connected component M_n^0 of M_n^* of maximum height from II. Let $x_n \in M_n^0$ be the point where this maximum height is attained, and consider the isometry Φ_n that sends x_n to the origin. Now, define $M_n^1 = \Phi_n(M_n^0)$. The length of the second fundamental form of each graph M_n^1 is uniformly bounded by $\Lambda > 0$, as all the M_n^1 are obtained by translations of subsets of M_n^* . Moreover, the distances in M_n^1 of the origin to ∂M_n^1 diverge to ∞ . Now, by a standard compactness argument for a sequence of surfaces with bounded curvature, we deduce that, up to a subsequence, there are subsets $K_n \subset M_n^1$ that converge uniformly on compact sets in the C^2 topology to a complete, possibly non-connected, H-surface M_{∞} that passes through the origin. From now on, we will consider the connected component of M_{∞} that passes through the origin, and we will still denote this component by M_{∞} . Let $\nu_{\infty} := \langle \eta_{\infty}, \partial_z \rangle$ denote the angle function of M_{∞} , where here η_{∞} is the unit normal of M_{∞} . Since M_{∞} is a limit of the downwards-oriented graphs M_n^1 , we see that ν_{∞} is non-positive. We claim that ν_{∞} cannot be bounded away from zero; indeed, assume that $\nu_{\infty}^2 \ge c > 0$ for some c > 0. Consider the projection $\mathfrak{p}: M_{\infty} \to \mathbb{M}^2(\kappa)$, let $\langle , \rangle_{\text{proj}}$ be the induced metric on M_{∞} via \mathfrak{p} , and let \langle , \rangle be the induced ambient metric on M_{∞} .

As \langle, \rangle is complete and it is well known that $\nu_{\infty}^2 \langle, \rangle \leq \langle, \rangle_{\text{proj}}$, we conclude by $\nu_{\infty}^2 \geq c > 0$ that $\langle, \rangle_{\text{proj}}$ is also complete. In particular, \mathfrak{p} is a local isometry from $(M_{\infty}, \langle, \rangle_{\text{proj}})$ onto $\mathbb{M}^2(\kappa)$. In these conditions, \mathfrak{p} is necessarily a (surjective) covering map over the simply connected surface $\mathbb{M}^2(\kappa)$, and thus M_{∞} is an entire vertical graph. Let \mathcal{S} be the sphere with constant mean curvature H; the condition $4H^2 + \kappa > 0$ ensures us the existence of such a sphere for the case $\kappa < 0$. Let $\mathcal{S}(0)$ be such a sphere centered at the origin. Translate $\mathcal{S}(0)$ down until it is below the graph of M_{∞} . Then translate the sphere back up until it touches M_{∞} for the first time. By the maximum principle the sphere equals M_{∞} , which contradicts that M_{∞} is not compact. Therefore, there must exist a sequence of $p_n \in M_{\infty}$ with $\nu_{\infty}(p_n) \to 0$.

Let Θ_n be an isometry in \mathbb{E} that takes each point p_n to the origin $\mathfrak{o} \in \mathbb{E}$, and define $M_{\infty}^n = \Theta_n(M_{\infty})$, which is a sequence of complete, stable surfaces with constant mean curvature H passing through \mathfrak{o} and whose angle functions satisfy $\nu_{\infty}^n \leq 0$. Again, standard elliptic theory ensures that, up to a subsequence, the surfaces M_{∞}^n converge to a stable H-surface M_{∞}^* , passing through \mathfrak{o} . As this convergence is C^2 , the angle function ν_{∞}^* of M_{∞}^* satisfies $\nu_{\infty}^* \leq 0$ and $\nu_{\infty}^*(\mathfrak{o}) = 0$. Also, the stability operators \mathcal{L}_n converge to the stability operator \mathcal{L}_{∞} of the limit surface M_{∞}^* . The maximum principle for elliptic operators applied to \mathcal{L}_{∞} yields that any non-zero solution to (2.4) changes sign around any of its zeros. As \mathcal{L}_{∞} also admits the zero function as a solution and ν_{∞}^* vanishes at \mathfrak{o} , the condition $\nu_{\infty}^* \leq 0$ implies that ν_{∞}^* is identically zero. Therefore the limit surface M_{∞}^* is contained in a flat cylinder $\gamma \times \mathbb{R}$, for a planar curve γ in \mathbb{R}^2 or \mathbb{H}^2 (depending on whether $\kappa = 0$ or $\kappa < 0$, respectively). An analytic prolongation argument yields that the maximal surface containing M_{∞}^* has to be the complete flat cylinder $\gamma \times \mathbb{R}$. This cylinder is an *H*-cylinder as well, and thus the geodesic curvature of γ satisfies $\kappa_{\gamma} = 2H$. This implies that γ is a closed curve in \mathbb{R}^2 or \mathbb{H}^2 (depending if $\kappa = 0$ or $\kappa < 0$, respectively). In the cylinder $\gamma \times \mathbb{R}$, the operator \mathcal{L}_{∞} has the expression

$$\mathcal{L}_{\infty} = \Delta_M + \kappa_{\gamma}^2 + \kappa.$$

As all the surfaces M_{∞}^n are stable, the limit cylinder M_{∞}^* is also a stable surface. But a complete, vertical *H*-cylinder in an $\mathbb{E}(\kappa, \tau)$ is stable if and only if [14]

$$\kappa_{\gamma}^2 + \kappa \le 0.$$

Thus, the limit cylinder is stable if and only if $4H^2 + \kappa \leq 0$, which is a contradiction with the hypothesis $4H^2 + \kappa > 0$. This contradiction completes the proof of Theorem 1.

Corollary 3. If H is a positive constant such that

 $4H^2 + \kappa > 0,$

then there do not exist complete vertical H-graphs defined over relatively compact domains $\Omega \subset \{z = z_0\}$ in the spaces Nil₃ and $\widetilde{PSL_2}(\mathbb{R})$.

Proof. Let M be a complete vertical H-graph over a relatively compact domain $\Omega \subset \{z = z_0\}$. Without losing generality we can suppose that M lies in the half-space $\{z \leq 0\}$ and intersects tangentially the section $\{z = 0\}$. Let C be the constant appearing in Theorem 1. Then, as the height of M with respect to the section $\{z = 0\}$ is unbounded, there exists some $d_0 > 0$ such that if we intersect M with the half-space $\{z \geq -d_0\}$, we obtain a compact H-graph with boundary lying in the section $\{z = -d_0\}$ and with height over $\{z = -d_0\}$ greater than C, contradicting Theorem 1.

We finish this paper with two observations concerning further discussions of height estimates of H-graphs in Nil₃ and $\widetilde{PSL}_2(\mathbb{R})$.

First, although the constant C in Theorem 1 is not explicit, for some values of H we can derive an estimate for it. Let $S : \mathbb{E} \to \mathbb{R}$ denote the *scalar curvature* of \mathbb{E} , and suppose that there exists some constant c > 0 such that the inequality

$$3H^2 + S(x) \ge c \tag{3.1}$$

holds for every $x \in \mathbb{E}$. It was proved by Rosenberg in [16] that if Σ is a stable *H*-surface immersed in \mathbb{E} , for every $p \in \Sigma$ one has

$$d_{\Sigma}(p,\partial\Sigma) \le \frac{2\pi}{\sqrt{3c}}.$$

Recall also that if Σ is an immersed surface in \mathbb{E} , the intrinsic distance d_{Σ} is always less or equal than the ambient distance. Thus, whenever inequality (3.1) holds for some c > 0 and every $x \in \mathbb{E}$, the height of an *H*-graph is less or equal than $2\pi/\sqrt{3c}$. In particular, the constant *C* in Theorem 1 can be bounded from above by $2\pi/\sqrt{3c}$.

Second we point out that $2\pi/\sqrt{3c}$ is not optimal. Indeed, denote by $\mathcal{S}^{H,\kappa,\tau}$ the rotationally symmetric *H*-sphere in Nil₃ or $\widetilde{PSL}_2(\mathbb{R})$, and by $\overline{\mathcal{S}_+^{H,\kappa,\tau}}$ the upper, closed *H*-hemisphere. For *H* big enough, the height of $\overline{\mathcal{S}_+^{H,\kappa,\tau}}$ tends to zero: see [20,21] for explicit expressions of the height of $\overline{\mathcal{S}_+^{H,\kappa,\tau}}$ in the spaces Nil₃ and $\widetilde{PSL}_2(\mathbb{R})$. But for *H* large enough inequality (3.1) holds, proving that the estimate $2\pi/\sqrt{3c}$ is not sharp.

Motivated by the discussions made in the Introduction about the height estimates for *H*-graphs in the space forms \mathbb{R}^3 and \mathbb{H}^3 , and in the product spaces $\mathbb{M}^2(\kappa) \times \mathbb{R}$, we suggest that the maximum height that an *H*-graph *M* should attain in both Nil₃ and $\widetilde{PSL_2}(\mathbb{R})$ is the height of the upper, closed *H*hemisphere $\overline{\mathcal{S}^{H,\kappa,\tau}_+}$, with equality at some point if and only if *M* agrees with $\overline{\mathcal{S}^{H,\kappa,\tau}_+}$.

Acknowledgements. The author wants to express his gratitude to the referee for helpful comments and observations.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- Abresch, U., Rosenberg, H.: A Hopf differential for constant mean curvature surfaces in S² × ℝ and H² × ℝ. Acta Math. 193, 141–174 (2004)
- [2] Abresch, U., Rosenberg, H.: Generalized Hopf differentials. Mat. Contemp. 2(8), 1–28 (2005)
- [3] Aledo, J.A., Espinar, J.M., Gálvez, J.A.: Height estimates for surfaces with positive constant mean curvature in $\mathbb{M}^2 \times \mathbb{R}$. Ill. J. Math. **52**, 203–211 (2008)
- [4] Barbosa, J.L., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math Z. 197, 123–138 (1988)
- [5] Daniel, B.: Isometric immersions into 3-dimensional homogeneous manifolds. Comment. Math. Helv. 8(2), 87–131 (2007)
- [6] Daniel, B., Hauswirth, L., Mira, P.: Constant mean curvature surfaces in homogeneous manifolds. Korea Institute for Advanced Study, Seoul, Korea (2009)
- [7] Fernández, I., Mira, P.: Constant mean curvature surfaces in 3-dimensional Thurston geometries. In: Proceedings of the International Congress of Mathematicians, Volume II (Invited Conferences), pp. 830–861. Hindustan Book Agency, New Delhi (2010)
- [8] Fischer-Colbrie, D.: On complete minimal surfaces with finite Morse index in three-manifolds. Invent. Math. 82, 121–132 (1985)

- [9] Heinz, E.: On the nonexistence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary. Arch. Ration. Mech. Anal. 35, 249–252 (1969)
- [10] Hoffman, D., De Lira, J., Rosenberg, H.: Constant mean curvature surfaces in $\mathbb{M}^2 \times \mathbb{R}$. Trans. Am. Math. Soc. **358**, 491–507 (2006)
- [11] Korevaar, N., Kusner, R., Meeks III, W.H., Solomon, B.: Constant mean curvature surfaces in hyperbolic space. Am. J. Math. 114, 1–43 (1992)
- [12] Korevaar, N., Kusner, R., Solomon, B.: The structure of complete embedded surfaces with constant mean curvature. J. Differ. Geom. 30, 465–503 (1989)
- [13] Meeks III, W.H.: The topology and geometry of embedded surfaces of constant mean curvature. J. Differ. Geom. 27, 539–552 (1988)
- [14] Manzano, J.M., Pérez, J., Rodríguez, M.: Parabolic stable surfaces with constant mean curvature. Calc. Var. Part. Differ. Equ. 4(2), 137–152 (2011)
- [15] Rosenberg, H.: Hypersurfaces of constant curvature in space forms. Bull. Sci. Math. 117, 211–239 (1993)
- [16] Rosenberg, H.: Constant mean curvature surfaces in homogeneously regular 3manifolds. Bull. Austral. Math. Soc. 7(4), 227–238 (2006)
- [17] Rosenberg, H., Sa Earp, R.: The geometry of properly embedded special surfaces in \mathbb{R}^3 , e.g., surfaces satisfying aH + bK = 1, where a and b are positive. Duke Math. J **73**, 291–306 (1994)
- [18] Rosenberg, H., Souam, R., Toubiana, E.: General curvature estimates for stable *H*-surfaces in 3-manifolds and applications. J. Differ. Geom. 84, 623–648 (2010)
- [19] Serrin, J.: On surfaces with constant mean curvature which span a given space curve. Math. Z. 112, 77–88 (1969)
- [20] Tomter, P.: Constant mean curvature surfaces in the Heisenberg group. Proc. Sympos. Pure Math. 5(4), 485–495 (1993)
- [21] Torralbo, F.: Rotationally invariant constant mean curvature surfaces in homogeneous 3-manifolds. Diff. Geo. Appl. 2(8), 593–607 (2010)

ANTONIO BUENO Departamento de Geometría y Topología Universidad de Granada 18071 Granada Spain e-mail: jabueno@ugr.es

Received: 30 September 2018