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The polynomial Daugavetian index of a complex Banach space
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Abstract. We introduce the polynomial Daugavetian index of an infinite-
dimensional complex Banach space. This index generalizes to polynomials
the Daugavetian index defined for operators by M. Mart́ın in 2003. We
also present some results about the introduced index.
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1. Introduction. Let X be a Banach space. We denote by X∗ the dual space
of X, by K(X) the Banach space of all compact linear operators on X, and by
PK(X;X) the normed space of all compact polynomials on X. By BX , SX ,
and SX∗ we denote the closed unit ball of X, the unit sphere of X, and the
unit sphere of X∗, respectively. We write Π(X) to denote the subset of X ×X∗

given by

Π(X) =
{
(x, x∗) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1

}
.

For each bounded function Φ : SX → X, the numerical range of Φ is the set

V (Φ) =
{
x∗(Φ(x)) : (x, x∗) ∈ Π(X)

}

and the numerical radius of Φ is the number

υ(Φ) = sup
{|λ| : λ ∈ V (Φ)

}
.

If X is infinite-dimensional, then the compact operators on X are non-
invertible, consequently, ‖Id + T‖ ≥ 1 for all T ∈ K(X). This allowed Mart́ın
[9] to define the concept of the Daugavetian index for an infinite-dimensional
Banach space in the following way

daug(X) = max {m ≥ 0 : ‖Id + T‖ ≥ 1 + m‖T‖ for all T ∈ K(X)} .
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Clearly 0 ≤ daug(X) ≤ 1. When daug(X) = 1, the space X has the Daugavet
property (DP) [8], that is, every weakly compact operator T on X satisfies

‖Id + T‖ = 1 + ‖T‖.

Writing ω(T ) = sup ReV (T ), Mart́ın [9] proved that

daug(X) = inf {ω(T ) : T ∈ K(X), ‖T‖ = 1} .

He also obtained several properties about this index, among them, we empha-
size the following stability property. Given an arbitrary family of Banach spaces
(Xλ)λ∈Λ and denoting by

[⊕
λ∈Λ Xλ

]
c0

(resp.
[⊕

λ∈Λ Xλ

]
�1

,
[⊕

λ∈Λ Xλ

]
�∞

)
the c0-sum (resp. �1-sum, �∞-sum) of the family, we have that
daug

([⊕
λ∈Λ Xλ

]
c0

)
= daug

([⊕
λ∈Λ Xλ

]
�1

)
= daug

([⊕
λ∈Λ Xλ

]
�∞

)
=

inf {daug(Xλ) : λ ∈ Λ} .
Now we introduce the polynomial Daugavetian index, generalizing the Dau-

gavetian index in the complex case. Let X be an infinite-dimensional complex
Banach space and let P ∈ PK(X;X) given by P = P0 + P1 + · · · + Pn where
Pj is a j-homogeneous polynomial for j = 0, . . . , n. From [1, Proposition 3.4],
we have that P1 ∈ K(X). And it follows from the Cauchy inequality that

‖Id + P1‖ ≤ ‖Id + P‖.

Since P1 is compact and X is infinite-dimensional, ‖Id + P1‖ ≥ 1 and conse-
quently ‖Id + P‖ ≥ 1. This allows us to define the polynomial Daugavetian
index of X as

daugp(X) = max {m ≥ 0 : ‖Id + P‖ ≥ 1 + m‖P‖ for all P ∈ PK(X;X)} ,

generalizing the ideas of the Daugavetian index defined by Mart́ın [9]. Observe
that 0 ≤ daugp(X) ≤ 1. When daugp(X) = 1, the space X has the polynomial
Daugavet property (PDP), that is, every weakly compact polynomial P on X
satisfies the Daugavet equation:

‖Id + P‖ = 1 + ‖P‖.

We also have daugp(X) ≤ daug(X) for every infinite-dimensional complex
Banach space X. Besides that, defining ω(P ) = sup ReV (P ), we have

ω(P ) = lim
α→0+

‖Id + αP‖ − 1
α

by [7, Theorem 2]. Since ‖Id + αP‖ ≥ 1 for all P ∈ PK(X;X), we obtain
ω(P ) ≥ 0. We will prove in the next section that

daugp(X) = inf {ω(P ) : P ∈ PK(X;X), ‖P‖ = 1} .

Let us present some examples of spaces with polynomial Daugavetian in-
dex 1 and 0. As we commented in the last paragraph, infinite-dimensional
complex Banach spaces with the polynomial Daugavet property have polyno-
mial Daugavetian index 1. This is the case for the space Cb(Ω,X) of bounded
X-valued continuous functions on a perfect completely regular space Ω (see
[5]), the space L∞(μ,X) of essentially bounded Bochner-measurable functions
with values in X where μ is an atomless σ-finite measure (see [6]), the space
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L1(μ,X) of Bochner-integrable functions with values in X where μ is an atom-
less positive measure (see [10]), the disk algebra A(D) of functions continuous
on the closed unit complex disk D and holomorphic in the open disk D of C
(see [4]), and the representable Banach spaces (see [2]). On the other hand,
when an infinite-dimensional complex Banach space has a finite-rank projec-
tion P such that ‖P‖ = ‖Id − P‖ = 1, the polynomial Daugavetian index of
the space is 0. This is the case of Cb(Ω,X) for non-perfect Ω and L∞(μ,X),
L1(μ,X) when μ has atoms.

The purpose of this note is to extend some results of Mart́ın [9] to the
polynomial Daugavetian index.

2. Main results. We start this section by proving that the polynomial Dau-
gavetian index can be calculated using the numerical range of polynomials.

Proposition 2.1. Let X be an infinite-dimensional complex Banach space. Then

daugp(X) = inf {ω(Q) : Q ∈ PK(X;X), ‖Q‖ = 1}
= max {n ≥ 0 : ω(P ) ≥ n‖P‖ for all P ∈ PK(X;X)} .

Proof. It is easy to see that

inf {ω(Q) : Q ∈ PK(X;X), ‖Q‖ = 1}
= max {n ≥ 0 : ω(P ) ≥ n‖P‖ for all P ∈ PK(X;X)} .

To prove that

daugp(X) = inf {ω(Q) : Q ∈ PK(X;X), ‖Q‖ = 1} ,

it is enough to show that

{n ≥ 0 : ω(P ) ≥ n‖P‖ for all P ∈ PK(X;X)}
= {m ≥ 0 : ‖Id + P‖ ≥ 1 + m‖P‖ for all P ∈ PK(X;X)} .

Let n ≥ 0 be a constant such that ω(P ) ≥ n‖P‖ for all P ∈ PK(X;X). Given
Q ∈ PK(X;X) and (x, x∗) ∈ Π(X), we have

‖Id + Q‖ ≥ ‖x + Q(x)‖ ≥ |x∗(x + Q(x))| = |1 + x∗(Q(x))| ≥ 1 + Re x∗(Q(x)).

Taking the supremum over all (x, x∗) ∈ Π(X), we obtain

‖Id + Q‖ ≥ 1 + ω(Q) ≥ 1 + n‖Q‖.

Since Q is arbitrary, we get

n ∈ {m : ‖Id + P‖ ≥ 1 + m‖P‖ for all P ∈ PK(X;X)} .

On the other hand, let m ≥ 0 be a constant such that ‖Id + P‖ ≥ 1 + m‖P‖
for all P ∈ PK(X;X). Fix Q ∈ PK(X;X) and observe that

‖Id + αQ‖ ≥ 1 + m‖αQ‖ = 1 + mα‖Q‖ for all α > 0.

Thus,

ω(Q) = lim
α→0+

‖Id + αQ‖ − 1
α

≥ m‖Q‖.
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Therefore,

m ∈ {n ≥ 0 : ω(P ) ≥ n‖P‖ for all P ∈ PK(X;X)} .

�

This characterization allows us to prove some stability properties that ex-
tend those given in [9, Theorem 10]. The proof of the following proposition is
based on the proofs of [3, Proposition 2.8] and [11, Proposition 2.3].

Proposition 2.2. Let (Xλ)λ∈Λ be a family of infinite-dimensional complex Ba-
nach spaces. Then

(i) daugp

([⊕
λ∈Λ Xλ

]
c0

)
≤ inf

{
daugp(Xλ) : λ ∈ Λ

}
;

(ii) daugp

([⊕
λ∈Λ Xλ

]
�1

)
≤ inf

{
daugp(Xλ) : λ ∈ Λ

}
;

(iii) daugp

([⊕
λ∈Λ Xλ

]
�∞

)
≤ inf

{
daugp(Xλ) : λ ∈ Λ

}
.

Proof. Let Z denote X ⊕1 Y for any infinite-dimensional complex Banach
spaces X and Y . We will prove that daugp(Z) ≤ daugp(X). Given P ∈
PK(X;X) with ‖P‖ = 1, define Q : Z → Z by

Q(x, y) = (P (x), 0).

Clearly Q ∈ PK(Z;Z) and ‖Q‖ = 1. If ω(Q) = 0, then

daugp (Z) = 0 ≤ daugp(X).

Let us suppose that ω(Q) > 0. Then, given 0 < ε < ω(Q), there exist (x, y) ∈
SZ and (x∗, y∗) ∈ SZ∗ = SX∗⊕∞Y ∗ with ‖x‖‖x∗‖ �= 0 such that

x∗(x) + y∗(y) = ‖x∗‖‖x‖ + ‖y∗‖‖y‖ = 1 (1)

and

ω(Q) − ε ≤ Re(x∗, y∗)Q(x, y) = Rex∗(P (x))

follows from (1) that x∗(x) = ‖x∗‖‖x‖. Now, write P = P0 + P1 + · · · + Pn,
where Pk is a k-homogeneous polynomial on X. Thus

ω(Q) − ε ≤ Rex∗(P (x))

= Rex∗(P0(x)
)

+ Rex∗(P1(x)
)

+ · · · + Rex∗(Pn(x)
)

≤ Rex∗(P0(x)
)

‖x∗‖ +
Rex∗(P1(x)

)

‖x∗‖‖x‖ + · · · +
Rex∗(Pn(x)

)

‖x∗‖‖x‖n

= Re
x∗

‖x∗‖
(

P0

(
x

‖x‖
))

+ · · · + Re
x∗

‖x∗‖
(

Pn

(
x

‖x‖
))

= Re
x∗

‖x∗‖
(

P

(
x

‖x‖
))

≤ sup ReV(P ) = ω(P ),

because ‖x∗‖ ≤ 1, ‖x‖ ≤ 1 and x∗
‖x∗‖

(
x

‖x‖
)

= 1. Then daugp (Z)− ε ≤ ω(Q)−
ε ≤ ω(P ). Hence daugp (Z) ≤ ω(P ) for all P ∈ PK(X;X) with ‖P‖ = 1. Thus
daugp (Z) ≤ daugp (X).
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For any μ ∈ Λ we have
[
⊕

λ∈Λ

Xλ

]

�1

=

[
⊕

λ�=μ

Xλ

]

�1

⊕1 Xμ,

so

daugp

⎛

⎝

[
⊕

λ∈Λ

Xλ

]

�1

⎞

⎠ ≤ daugp (Xμ) .

Therefore

daugp

⎛

⎝

[
⊕

λ∈Λ

Xλ

]

�1

⎞

⎠ ≤ inf
{
daugp(Xλ) : λ ∈ Λ

}
.

The argument for the c0-sum and �∞-sum is the same. �

Using the ideas of [6, Proposition 2.3] we can prove the following result.
The statement for the �1-case remains open.

Proposition 2.3. Let (Xλ)λ∈Λ be a family of infinite-dimensional complex Ba-
nach spaces. Then

(i) daugp

([⊕
λ∈Λ Xλ

]
c0

)
≥ inf

{
daugp(Xλ) : λ ∈ Λ

}
;

(ii) daugp

([⊕
λ∈Λ Xλ

]
�∞

)
≥ inf

{
daugp(Xλ) : λ ∈ Λ

}
.

Proof. If inf
{
daugp(Xλ) : λ ∈ Λ

}
= 0, there is nothing to show. Let us sup-

pose that inf
{
daugp(Xλ) : λ ∈ Λ

}
> 0. Let X =

[⊕
λ∈Λ Xλ

]
�∞

and take
P ∈ PK(X;X) with ‖P‖ = 1. We can see P as a family (Pλ)λ∈Λ, where
Pλ ∈ PK(X;Xλ). Then

‖P‖ = sup
x∈BX

‖P (x)‖ = sup
x∈BX

sup
λ∈Λ

‖Pλ(x)‖ = sup
λ∈Λ

sup
x∈BX

‖Pλ(x)‖ = sup
λ∈Λ

‖Pλ‖.

So, given 0 < ε < inf
{
daugp(Xλ) : λ ∈ Λ

}
, there exists μ ∈ Λ such that

‖Pμ‖ > 1 − ε. Write X = Xμ ⊕∞ Y , where Y =
[ ⊕

λ�=μ Xλ

]
�∞

. Let (x0, y0) ∈
BX be such that x0 ∈ Xμ, y0 ∈ Y and

‖Pμ(x0, y0)‖ > 1 − ε. (2)

We may suppose that ‖x0‖ = 1. Indeed, fix x1 ∈ SX such that ‖x0‖x1 = x0

and fix x∗
μ ∈ SX∗

µ
such that

|x∗
μ(Pμ(x0, y0))| > 1 − ε.

Since the function

z 	−→ x∗
μ

(
Pμ

(
zx1, y0

))

is holomorphic, the maximum modulus theorem ensures the existence of z0 ∈ T

such that

1 − ε < |x∗
μ(Pμ(x0, y0))| = |x∗

μ(Pμ(‖x0‖x1, y0))| ≤ |x∗
μ(Pμ(z0x1, y0))|,
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that is,

‖Pμ(z0x1, y0)‖ ≥ 1 − ε,

where ‖z0x1‖ = |z0|‖x1‖ = 1. Thus, replacing x0 by z0x1, we obtain the
inequality (2). For simplicity, let us consider ‖x0‖ = 1. Now, let x∗

0 ∈ SX∗ be
such that x∗

0(x0) = 1. Consider the polynomial Q : Xμ → Xμ defined by

Q(u) = Pμ(u, x∗
0(u)y0),

which is compact and satisfies

1 = ‖P‖ ≥ ‖Pμ‖ ≥ ‖Q‖ ≥ ‖Q(x0)‖ = ‖Pμ(x0, y0)‖ > 1 − ε.

Thus there exists (u0, u
∗
0) ∈ Π(Xμ) such that

Reu∗
0

(
Q

‖Q‖ (u0)
)

> ω

(
Q

‖Q‖
)

− ε ≥ daugp(Xμ) − ε,

which implies

Reu∗
0 (Q(u0)) > (daugp(Xμ) − ε)‖Q‖ > (daugp(Xμ) − ε)(1 − ε).

Let x = (u0, x
∗
0(u0)y0) ∈ SX and x∗ = (u∗

0, 0) ∈ SX∗ . Hence (x, x∗) ∈ Π(X)
and

ω(P ) ≥ Rex∗(P (x)) = Reu∗
0(Pμ(u0, x

∗
0(u0)y0)) = Reu∗

0(Q(u0))

> (daugp(Xμ) − ε)(1 − ε) ≥
(

inf
λ∈Λ

daugp(Xλ) − ε

)
(1 − ε).

Then

ω(P ) ≥ inf
λ∈Λ

daugp(Xλ)

for all P ∈ PK(X;X) with ‖P‖ = 1. Therefore

daugp

⎛

⎝

[
⊕

λ∈Λ

Xλ

]

�∞

⎞

⎠ ≥ inf
{
daugp(Xλ) : λ ∈ Λ

}
.

The argument for the c0-sum is the same. �

These stability properties allow us to prove characterizations of the polyno-
mial Daugavetian index for vector-valued essentially bounded function spaces
and continuous vector-valued function spaces. First, let us fix some notation.
Given a compact Hausdorff space K, we denote by C(K,X) the Banach space
of all continuous functions from K into X, endowed with the supremum norm.
For a σ-finite measure space (Ω,Σ, μ), we denote by L∞(μ,X) the Banach
space of all (equivalence classes of) essentially bounded Bochner-measurable
functions from Ω into X with the essential supremum norm. Also, given a
positive measure space (Ω,Σ, μ), we denote by L1(μ,X) the Banach space of
all (equivalence classes of) Bochner-integrable functions from Ω into X with
the norm

‖f‖ =
∫

Ω

‖f(t)‖dμ(t).
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The proofs of the following three results are based on the proofs of [11,
Proposition 3.1, 3.3, and 3.4].

Proposition 2.4. Let X be a complex Banach space and let K be a compact
Hausdorff space. Then

daugp(C(K,X)) = max{daugp(C(K)),daugp(X)}.

Proof. First, we will prove that daugp(C(K,X)) ≥ daugp(X). Given P ∈
PK(C(K,X);C(K,X)), we need to prove that

‖Id + P‖ ≥ 1 + daugp(X)‖P‖.

For every ε > 0, there exist f0 ∈ SC(K,X) and t0 ∈ K such that

‖P (f0)(t0)‖ > ‖P‖ − ε

2
. (3)

Since P is continuous at f0, there exists δ > 0 such that

‖P (f0) − P (g)‖ <
ε

2
if ‖f0 − g‖ < δ. (4)

Consider the set A = {t ∈ K : ‖f0(t) − f0(t0)‖ ≥ δ}. Observe that A is closed
and t0 /∈ A. Thus, by Urysohn’s lemma, we may find a continuous function
ϕ : K → [0, 1] such that ϕ(t0) = 1 and ϕ(A) = {0}. Fix x0 ∈ SX such that
f0(t0) = ‖f0(t0)‖x0 and define Ψ : C → C(K,X) by

Ψ(z) = (1 − ϕ)f0 + ϕx0z.

Notice that Ψ(‖f0(t0)‖)(t) − f0(t) = (1 − ϕ(t))f0(t) + ϕ(t)f0(t0) − f0(t) =
ϕ(t)(f0(t0) − f0(t)). Since ϕ(A) = {0}, we have

‖Ψ(‖f0(t0)‖) − f0‖ = sup
t∈K

ϕ(t)‖f0(t0) − f0(t)‖ < δ.

By (4), we obtain
∥
∥P

(
Ψ(‖f0(t0)‖)

) − P (f0)
∥
∥ <

ε

2
|

that implies
∥
∥P

(
Ψ(‖f0(t0)‖)

)
(t0) − P (f0)(t0)

∥
∥ <

ε

2
·

It follows from (3) that
∥
∥P

(
Ψ(‖f0(t0)‖)

)
(t0)

∥
∥ > ‖P (f0)(t0)‖ − ε

2
> ‖P‖ − ε.

Then, by the Hahn-Banach theorem, there exists x∗
0 ∈ SX∗ such that

x∗
0

([
P

(
Ψ(‖f0(t0)‖)

)]
(t0)

)
> ‖P‖ − ε.

Since the function

z 	−→ x∗
0

([
P

(
Ψ(z)

)]
(t0)

)

is holomorphic, the maximum modulus theorem ensures the existence of z0 ∈ T

such that
∥
∥P

(
Ψ(z0)

)
(t0)

∥
∥ ≥ ∣

∣x∗
0

([
P

(
Ψ(z0)

)]
(t0)

)∣∣

≥ x∗
0

([
P

(
Ψ(‖f0(t0)‖)

)]
(t0)

)
> ‖P‖ − ε.
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Take x1 = z0x0 ∈ SX , fix x∗
1 ∈ SX∗ such that x∗

1(x1) = 1, and define Φ : X →
C(K,X) by

Φ(x) = x∗
1(x)(1 − ϕ)f0 + ϕx.

Notice that ‖Φ(x)‖ ≤ 1 for all x ∈ BX and that Φ(x1) = Ψ(z0). Thus,
∥
∥P

(
Φ(x1)

)
(t0)

∥
∥ > ‖P‖ − ε.

Consider the polynomial Q : X → X defined by

Q(x) =
[
P

(
Φ(x)

)]
(t0).

Observe that Q ∈ PK(X;X) and satisfies

‖Q‖ ≥ ‖Q(x1)‖ =
∥
∥[

P
(
Φ(x1)

)]
(t0)

∥
∥ > ‖P‖ − ε.

Thus,

‖Id + Q‖ ≥ 1 + daugp(X)‖Q‖ > 1 + daugp(X)(‖P‖ − ε).

Let x2 ∈ BX be such that

‖x2 + Q(x2)‖ > 1 + daugp(X)(‖P‖ − ε)

and define g = Φ(x2) ∈ C(K,X). So, ‖g‖ ≤ 1 and

‖Id + P‖ ≥ ‖g + P (g)‖ ≥ ‖g(t0) + P (g)(t0)‖
≥ ‖x∗

1(x2)(1 − ϕ(t0))f(t0) + ϕ(t0)x2 + Q(x2)‖
= ‖x2 + Q(x2)‖ > 1 + daugp(X)(‖P‖ − ε).

Letting ε → 0, we obtain

‖Id + P‖ ≥ 1 + daugp(X)‖P‖.

Therefore, daugp(C(K,X)) ≥ daugp(X).
Now, suppose that K is perfect. In this case, [5, Corollary 2.5] ensures that

C(K,X) and C(K) have the PDP, that is,

daugp(C(K,X)) = daugp(C(K)) = 1.

Then

daugp(C(K,X)) = max{daugp(C(K)),daugp(X)}.

Finally, suppose that K has an isolated point. Then daugp(C(K)) = 0
and C(K,X) = X ⊕∞ Z for some appropriate Banach space Z. Hence, by
Proposition 2.2 we have that daugp(C(K,X)) ≤ daugp(X). Therefore

daugp(C(K,X)) = max{daugp(C(K)),daugp(X)}.

�

Proposition 2.5. Let (Ω,Σ, μ) be a σ-finite measure space and let X be a com-
plex Banach space. Then

daugp(L∞(μ,X)) = max{daugp(L∞(μ)),daugp(X)}.
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Proof. If μ is atomless, then [6, Theorem 6.5] ensures that L∞(μ,X) and
L∞(μ) have the PDP. Thus

daugp(L∞(μ,X)) = daugp(L∞(μ)) = 1.

Therefore

daugp(L∞(μ,X)) = max{daugp(L∞(μ)),daugp(X)}.

Now suppose that μ has an atom. Hence, there exist a non-empty set I and
an atomless σ-finite measure ν such that

L∞(μ,X) = L∞(ν,X) ⊕∞

[ ⊕

i∈I

X

]

�∞

.

Thus daugp(L∞(ν,X)) = 1 and daugp(L∞(μ,X)) = daugp(X), by Proposi-
tions 2.2 and 2.3. Since daugp(L∞(μ)) = 0, we have

daugp(L∞(μ,X)) = max{daugp(L∞(μ)),daugp(X)}.

�

Proposition 2.6. Let (Ω,Σ, μ) be a positive measure space and let X be a com-
plex Banach space. Then

daugp(L1(μ,X)) ≤ max{daugp(L1(μ)),daugp(X)}.

Proof. By [10, Theorem 3.3], we know that if μ is an atomless measure then
L1(μ,X) and L1(μ) have the PDP and, in particular,

daugp(L1(μ,X)) = daugp(L1(μ)) = 1.

On the other hand, if μ is a measure with an atom, then there exist a non-
empty set I and an atomless positive measure ν such that

L1(μ,X) = L1(ν,X) ⊕1

[⊕

i∈I

X

]

�1

.

In this case, by Proposition 2.2 we have that

daugp(L1(μ,X)) ≤ daugp(X) = max{daugp(L1(μ)),daugp(X)},

since daugp(L1(μ)) = 0. �

The reverse inequality in Proposition 2.6 remains open.
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