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The Marcinkiewicz multiplier theorem revisited
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Abstract. We provide a complete proof of an optimal version of the
Marcinkiewicz multiplier theorem and discuss a relevant example.

Mathematics Subject Classification. Primary 42B15; Secondary 42B25.

Keywords. Multiplier theorems, Sobolev spaces, Interpolation.

1. Introduction and statement of results. We revisit a product-type Sobolev
space version of the Marcinkiewicz multiplier theorem. A version of this result
first appeared in Carbery [2] but a stronger version of it is a consequence of the
work of Carbery and Seeger [3]. In this note we provide a self-contained proof
of the Marcinkiewicz multiplier theorem, we point out that the conditions
on the indices are optimal, and we provide a comparison with the Hörmander
multiplier theorem, which indicates that the former is stronger than the latter.

Given a bounded function σ on R
n, we define a linear operator

Tσ(f)(x) =
∫

Rn

f̂(ξ)σ(ξ)e2πix·ξdξ

acting on Schwartz functions f on R
n; here f̂(ξ) =

∫
Rn f(x)e−2πix·ξdx is the

Fourier transform of f . An old problem in harmonic analysis is to find optimal
sufficient conditions on σ so that the operator Tσ admits a bounded extension
from Lp(Rn) to itself for a given p ∈ (1,∞). If this is the case for a given σ,
then we say that σ is an Lp Fourier multiplier.

We recall the classical Marcinkiewicz multiplier theorem: Let Ij = (−2j+1,
−2j ] ∪ [2j , 2j+1) for j ∈ Z. Let σ be a bounded function on R

n such that for
all α = (α1, . . . , αn) with |α1|, . . . , |αn| ≤ 1 the derivatives ∂ασ are continuous
up to the boundary of any rectangle Ij1 × · · · × Ijn

on R
n. Assume that there
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is a constant A < ∞ such that for all partitions {s1, . . . , sk} ∪ {r1, . . . , r�} =
{1, 2, . . . , n} with n = k + � and all ξji

∈ Iji
, we have

sup
ξr1∈Ijr1

· · · sup
ξr�

∈Ijr�

∫

Ijs1

· · ·
∫

Ijsk

∣∣(∂s1 · · · ∂sk
σ)(ξ1, . . . , ξn)

∣∣ dξsk
· · · dξs1 ≤ A (1.1)

for all (j1, . . . , jn) ∈ Z
n. Then σ is an Lp Fourier multiplier on R

n whenever
1 < p < ∞, and there is a constant Cp,n < ∞ such that

‖Tσ‖Lp→Lp ≤ Cp,n

(
A + ‖σ‖L∞

)
. (1.2)

To obtain a Sobolev space version of this result we define (I − ∂2
� )

γ�
2 f as

the linear operator ((1+4π2|η�|2)
γ�
2 f̂(η))∨ associated with the multiplier (1+

4π2|η�|2)
γ�
2 . The purpose of this note is to provide a self-contained exposition

of a version of the Marcinkiewicz multiplier theorem which requires only 1/r+ε
derivatives per variable in Lr instead of a full derivative in L1 as in (1.1).

Theorem 1.1. Let n ∈ N, n ≥ 2. Suppose that 1 ≤ r < ∞ and ψ is a Schwartz
function on the line whose Fourier transform is supported in [−2,−1/2] ∪
[1/2, 2] and which satisfies

∑
j∈Z

ψ̂(2−jξ) = 1 for all ξ �= 0. Let γ� > 1/r,
� = 1, . . . , n. If a function σ on R

n satisfies

sup
j1,...,jn∈Z

∥∥(I−∂2
1)

γ1
2 · · · (I−∂2

n)
γn
2

(
ψ̂(ξ1) · · · ψ̂(ξn)σ(2j1ξ1, . . . , 2jnξn)

)∥∥
Lr < ∞,

(1.3)
then Tσ admits a bounded extension from Lp(Rn) to itself for all 1 < p < ∞
with ∣∣∣1

p
− 1

2

∣∣∣ < min(γ1, . . . , γn). (1.4)

Moreover, (1.4) is optimal in the sense that if Tσ is Lp-bounded for every σ
satisfying (1.3), then the strict inequality in (1.4) must necessarily hold.

Carbery [2] first formulated a version of Theorem 1.1 in which the multiplier
lies in a product-type L2-based Sobolev space. Carbery and Seeger [3, Remark
after Prop. 6.1] obtained Theorem 1.1 in the case when γ1 = · · · = γn >∣∣ 1
p − 1

2

∣∣ = 1
r . The positive direction of their result also appeared in [4, Condition

(1.4)] but this time the range of p is
∣∣ 1
p − 1

2

∣∣ < 1
r and is expressed in terms

of the integrability of the multiplier and not in terms of its smoothness. In
our opinion it is more natural, nonetheless, to state condition (1.4) in terms
of the smoothness of the multiplier, as in the case of the sharp version of the
Hörmander multiplier theorem, see [9].

The class of multipliers which satisfies the assumptions of Theorem 1.1
is strictly larger than the set of multipliers treated by the version of the
Hörmander multiplier theorem due to Calderón and Torchinsky [1, Theorem
4.6]; see also [7]. Since Theorem 1.1 assumes the multiplier σ to have 1/r + ε
derivatives in each variable, while the Hörmander multiplier theorem requires
more than n/r derivatives in all variables, it is apparent that there are multi-
pliers which can be treated by Theorem 1.1, but not by [1, Theorem 4.6]. On
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the other hand, it is an easy consequence of the following theorem that ev-
ery multiplier satisfying the assumptions of the Hörmander multiplier theorem
falls under the scope of Theorem 1.1 as well.

Theorem 1.2. Let ψ be a Schwartz function on the line whose Fourier transform
is supported in the set {ξ : 1

2 ≤ |ξ| ≤ 2} and which satisfies
∑

k∈Z
ψ̂(2kξ) = 1

for every ξ �= 0. Also, let Φ be a Schwartz function on R
n having analogous

properties. If 1 < r < ∞ and γ1, . . . , γn are real numbers larger than 1
r , then

sup
j1,...,jn∈Z

∥∥∥∥∥(I − ∂2
1)

γ1
2 · · · (I − ∂2

n)
γn
2

[
σ(2j1ξ1, . . . , 2jnξn)

n∏
�=1

ψ̂(ξ�)
]∥∥∥∥∥

Lr

≤ C sup
j∈Z

∥∥∥∥(I − Δ)
γ1+···+γn

2

[
σ(2jξ)Φ̂(ξ)

]∥∥∥∥
Lr

. (1.5)

2. The proof of Theorem 1.1: the main estimate. We start by introducing some
notation that will be used throughout the paper. We will use ψ to denote the
bump from Theorem 1.1; further, θ will stand for the function on the line
satisfying

θ̂(η) = ψ̂(η/2) + ψ̂(η) + ψ̂(2η).

One can observe that θ̂ is supported in {1
4 ≤ |ξ| ≤ 4} and θ̂ = 1 on the support

of ψ̂.
To simplify the notation, if ξ = (ξ1, . . . , ξn) ∈ R

n and J = (j1, . . . , jn) ∈ Z
n,

we shall write

2Jξ =
(
2j1ξ1, . . . , 2jnξn

)
and

ψ̂(ξ) =
n∏

�=1

ψ̂(ξ�), θ̂(ξ) =
n∏

�=1

θ̂(ξ�).

Let k ∈ 1, . . . , n. For j ∈ Z we define the Littlewood–Paley operators
associated to the bumps ψ and θ by

Δk
j f = Δψ,k

j f =
∫

R

f(x1, . . . , xk−1, xk − y, xk+1, . . . , xn)2jψ(2jy)dy

and

Δθ,k
j f =

∫

R

f(x1, . . . , xk−1, xk − y, xk+1, . . . , xn)2jθ(2jy)dy.

We begin with the following lemma:

Lemma 2.1. Let 1 ≤ r < ∞, let 1 ≤ ρ < 2 satisfy 1 ≤ ρ ≤ r and let γ1, . . . , γn

be real numbers such that γ�ρ > 1, � = 1, . . . , n. Then, for any function f on
R

n and for all integers j1, . . . jn, we have

|Δ1
j1 · · · Δn

jn
Tσ(f)| ≤ C K

[
M (1) · · · M (n)(|Δθ,1

j1
· · · Δθ,n

jn
f |ρ)

] 1
ρ

, (2.1)
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where M (�) denotes the one-dimensional Hardy–Littlewood maximal operator
in the �-th coordinate and

K = sup
j1,...,jn∈Z

∥∥∥∥(I−∂2
1)

γ1
2 · · · (I−∂2

n)
γn
2

[
σ
(
2j1ξ1, . . . , 2jnξn

)
ψ̂(ξ1) · · · ψ̂(ξn)

]∥∥∥∥
Lr

.

Proof. Throughout the proof we shall use the notation introduced at the be-
ginning of this section and, whenever J = (j1, . . . , jn), we shall write

ΔJf = Δ1
j1 · · · Δn

jn
f, Δθ

Jf = Δθ,1
j1

· · · Δθ,n
jn

f.

Since θ̂ is equal to 1 on the support of ψ̂, we have

ΔJTσ(f)(x1, . . . , xn) =
∫

Rn

f̂(ξ)ψ̂(2−Jξ)σ(ξ)e2πix·ξdξ

=
∫

Rn

f̂(ξ)θ̂(2−Jξ)ψ̂(2−Jξ)σ(ξ)e2πix·ξdξ =
∫

Rn

(Δθ
Jf) (̂ξ)ψ̂(2−Jξ)σ(ξ)e2πix·ξdξ

=
∫

Rn

2j1+···+jn(Δθ
Jf) (̂2Jξ′)ψ̂(ξ′)σ(2Jξ′)e2πi(2Jx·ξ′)dξ′

= 2j1+···+jn

∫

Rn

(Δθ
Jf)(y)

[
ψ̂(ξ′)σ(2Jξ′)

]̂(2J (x − y))dy

=
∫

Rn

2j1+···+jn(Δθ
Jf)(y)∏n

�=1(1 + 2j� |x� − y�|)γ�
·

n∏
�=1

(1 + 2j� |x� − y�|)γ�

[
ψ̂(ξ)σ(2Jξ)

]̂(2J (x − y)) dy.

Hölder’s inequality thus yields that |ΔJTσ(f)(x)| is bounded by
( ∫

Rn

2j1+···+jn
|(Δθ

Jf)(y)|ρ∏n
�=1(1 + 2j� |x� − y�|)γ�ρ

dy

) 1
ρ

·
(∫

Rn

2j1+···+jn

∣∣∣∣
n∏

�=1

(1 + 2j� |x� − y�|)γ� ·
[
ψ̂(ξ)σ(2Jξ)

]
(̂2J (x−y))

∣∣∣∣
ρ′

dy

) 1
ρ′

,

where, when ρ = 1, the second term in the product is to be interpreted as
∥∥∥∥

n∏
�=1

(1 + 2j� |x� − y�|)γ� ·
[
ψ̂(ξ)σ(2Jξ)

]
(̂2J (x − y))

∥∥∥∥
L∞

.

Since γ�ρ > 1 for all � = 1, . . . , n, n consecutive applications of [6, Theorem
2.1.10] yield the estimate
( ∫

Rn

2j1+···+jn
|(Δθ

Jf)(y)|ρ∏n
�=1(1 + 2j� |x� − y�|)γ�ρ

dy

) 1
ρ ≤ C

[
M (1) · · · M (n)(|Δθ

Jf |ρ)
(x)

] 1
ρ
.
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We now write(∫

Rn

2j1+···+jn

∣∣∣∣
n∏

�=1

(1 + 2j� |x� − y�|)γ�

[
ψ̂(ξ)σ(2Jξ)

]
(̂2J (x − y))

∣∣∣∣
ρ′

dy

) 1
ρ′

≤
(∫

Rn

∣∣∣∣
n∏

�=1

(1 + |y�|2)
γ�
2

[
ψ̂(ξ)σ(2Jξ)

]
(̂y)

∣∣∣∣
ρ′

dy

) 1
ρ′

≤
∥∥∥∥(I − ∂2

1)
γ1
2 · · · (I − ∂2

n)
γn
2

[
σ
(
2Jξ

)
ψ̂(ξ)

]∥∥∥∥
Lρ

≤ C

∥∥∥∥(I − ∂2
1)

γ1
2 · · · (I − ∂2

n)
γn
2

[
σ
(
2Jξ

)
ψ̂(ξ)

]∥∥∥∥
Lr

(2.2)

≤ CK.

Notice that the second inequality is the Hausdorff–Young inequality, while (2.3)
is a consequence of the Kato–Ponce inequality [8] (if ρ < r). A combination of
the preceding estimates yields (2.1). �

Proposition 2.2. Let 1 ≤ r < ∞ and let γ� > max{1/2, 1/r}, � = 1, . . . , n. If
a function σ on R

n satisfies (1.3), then Tσ admits a bounded extension from
Lp(Rn) to itself for all 1 < p < ∞.

Proof. Suppose first that p > 2. Since γ� > max{1/2, 1/r}, � = 1, . . . , n, we
can find ρ ∈ [1, 2) such that ρ ≤ r and ργ� > 1, � = 1, . . . , n. Then

∥∥Tσ(f)
∥∥

Lp(Rn)
≤ Cp(n)

∥∥∥
( ∑

j1,...,jn∈Z

|Δ1
j1 · · · Δn

jn
Tσ(f)|2

) 1
2
∥∥∥

Lp

≤ Cp(n)K
∥∥∥
( ∑

j1,...,jn∈Z

[
M (1) · · · M (n)(|Δθ,1

j1
· · · Δθ,n

jn
f |ρ)

] 2
ρ
) 1

2
∥∥∥

Lp

≤ Cp(n)K
∥∥∥
( ∑

j1,...,jn∈Z

|Δθ,1
j1

· · · Δθ,n
jn

f |2
) 1

2
∥∥∥

Lp

≤ Cp(n)K‖f‖Lp .

Notice that the second inequality follows from Lemma 2.1 and the third in-
equality is obtained by applying the Fefferman–Stein inequality [5] on the
Lebesgue space L

p
2 in each of the variables y1, . . . , yn. Observe that the

Fefferman–Stein inequality makes use of the assumptions 2/ρ > 1 and p/2 > 1.
The case 1 < p < 2 follows by a duality argument, while the case p = 2 is a

consequence of Plancherel’s theorem and of a Sobolev embedding into L∞. �

3. The proof of Theorem 1.1: an interpolation argument. When p = 2 no
derivatives are required of σ for Tσ to be bounded. To mitigate the effect of
the requirement of the derivatives of σ for Tσ to be bounded on Lp for p �= 2,
we apply an interpolation argument between p = 2 and p = 1 + δ.

We shall use the notation introduced at the beginning of the previous sec-
tion, and we shall denote

Γ
({s�}n

�=1

)
= Γ(s1, . . . , sn) = (I − ∂2

1)
s1
2 · · · (I − ∂2

n)
sn
2 .
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The following result will be the key interpolation estimate:

Theorem 3.1. Fix 1 < p0, p1, r0, r1 < ∞, 0 < s01, . . . , s
0
n, s11, . . . , s

1
n < ∞.

Suppose that r0s
0
� > 1 and r1s

1
� > 1 for all � = 1, . . . , n. Let ψ be as before.

Assume that for k ∈ {0, 1} we have

‖Tσ(f)‖Lpk ≤ Kk sup
j1,...,jn∈Z

∥∥∥∥Γ(sk
1 , . . . , s

k
n)

[
σ(2Jξ)

n∏
�=1

ψ̂(ξ�)
]∥∥∥∥

Lrk

‖f‖Lpk

(3.1)
for all f ∈ C∞

0 (Rn). For 0 < θ < 1 and � = 1, . . . , n define

1
p

=
1 − θ

p0
+

θ

p1
,

1
r

=
1 − θ

r0
+

θ

r1
, s� = (1 − θ)s0� + θs1� .

Then there is a constant C∗ such that for all f ∈ C∞
0 (Rn) we have

‖Tσ(f)‖Lp ≤ C∗K1−θ
0 Kθ

1 sup
j1,...,jn∈Z

∥∥∥∥Γ(s1, . . . , sn)
[
σ(2Jξ)

n∏
�=1

ψ̂(ξ�)
]∥∥∥∥

Lr

‖f‖Lp .

(3.2)

Assuming Theorem 3.1, we complete the proof of Theorem 1.1 as follows:

Proof. Given 1 ≤ r < ∞ and γ� > 1/r, � = 1, . . . , n, fix p ∈ (1,∞) satisfy-
ing (1.4). In fact, we can assume that p ∈ (1, 2), since the case p ∈ (2,∞)
follows by duality and the case p = 2 is a consequence of Plancherel’s the-
orem and of a Sobolev embedding into L∞. In addition, assume first that
min� γ� ≤ 1

2 . In view of (1.4), there is τ ∈ (0, 1) such that

1
p

− 1
2

< τ min
�

γ�. (3.3)

Set p1 = 2
τ+1 , r1 = 2r min� γ�, and γ1

� = 1
2 + ε, � = 1, . . . , n, where ε > 0

is a real number whose exact value will be specified later. Since p1 > 1 and
r1γ

1
� > 2γ1

� > 1, � = 1, . . . , n, Proposition 2.2 yields that

‖Tσ(f)‖Lp1 ≤ C1 sup
j1,...,jn∈Z

∥∥∥∥Γ(γ1
1 , . . . , γ1

n)
[
σ(2Jξ)

n∏
�=1

ψ̂�(ξ�)
]∥∥∥∥

Lr1

‖f‖Lp1 .

(3.4)
Pick p0 = 2. Let θ be the real number satisfying

1
p

=
1 − θ

p0
+

θ

p1
,

namely, θ = 2
τ ( 1p − 1

2 ). Observe that, by (3.3), 0 < θ < 2min� γ� ≤ 1. Finally,
choose real numbers r0 and γ0

� , � = 1, . . . , n, in such a way that

1
r

=
1 − θ

r0
+

θ

r1
, γ� = (1 − θ)γ0

� + θγ1
� . (3.5)
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We claim that, for a suitable choice of ε > 0, one has r0 > 2 and r0γ
0
� > 1,

� = 1, . . . , n. Indeed, since min� γ� ≤ 1
2 , we have r1 ≤ r, and thus, by (3.5),

r0 ≥ r ≥ r1 > 2. Further,

r0γ
0
� =

r1r(γ� − θγ1
� )

r1 − θr
=

r mink γk(γ� − θ
2 − θε)

mink γk − θ
2

≥ r mink γk(mink γk − θ
2 − θε)

mink γk − θ
2

.

Since r mink γk > 1 and mink γk − θ
2 > 0, one gets r0γ

0
� > 1 if ε > 0 is small

enough. Consequently, the space {g : Γ(γ0
1 , . . . , γ0

n)g ∈ Lr0} embeds in L∞,
and we thus have

‖Tσ(f)‖L2 ≤ C1 sup
j1,...,jn∈Z

∥∥∥∥Γ(γ0
1 , . . . , γ0

n)
[
σ(2Jξ)

n∏
�=1

ψ̂�(ξ�)
]∥∥∥∥

Lr0

‖f‖L2 . (3.6)

The boundedness of Tσ on Lp(Rn) for any σ satisfying (1.3) thus follows from
Theorem 3.1. Finally, if min� γ� > 1

2 , then the required assertion follows di-
rectly from Proposition 2.2. �

Proof of Theorem 3.1. The proof of Theorem 3.1 follows closely that of [1,
Theorem 4.7] and for this reason we only provide an outline of its proof with
few details. Throughout the proof we shall use the notation introduced at the
beginning of the previous section. Also, whenever J ∈ Z

n, we denote

ϕJ = Γ(s1, . . . , sn)
[
σ(2Jξ)ψ̂(ξ)

]
,

and for z with real part in [0, 1] we define

σz(ξ) =
∑

J∈Zn

Γ
(
{−s0�(1−z)−s1�z}n

�=1

)[
|ϕJ |r( 1−z

r0
+ z

r1
)eiArg (ϕJ )

]
(2−Jξ)θ̂(2−Jξ).

(3.7)
For any given ξ ∈ R

n, this sum has only finitely many terms and one can show
that

‖στ+it‖L∞ � (1 + |t|) 3n
2

(
sup

J∈Zn

∥∥Γ(s1, . . . , sn)[σ(2Jξ)ψ̂(ξ)]
∥∥

Lr

) r
rτ

, (3.8)

where rτ is the real number satisfying 1
rτ

= 1−τ
r0

+ τ
r1

.
Let Tz be the family of operators associated to the multipliers σz. Fix

f, g ∈ C∞
0 and 1 < p0 < p < p1 < ∞. Given ε > 0 there exist functions fε

z

and gε
z such that ‖fε

θ − f‖Lp < ε, ‖gε
θ − g‖Lp′ < ε, and that

‖fε
it‖Lp0 ≤ (‖f‖p

Lp + ε
) 1

p0 ,
∥∥fε

1+it

∥∥
Lp1

≤ (‖f‖p
Lp + ε

) 1
p1 ,

‖gε
it‖Lp′

0
≤ (‖g‖p′

Lp′ + ε
) 1

p′
0 ,

∥∥gε
1+it

∥∥
Lp′

1
≤ (‖g‖p′

Lp′ + ε
) 1

p′
1 .

The existence of fε
z and gε

z is folklore and is omitted; for a similar construction
see [1, Theorem 3.3]. Let F (z) =

∫
Tσz

(fε
z )gε

z dx. Then F (z) is equal to
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∫

Rn

σz(ξ)f̂ε
z (ξ)ĝε

z(ξ) dξ

=
∑

J∈Zn

∫

Rn

Γ
(
{−s0�(1 − z) − s1�z}n

�=1

)[
|ϕJ |r( 1−z

r0
+ z

r1
)eiArg (ϕJ )

]
(2−jξ)

θ̂(2−Jξ)f̂ε
z (ξ)ĝε

z(ξ) dξ

=
∑

J∈Zn

∫

Rn

[
|ϕJ |r( 1−z

r0
+ z

r1
)eiArg (ϕJ )

]
(2−Jξ)

Γ
(
{−s0�(1 − z) − s1�z}n

�=1

)[
θ̂(2−J ·)f̂ε

z ĝε
z

]
(ξ) dξ.

The function F (z) is analytic on the strip 0 < 	(z) < 1 and continuous up
to the boundary. Notice that σit(2K ·)ψ̂ picks up only the terms of (3.7) for
which J differs from K in some coordinate by at most one unit. For simplicity
we may therefore take K = J in the calculation below. Using the Kato–Ponce
inequality we may “remove” the factor θ̂ and write

‖Tσit
(fε

it)‖Lp0

≤ K0 sup
K∈Zn

∥∥∥Γ(s01, . . . , s
0
n)

[
σit(2K ·)ψ̂]∥∥∥

Lr0
‖fε

it‖Lp0

≤ K0 sup
K∈Zn

∥∥Γ
({s0� − s0�(1 − it) − s1� it}n

�=1

)
[|ϕK |r( 1−it

r0
+ it

r1
)eiArg (ϕK)

]∥∥
Lr0

‖fε
it‖Lp0

� (1 + |t|) 3n
2 K0 sup

K∈ZN

‖ϕK‖
r

r0
Lr

( ‖f‖p
Lp + ε

) 1
p0 .

Using Hölder’s inequality |F (it)| ≤ ‖Tσit
(fε

it)‖Lp0 ‖gε
it‖Lp′

0
, we may therefore

write

|F (it)| ≤ C(1 + |t|) 3n
2 K0 sup

J∈Zn

∥∥Γ({s�}n
�=1)[σ(2J ·)ψ̂]

∥∥ r
r0
Lr

( ‖f‖p
Lp + ε

) 1
p0

( ‖g‖p′

Lp′ + ε
) 1

p′
0

for some constant C = C(n, r0, s
0
� , s

1
�). Similarly, for some constant C =

C(n, r1, s
0
� , s

1
�) we obtain

|F (1 + it)| ≤ C(1 + |t|) 3n
2 K1 sup

J∈Zn

∥∥Γ({s�}n
�=1)[σ(2J ·)ψ̂]

∥∥ r
r1
Lr

( ‖f‖p
Lp + ε

) 1
p1

( ‖g‖p′

Lp′ + ε
) 1

p′
1 .

Thus for z = τ + it, t ∈ R and 0 ≤ τ ≤ 1 it follows from (3.8) and from the
definition of F (z) that

|F (z)| ≤ C ′′(1 + |t|) 3n
2

(
sup

J∈Zn

∥∥Γ(s1, . . . , sn)
[
σ(2J ·)ψ̂]∥∥

Lr

) r
rτ ‖fε

z ‖L2‖gε
z‖L2

= Aτ (t) ,
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noting that ‖fε
z ‖L2‖gε

z‖L2 is bounded above by constants independent of t and
τ . Since Aτ (t) ≤ exp(Aea|t|), the hypotheses of the three lines lemma are valid.
It follows that

|F (θ)|≤C K1−θ
0 Kθ

1 sup
J∈Zn

∥∥Γ({s�}n
�=1)[σ(2J ·)ψ̂]

∥∥
Lr

( ‖f‖p
Lp + ε

) 1
p
( ‖g‖p′

Lp′ + ε
) 1

p′ .

Taking the supremum over all functions g ∈ Lp′
with ‖g‖Lp′ ≤ 1, a simple

density argument yields for some C∗ = C∗(n, r1, r2, s
0
� , s

1
�)

‖Tσ(f)‖Lp ≤ C∗ K1−θ
0 Kθ

1 sup
J∈Zn

∥∥Γ(s1, . . . , sn)[σ(2J ·)ψ̂]
∥∥

Lr ‖f‖Lp .

This completes the proof of the sufficiency part of Theorem 1.1. The proof of
the necessity part is postponed to Section 5. �

4. The proof of Theorem 1.2. Crucial ingredients needed for the proof of Theo-
rem 1.2 are two one-dimensional inequalities contained in the following lemma.

Lemma 4.1. Let ψ be as in Theorem 1.2. If k ∈ Z, γ > 0 and 1 < r < ∞ are
such that γr > 1, then∥∥f(2k·)ψ̂∥∥

Lr(R)
≤ C

∥∥(I − ∂2)
γ
2 f

∥∥
Lr(R)

(4.1)

and ∥∥(−∂2)
γ
2
[
f(2k·)ψ̂]∥∥

Lr(R)
≤ C

(
1 + 2k(γ− 1

r )
)∥∥(I − ∂2)

γ
2 f

∥∥
Lr(R)

. (4.2)

Proof. Since γr > 1, the Sobolev embedding theorem yields

|f(2kx)| ≤ ‖f‖L∞(R) ≤ C
∥∥(I − ∂2)

γ
2 f

∥∥
Lr(R)

for a.e. x ∈ R. (4.3)

Therefore,∥∥f(2k·)ψ̂∥∥
Lr(R)

≤ C
∥∥(I − ∂2)

γ
2 f

∥∥
Lr(R)

∥∥ψ̂
∥∥

Lr(R)
= C ′∥∥(I − ∂2)

γ
2 f

∥∥
Lr(R)

.

This proves (4.1).
Further, using the Kato–Ponce inequality [8], the estimate (4.3), and the

fact that ψ̂ is smooth and with compact support, we obtain∥∥(−∂2)
γ
2
[
f(2k·)ψ̂]∥∥

Lr(R)

≤ C
(∥∥(−∂2)

γ
2
[
f(2k·)]∥∥

Lr(R)

∥∥ψ̂
∥∥

L∞(R)
+

∥∥f(2k·)∥∥
L∞(R)

∥∥(−∂2)
γ
2 ψ̂

∥∥
Lr(R)

)

≤ C
(∥∥(−∂2)

γ
2
[
f(2k·)]∥∥

Lr(R)
+

∥∥(I − ∂2)
γ
2 f

∥∥
Lr(R)

)

= C
(
2k(γ− 1

r )
∥∥(−∂2)

γ
2 f

∥∥
Lr(R)

+
∥∥(I − ∂2)

γ
2 f

∥∥
Lr(R)

)

≤ C
(
2k(γ− 1

r ) + 1
)∥∥(I − ∂2)

γ
2 f

∥∥
Lr(R)

,

namely, (4.2). �

Proof of Theorem 1.2. Set F (ξ) =
∑n

a=−n Φ̂(2aξ), ξ ∈ R
n. Then F (ξ) = 1

for any ξ satisfying 1
2n ≤ |ξ| ≤ 2n. Therefore, if j1, . . . , jn are integers and
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j := max{j1, . . . , jn}, then F (2j1−jξ1, . . . , 2jn−jξn) = 1 on {(ξ1, . . . , ξn) : 1
2 ≤

|ξ1| ≤ 2, . . . , 1
2 ≤ |ξn| ≤ 2}. Consequently,

n∏
�=1

ψ̂(ξ�) = F (2j1−jξ1, . . . , 2jn−jξn)
n∏

�=1

ψ̂(ξ�).

Using this, we can write∥∥∥∥∥(I − ∂2
1)

γ1
2 · · · (I − ∂2

n)
γn
2

[
σ(2j1ξ1, . . . , 2jnξn)

n∏
�=1

ψ̂(ξ�)
]∥∥∥∥∥

Lr

=
∥∥∥(I − ∂2

1)
γ1
2 · · · (I − ∂2

n)
γn
2

[
σ(2j1ξ1, . . . , 2jnξn)F (2j1−jξ1, . . . , 2jn−jξn)

n∏
�=1

ψ̂(ξ�)
]∥∥∥∥∥

Lr

≤ C

n∑
a=−n

∑
{i1,...,ik}⊆{1,...,n}

∥∥∥(−∂2
i1)

γi1
2 · · · (−∂2

ik
)

γik
2

[
σ(2j1ξ1, . . . , 2jnξn)Φ̂(2j1−j+aξ1, . . . , 2jn−j+aξn)

n∏
�=1

ψ̂(ξ�)
]∥∥∥∥∥

Lr

.

Using the estimate (4.2) in variables i1, . . . , ik and inequality (4.1) in the re-
maining variables, we estimate the corresponding term in the last expression
by a constant multiple of
[ n∏

s=1

(
1 + 2(jis −j+a)(γis − 1

r )
)] ∥∥∥∥(I − ∂2

1)
γ1
2 · · · (I − ∂2

n)
γn
2

[
σ(2j−aξ)Φ̂(ξ)

]∥∥∥∥
Lr

≤ C
(
1 + 2nmax�=1,...,n(γ�− 1

r )
)n

∥∥∥∥(I − Δ)
γ1+···+γn

2

[
σ(2j−aξ)Φ̂(ξ)

]∥∥∥∥
Lr

≤ C sup
m∈Z

∥∥∥∥(I − Δ)
γ1+···+γn

2

[
σ(2mξ)Φ̂(ξ)

]∥∥∥∥
Lr

.

This implies (1.5). �

5. Examples and remarks. Next we discuss examples that indicate the sharp-
ness of Theorem 1.1. As stated, the sufficient condition presented in Theo-
rem 1.1 is optimal in the sense that if Tσ is bounded from Lp(Rn) to itself
for all σ satisfying (1.3), then (1.4) holds. This has been observed, at least in
the two-dimensional case with both smoothness parameters equal, by Carbery
and Seeger [3, Remark after Proposition 6.1]. We provide an example in the
spirit of theirs, given by an explicit closed-form expression and valid in all
dimensions n ≥ 2.

Example 5.1. Given α ∈ (0, 1), consider the function

σ(ξ, η) = ϕ(|η|)e− ξ2
2 |η|iξ(log |η|)−α, (ξ, η) ∈ R × R

n−1 = R
n,
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where ϕ is a smooth function on the line such that 0 ≤ ϕ ≤ 1, ϕ = 0 on
(−∞, 8] and ϕ = 1 on [9,∞). Then
(i) σ satisfies (1.3), with r large enough, whenever γ1 = α and γ2, . . . , γn are

arbitrary positive real numbers;
(ii) σ is an Lp Fourier multiplier for a given 1 < p < ∞ if and only if

α > | 1p − 1
2 |.

The previous example indicates that condition (1.3) does not guarantee that
Tσ is Lp bounded unless all indices γ1, . . . , γn in (1.3) are larger than | 1p − 1

2 |.
In particular, for a given i ∈ {1, . . . , n}, one does not have boundedness on the
critical line γi = | 1p − 1

2 |, no matter how large the remaining parameters are.
Let us now verify the statement of part (i) of Example 5.1. We shall first

prove that

sup
k,�∈Z

‖(I − ∂2
ξ )

α
2 (I − Δη)

s
2 [ψ̂(ξ)Φ̂(η)σ(2kξ, 2�η)]‖Lr < ∞ (5.1)

for any s > 0 and r > 1. Here, Φ denotes a Schwartz function on R
n−1 whose

Fourier transform is supported in the set {η ∈ R
n−1 : 1

2 ≤ |η| ≤ 2} and which
satisfies

∑
�∈Z

Φ̂(2�η) = 1 for all η �= 0. Indeed, for any k, � ∈ Z, � ≥ 3, and for
any given nonnegative integer m, we have

‖ψ̂(ξ)Φ̂(η)σ(2kξ, 2�η)‖Lr ≤ C�−α

and

‖(I − ∂ξ)
1
2 (I − Δη)

m
2 [ψ̂(ξ)Φ̂(η)σ(2kξ, 2�η)]‖Lr ≤ C� · �−α,

where the constant C is independent of k and �. Interpolating between these
two estimates, we obtain

‖(I − ∂ξ)
α
2 (I − Δη)

αm
2 [ψ̂(ξ)Φ̂(η)σ(2kξ, 2�η)]‖Lr ≤ C.

Notice also that the last inequality in fact holds for all integers k, �, since the
function ψ̂(ξ)Φ̂(η)σ(2kξ, 2�η) is identically equal to 0 if � ≤ 2. Hence, we have

sup
k,�∈Z

‖(I − ∂ξ)
α
2 (I − Δη)

αm
2 [ψ̂(ξ)Φ̂(η)σ(2kξ, 2�η)]‖Lr ≤ C,

and interpolating between variants of this estimate corresponding to different
values of m, we obtain (5.1) for any s > 0. Now, part (i) of Example 5.1 follows
by an application of Theorem 1.2 in the variable η.

Let us finally focus on part (ii) of Example 5.1. If α > | 1p − 1
2 |, then σ is an

Lp Fourier multiplier thanks to (i) and Theorem 1.1. Let us now prove that
Tσ is not Lp bounded if α ≤ | 1p − 1

2 |. By duality, it suffices to discuss only
the case when 1 < p < 2. Further, by a result of Herz and Rivière [10], our
claim will follow if we show that Tσ is not bounded on the mixed norm space
Lp(R;L2(Rn−1)). We take first the L2 norm in η and then the Lp norm in ξ.

Let f be the function on R
n whose Fourier transform satisfies

f̂(ξ, η) = e− ξ2
2 ϕ(|η|)|η| 1−n

2 (log |η|)− 1
2 (log log |η|)−β , (ξ, η) ∈ R × R

n−1.

Using Plancherel’s theorem in the variable η, it is easy to check that f ∈
Lp(R;L2(Rn−1)) whenever β > 1

2 . Our next goal is to prove that Tσf =
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F−1(σf̂) does not belong to Lp(R;L2(Rn−1)) if β ∈ ( 12 , 1
p ]. Using Plancherel’s

theorem in the variable η again, this is equivalent to showing that F−1
ξ (σf̂ ) is

not in Lp(R;L2(Rn−1)), where F−1
ξ stands for the inverse Fourier transform

in the ξ variable.
Observe that

F−1
ξ (σf̂ )(x, η) = Ce− 1

4 (2πx+log |η|)2ϕ2(|η|)|η| 1−n
2 (log |η|)−α− 1

2 (log log |η|)−β

≥ Cχ{(x,η): x<−2, e−2πx−1<|η|<e−2πx}(x, η)

e2πx n−1
2 (−x)−α− 1

2 (log(−x))−β .

Therefore,

‖F−1
ξ (σf̂ )‖Lp(R;L2(Rn−1)) ≥ C

⎛
⎝

−2∫

−∞
(−x)(−α− 1

2 )p(log(−x))−βp dx

⎞
⎠

1
p

= ∞,

which yields the desired conclusion.
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