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Height estimates for constant mean curvature graphs in Nil3
and ˜PSL2(R)

Antonio Bueno

Abstract. In this paper we obtain height estimates for compact, con-
stant mean curvature vertical graphs in the homogeneous spaces Nil3 and
˜PSL2(R). As a straightforward consequence, we announce a structure-
type result for complete graphs defined on relatively compact domains.
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1. Introduction. In the last decades, height estimates have become a powerful
tool when studying the global behavior of a certain class of immersed surfaces
in some ambient space, see for instance [3,9–13,15,17]. Heinz [9] proved that if
M is a compact graph in the euclidean space R

3 with positive constant mean
curvature H (H-surface in the following) and boundary ∂M lying on a plane
Π, then the maximum height that M can reach from Π is 1/H. This estimate is
optimal, since it is attained by the H-hemisphere intersecting orthogonally Π.
Applying the Alexandrov reflection technique yields that a compact embedded
H-surface in R

3 with boundary on Π has height from Π at most 2/H.
These height estimates for H-surfaces in R

3 were the cornerstone for Meeks
[13] in his global study of H-surfaces in R

3; for example, he showed that
there do not exist properly embedded H-surfaces with one end in R

3, and
if a properly embedded H-surface has two ends, then the surface stays at
bounded distance from a straight line. Later, Korevaar, Kusner, and Solomon
[12] proved that a properly embedded H-surface lying inside a solid cylinder
must be rotationally symmetric and hence a cylinder or an onduloid.
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In [11] Korevaar, Kusner, Meeks, and Solomon obtained optimal bounds
for the height of H-graphs and of compact, embedded H-surfaces when H > 1
in the hyperbolic space H

3 with boundary lying on a totally geodesic plane.
In the formulation of the problem in both space forms R

3 and H

3, the plane
where ∂M lies can be chosen without specifying its orthogonal direction, as
R

3 and H

3 are isotropic; in general, a riemannian manifold is isotropic if its
isometry group acts transitively on the tangent bundle.

In this context, the product spaces Σ2×R defined as the riemannian product
of a complete riemannian surface Σ2 and the real line R are closely related to
the space forms in the sense that they are highly symmetric. In [10] Hoffman,
de Lira, and Rosenberg obtained height estimates for compact embedded H-
surfaces with boundary contained in a slice Σ2×{t0}. This result was improved
by Aledo, Espinar, and Gálvez [3], exhibiting sharp bounds for the height
of compact, embedded H-surfaces in Σ2 × R with boundary in a slice, and
characterizing when equality holds. As happened in R

3 and H

3, the H-graph
in Σ2×R with boundary in a slice Σ2×{t0} attaining the maximum height over
Σ2×{t0} corresponds to the rotational H-hemisphere intersecting orthogonally
Σ2 × {t0}.

For the particular case when the base Σ2 is a complete, simply connected
surface with constant curvature κ, the spaces arising are the product spaces
M

2(κ) × R. Such product spaces belong to a two parameter family of ho-
mogeneous, simply connected 3-dimensional manifolds, the E(κ, τ) spaces. In
Section 2, we will introduce these spaces and give a geometric sense to the con-
stants κ and τ . For instance, the product spaces correspond to the case τ = 0
in the E(κ, τ) family. In the last decade, the theory of immersed surfaces in
the E(κ, τ) spaces, and more specifically constant mean curvature and minimal
surfaces, have become a fruitful theory focusing the attention of many geome-
ters. See [1,2,5–7] and references therein for an outline of the development of
this theory.

Our objective in this paper is to obtain height estimates for vertical H-
graphs in the Heisenberg space Nil3 and in the space ˜PSL2(R), the universal
cover of the positively oriented isometries of the hyperbolic plane H

2, which
correspond to the particular choices in the E(κ, τ) family of κ = 0, τ > 0 and
κ < 0, τ > 0, respectively. To obtain the height estimates we will use the fact
that H-graphs (or more generally, H-surfaces transverse to a Killing vector
field) are stable, hence have bounded curvature at any fixed positive distance
from their boundary. This behavior of the stability of H-surfaces has been
exploited widely in the literature; see the proof of the Main Theorem in [18]
for a global understanding of this technique in arbitrary complete 3-manifolds
with bounded sectional curvature.

2. Homogeneous 3-dimensional spaces with 4-dimensional isometry group.
Let M

2(κ) be the complete, simply connected surface of constant curvature
κ ∈ R. The family of homogeneous, simply connected 3-dimensional manifolds
E with a 4-dimensional isometry group can be defined as a family of riemannian
submersions π : E −→ M

2(κ). The fibre that passes through a point p ∈ M

2(κ)
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is defined as π−1(p), and translations along these fibres are ambient isometries
generated by the flow of a unitary Killing vector field, ξ. The Killing vector
field is related to the Levi-Civita connection ∇ of E and the cross product by
the formula

∇Xξ = τX × ξ,

where τ is a constant named the bundle curvature. Both κ and τ satisfy κ −
4τ2 �= 0, and after a change of orientation of E we can suppose that τ > 0.
These spaces are denoted by E(κ, τ), where κ, τ are the constants defined
above. Depending on the value of κ and τ , we obtain the following geometries:

• If τ = 0, then we have the product spaces M

2(κ) × R, i.e. the space
S

2(κ) × R if κ > 0, and the space H

2(κ) × R if κ < 0.
• If τ > 0 and κ = 0, the E(κ, τ) space arising is the Heisenberg group

Nil3, the Lie group of matrices
⎧
⎨

⎩

⎛

⎝
1 a b
0 1 c
0 0 1

⎞

⎠ ; a, b, c ∈ R

⎫
⎬

⎭
,

endowed with a one-parameter family of left-invariant metrics.
• When τ > 0 and κ < 0, we obtain the space ˜PSL2(R), the universal

cover of the positively oriented isometries of the hyperbolic plane H

2,
endowed with a two-parameter family of left-invariant metrics. Up to
a homothetic change of coordinates, the family of left-invariant metrics
turns out to depend on one parameter.

• When τ > 0 and κ > 0, the E(κ, τ) spaces are the Berger spheres. These
spaces can be realized as the 3-dimensional sphere S

3 endowed with a one-
parameter family (again, after a homothetic change) of metrics, which
are obtained in such a way that the Hopf fibration is still a riemannian
fibration, but the length of the fibres is modified.

We can give a unified model for the E(κ, τ) spaces; when κ ≤ 0 the model is
global and when κ > 0 we get the universal cover of E(κ, τ) minus one fibre.
We endow R

3 (if κ ≥ 0) and
(
D(2/

√−κ) × R

)
(if κ < 0) with the metric

ds2 = λ2
(
dx2 + dy2

)
+

(
dz + τλ(ydx − xdy)

)2
,

where λ is defined as

λ =
4

4 + κ(x2 + y2)
.

The riemannian submersion is given by the projection onto the first two co-
ordinates. The vector field ∂z is the unitary Killing vector field whose flow
generates the vertical translations. The integral curves of this flow are the
fibres of the submersion, and they are complete geodesics. The fields given by

E1 =
1
λ

∂x − τy∂z, E2 =
1
λ

∂y + τx∂z, E3 = ∂z,

are an orthonormal basis at each point. In this framework, the angle function
of an immersed, orientable surface M is defined as ν = 〈η, ∂z〉, where η is a
unit normal vector field defined on M .



440 A. Bueno Arch. Math.

Henceforth, we will denote simply by
(
E, 〈·, ·〉) any of the E(κ, τ) spaces

with the model given above. A section1 of E is a subset of the form {z =
z0; z0 ∈ R}, where z0 is called the height of the section. Every such a section
is a minimal surface, and when τ = 0, they are totally geodesic copies of M

2(κ)
that differ one from the other by a vertical translation. A vertical graph in E

is a surface with the property that it intersects each fibre of the submersion at
most once. As a matter of fact, each vertical graph in E can be parametrized
as

{
(x, y, f(x, y)); (x, y) ∈ Ω

}
,

for a certain smooth function f defined in a domain Ω contained in some
section {z = z0}, z0 ∈ R. Note that after a vertical translation, the domain
of a vertical graph can be contained in a section with any height. A graph
is compact if Ω is compact and f extends to ∂Ω continuously. The boundary
of a compact graph is defined as f(∂Ω). A compact graph has boundary in a
section if its boundary has constant height. This is equivalent to the fact that
f restricted to ∂Ω is a constant function.

2.1. Stability of H-surfaces in the E(κ, τ) spaces. It is a well-known fact that
an H-surface M immersed in an arbitrary riemannian 3-manifold is a critical
point for the area functional associated to compactly supported variations of
the surface that preserve the enclosed volume. Equivalently, M is an H-surface
if and only if it is a critical point for the functional Area-2HVol [4]. The second
variation of this functional is given by the quadratic form

Q(f, f) = −
∫

M

(
ΔMf + f(|σ|2 + Ric(η)

)
fdA, ∀f ∈ C∞

0 (M), (2.1)

where ΔM is the Laplace-Beltrami operator of the surface M , |σ|2 is the
squared length of the second fundamental form of M , η is the unit normal
of M , and Ric(η) is the Ricci curvature along the direction η. Equation (2.1)
can be rewritten by defining the elliptic operator

L = ΔM + |σ|2 + Ric(η) (2.2)

and thus (2.1) is equivalent to

Q(f, f) = −
∫

M

fLfdA, ∀f ∈ C∞
0 (M). (2.3)

The operator L is the Jacobi operator, or stability operator of M . An orientable
immersion M in an E(κ, τ) space is said to be stable if and only if

−
∫

M

fLfdA ≥ 0, ∀f ∈ C∞
0 (M).

The non-vanishing functions f ∈ C∞(M) lying in the kernel of L are called
Jacobi functions. If M is an orientable immersed surface in an E(κ, τ) space
and ν denotes the angle function of M , then ν is a Jacobi function for the

1Abresch and Rosenberg also call these surfaces umbrellas, see [2].
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stability operator L [5], i.e. the elliptic equation Lν = 0 holds. This equation
reads as

ΔMν + ν
(
(1 − ν2)(κ − 4τ2) + |σ|2 + 2τ2

)
= 0. (2.4)

A classical theorem due to Fischer-Colbrie [8] asserts that the existence of a
positive Jacobi function defined on a surface M is equivalent to the stability
of the surface.

Consider now a vertical graph M in E(κ, τ). As by definition M intersects
each fibre of the space E(κ, τ) at most once, then M is transversal to the
vertical Killing vector field ∂z at every interior point. This is equivalent to the
fact that the angle function ν = 〈η, ∂z〉 has no zeros at any interior point of
the graph. As a matter of fact, each vertical H-graph in an E(κ, τ) space is a
stable surface, since either the function ν or −ν is positive.

3. Height estimates. In this section, H will denote a positive constant and
(
E, 〈·, ·〉) will be either the space Nil3 or ˜PSL2(R) with the corresponding

metric. In particular, as in both spaces we have κ ≤ 0, E is given by the global
model defined in Section 2. The theorem that we prove is the following:

Theorem 1. Let H be a positive constant and suppose that

4H2 + κ > 0.

Then, there exists a constant C = C(H,κ, τ) > 0, such that for every vertical
H-graph M in E whose positive height is realized and with boundary contained
in a section, the height that M reaches over that section is at most C.

In the space ˜PSL2(R), the hypothesis 4H2+κ > 0 has a relevant geometric
sense, since this condition for H and κ ensures the existence of a rotationally
symmetric H-sphere. In general, in an E(κ, τ) space the quantity

√−κ/2 is
known as the critical mean curvature. There exists an H-sphere in an E(κ, τ)
space if and only if H >

√−κ/2.
Before proving Theorem 1 we recall a technical lemma that guarantees a

uniform bound of the second fundamental form for H-graphs in E. See [18] for
a detailed proof.

Lemma 2. Let M be a vertical H-graph in E, with boundary of M in {z = 0}.
If d > 0, there is a constant K, depending on d and E, such that |σ(p)| < K
for all p in M with d(p, ∂M) > d.

Now, we stand in position to prove Theorem 1.

Proof. Arguing by contradiction, suppose that the height estimate in the state-
ment of the theorem does not hold. Then, there exists a sequence of compact
vertical H-graphs Mn, whose boundaries are contained in sections of the form
{z = zn}, and such that if we denote by hn the height of each Mn from
{z = zn}, then {hn} → ∞. After a vertical translation we can suppose that
all the boundaries are contained in the section Π = {z = 0}. By the mean cur-
vature comparison principle, each graph is contained in one of the half-spaces
{z ≥ 0} or {z ≤ 0}. Passing to a subsequence we can suppose that all the
graphs lie above Π, i.e. they lie in the half-space {z ≥ 0}. Let ηn be the unit
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normal to each Mn such that the mean curvature with respect to ηn is H. In
particular, each Mn is downwards oriented as a consequence again of the mean
curvature comparison principle, and thus every angle function νn = 〈ηn, ∂z〉 is
a negative function on Mn. Fix some positive number d and let us now denote
M∗

n := {p ∈ Mn; d(p, ∂Mn) > 2d}. As the heights of Mn from Π tend to
infinity, it is clear that M∗

n is a non-empty, possibly non-connected, graph over
Π for n large enough. In this situation, Lemma 2 ensures us that there exists
a positive constant Λ in such a way that the second fundamental form σM∗

n
of

each surface M∗
n satisfies |σM∗

n
| < Λ.

Consider for each n the connected component M0
n of M∗

n of maximum
height from Π. Let xn ∈ M0

n be the point where this maximum height is
attained, and consider the isometry Φn that sends xn to the origin. Now, define
M1

n = Φn(M0
n). The length of the second fundamental form of each graph M1

n

is uniformly bounded by Λ > 0, as all the M1
n are obtained by translations of

subsets of M∗
n. Moreover, the distances in M1

n of the origin to ∂M1
n diverge to

∞. Now, by a standard compactness argument for a sequence of surfaces with
bounded curvature, we deduce that, up to a subsequence, there are subsets
Kn ⊂ M1

n that converge uniformly on compact sets in the C2 topology to
a complete, possibly non-connected, H-surface M∞ that passes through the
origin. From now on, we will consider the connected component of M∞ that
passes through the origin, and we will still denote this component by M∞ . Let
ν∞ := 〈η∞, ∂z〉 denote the angle function of M∞, where here η∞ is the unit
normal of M∞. Since M∞ is a limit of the downwards-oriented graphs M1

n, we
see that ν∞ is non-positive. We claim that ν∞ cannot be bounded away from
zero; indeed, assume that ν2

∞ ≥ c > 0 for some c > 0. Consider the projection
p : M∞ → M

2(κ), let 〈, 〉proj be the induced metric on M∞ via p, and let 〈, 〉
be the induced ambient metric on M∞.

As 〈, 〉 is complete and it is well known that ν2
∞〈, 〉 ≤ 〈, 〉proj, we conclude by

ν2
∞ ≥ c > 0 that 〈, 〉proj is also complete. In particular, p is a local isometry from

(M∞, 〈, 〉proj) onto M

2(κ). In these conditions, p is necessarily a (surjective)
covering map over the simply connected surface M

2(κ), and thus M∞ is an
entire vertical graph. Let S be the sphere with constant mean curvature H;
the condition 4H2 + κ > 0 ensures us the existence of such a sphere for the
case κ < 0. Let S(0) be such a sphere centered at the origin. Translate S(0)
down until it is below the graph of M∞. Then translate the sphere back up
until it touches M∞ for the first time. By the maximum principle the sphere
equals M∞, which contradicts that M∞ is not compact. Therefore, there must
exist a sequence of pn ∈ M∞ with ν∞(pn) → 0.

Let Θn be an isometry in E that takes each point pn to the origin o ∈ E,
and define Mn

∞ = Θn(M∞), which is a sequence of complete, stable surfaces
with constant mean curvature H passing through o and whose angle functions
satisfy νn

∞ ≤ 0. Again, standard elliptic theory ensures that, up to a subse-
quence, the surfaces Mn

∞ converge to a stable H-surface M∗
∞, passing through

o. As this convergence is C2, the angle function ν∗
∞ of M∗

∞ satisfies ν∗
∞ ≤ 0 and

ν∗
∞(o) = 0. Also, the stability operators Ln converge to the stability operator

L∞ of the limit surface M∗
∞.
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The maximum principle for elliptic operators applied to L∞ yields that
any non-zero solution to (2.4) changes sign around any of its zeros. As L∞
also admits the zero function as a solution and ν∗

∞ vanishes at o, the condition
ν∗

∞ ≤ 0 implies that ν∗
∞ is identically zero. Therefore the limit surface M∗

∞ is
contained in a flat cylinder γ ×R, for a planar curve γ in R

2 or H

2 (depending
on whether κ = 0 or κ < 0, respectively). An analytic prolongation argument
yields that the maximal surface containing M∗

∞ has to be the complete flat
cylinder γ × R. This cylinder is an H-cylinder as well, and thus the geodesic
curvature of γ satisfies κγ = 2H. This implies that γ is a closed curve in R

2

or H

2 (depending if κ = 0 or κ < 0, respectively). In the cylinder γ × R, the
operator L∞ has the expression

L∞ = ΔM + κ2
γ + κ.

As all the surfaces Mn
∞ are stable, the limit cylinder M∗

∞ is also a stable
surface. But a complete, vertical H-cylinder in an E(κ, τ) is stable if and only
if [14]

κ2
γ + κ ≤ 0.

Thus, the limit cylinder is stable if and only if 4H2 + κ ≤ 0, which is a
contradiction with the hypothesis 4H2 + κ > 0. This contradiction completes
the proof of Theorem 1. �

Corollary 3. If H is a positive constant such that

4H2 + κ > 0,

then there do not exist complete vertical H-graphs defined over relatively com-
pact domains Ω ⊂ {z = z0} in the spaces Nil3 and ˜PSL2(R).

Proof. Let M be a complete vertical H-graph over a relatively compact domain
Ω ⊂ {z = z0}. Without losing generality we can suppose that M lies in the
half-space {z ≤ 0} and intersects tangentially the section {z = 0}. Let C be
the constant appearing in Theorem 1. Then, as the height of M with respect
to the section {z = 0} is unbounded, there exists some d0 > 0 such that if
we intersect M with the half-space {z ≥ −d0}, we obtain a compact H-graph
with boundary lying in the section {z = −d0} and with height over {z = −d0}
greater than C, contradicting Theorem 1. �

We finish this paper with two observations concerning further discussions
of height estimates of H-graphs in Nil3 and ˜PSL2(R).

First, although the constant C in Theorem 1 is not explicit, for some values
of H we can derive an estimate for it. Let S : E → R denote the scalar curvature
of E, and suppose that there exists some constant c > 0 such that the inequality

3H2 + S(x) ≥ c (3.1)

holds for every x ∈ E. It was proved by Rosenberg in [16] that if Σ is a stable
H-surface immersed in E, for every p ∈ Σ one has

dΣ(p, ∂Σ) ≤ 2π√
3c

.
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Recall also that if Σ is an immersed surface in E, the intrinsic distance dΣ

is always less or equal than the ambient distance. Thus, whenever inequality
(3.1) holds for some c > 0 and every x ∈ E, the height of an H-graph is less
or equal than 2π/

√
3c. In particular, the constant C in Theorem 1 can be

bounded from above by 2π/
√

3c.
Second we point out that 2π/

√
3c is not optimal. Indeed, denote by SH,κ,τ

the rotationally symmetric H-sphere in Nil3 or ˜PSL2(R), and by SH,κ,τ
+ the

upper, closed H-hemisphere. For H big enough, the height of SH,κ,τ
+ tends to

zero: see [20,21] for explicit expressions of the height of SH,κ,τ
+ in the spaces

Nil3 and ˜PSL2(R). But for H large enough inequality (3.1) holds, proving that
the estimate 2π/

√
3c is not sharp.

Motivated by the discussions made in the Introduction about the height
estimates for H-graphs in the space forms R

3 and H

3, and in the product
spaces M

2(κ) × R, we suggest that the maximum height that an H-graph M

should attain in both Nil3 and ˜PSL2(R) is the height of the upper, closed H-
hemisphere SH,κ,τ

+ , with equality at some point if and only if M agrees with

SH,κ,τ
+ .
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