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Conley conjecture and local Floer homology
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Abstract. In this paper we connect algebraic properties of the pair-of-
pants product in local Floer homology and Hamiltonian dynamics. We
show that for an isolated periodic orbit, the product is non-uniformly
nilpotent and use this fact to give a simple proof of the Conley conjecture
for closed manifolds with aspherical symplectic form. More precisely, we
prove that on a closed symplectic manifold, the mean action spectrum of
a Hamiltonian diffeomorphism with isolated periodic orbits is infinite.
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1. Introduction and main results.

1.1. Introduction. In this paper we study the pair-of-pants product in local
Floer homology and use its properties to give a simple proof of the Conley
conjecture for closed manifolds with aspherical symplectic form. We prove that
the product in the local Floer homology is non-uniformly nilpotent unless the
periodic orbit is a symplectically degenerate maximum. Then we utilize this
fact to prove that on a closed symplectic manifold, the mean action spectrum
of a Hamiltonian diffeomorphism with isolated periodic orbits is infinite.

To state the results in more detail, recall that for a broad class of symplec-
tic manifolds, every Hamiltonian diffeomorphism has infinitely many simple
periodic orbits. Such existence results are usually referred to as the Conley
conjecture. The example of an irrational rotation of M = S2 shows that the
conjecture does not hold unconditionally, or the condition ω|π2(M) = 0 can-
not be dropped completely. The following fact, proven in [7], encompasses all
known cases of the conjecture: when a closed symplectic manifold (M,ω) ad-
mits a Hamiltonian diffeomorphism with finitely many periodic orbits, there is
a class A ∈ π2(M) with ω(A) > 0 and 〈c1(TM), A〉 > 0. The proof is a formal

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-018-1259-9&domain=pdf
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consequence of previously known cases combined with the aspherical case es-
tablished in [7]. Ginzburg and Gürel prove the aspherical case by constructing
a strictly decreasing sequence of mean action values. In this paper, following
[7, Remark 4.4], we show that the mean action spectrum is infinite by using a
vanishing property of the pair-of-pants product in local Floer homology.

Here is a brief outline of the argument. Let ϕH be a Hamiltonian diffeo-
morhism of a closed symplectic manifold generated by a one-periodic Hamil-
tonian H. We first show that the local Floer algebra FA(H,x) =

⊕∞
k=1

HF∗(H�k, xk) of a one-periodic orbit x is non-uniformly nilpotent if xk is iso-
lated and not a symplectically degenerate maximum for all k ∈ N (cf. [6,
Prop. 5.3]). Then arguing by contradiction, assuming in addition that the
mean action spectrum of ϕH is finite, we show that the total Floer algebra
FA(H) =

⊕∞
k=1 HF∗(H�k) is nilpotent, which is impossible.

1.2. Main results. Let us now state the main theorems. The conventions and
basic definitions are reviewed in Section 2. In what follows a “periodic orbit
of a Hamiltonian diffeomorphism” means a “contractible periodic orbit of the
time-dependent flow generated by a Hamiltonian”.

Theorem 1.1. Let ϕH be a Hamiltonian diffeomorphism of a closed symplec-
tic manifold (M,ω) generated by a one-periodic Hamiltonian H. Assume that
periodic orbits of ϕH are isolated. Then the mean action spectrum of H is
infinite.

When ω is not aspherical, a single periodic orbit gives rise to an infinite
action spectrum. In that case the assertion is trivial, since every Hamiltonian
diffeomorphism of a closed manifold has a periodic orbit. On the other hand,
when ω is aspherical, Theorem 1.1 implies existence of infinitely many simple
periodic orbits. In other words, Theorem 1.1 implies that the Conley conjecture
holds for closed symplectic manifolds (M,ω) with aspherical ω.

Corollary 1.2. A Hamiltonian diffeomorphism of a closed symplectic manifold
(M,ω) with aspherical ω has infinitely many simple periodic orbits.

This is a Lusternik–Schnirelmann type result in the sense that the lower
bound for critical points is established by bounding critical values. Theorem
1.1 is proved in Section 3.2. The proof relies on the following vanishing property
of the pair-of-pants product.

Let M be a symplectic manifold and x be a one-periodic orbit of a Hamil-
tonian H : S1 × M → R. Denote by xk the kth iteration of x. The local Floer
homology HF∗(H�k, xk) is defined whenever xk is isolated. The pair-of-pants
product turns the direct sum

FA(H,x) =
∞⊕

k=1

HF∗(H�k, xk)

into a graded algebra, which we call the local Floer algebra. We say that a
graded algebra

⊕∞
k=1 Ak is non-uniformly nilpotent if for all N ∈ N there is

m ∈ N such that all m-fold products vanish when restricted to
⊕N

k=1 Ak. The
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next result (cf. [6, Prop. 5.3]) is proved in Section 3.1. See Section 2.2.1 for
the definition of symplectically degenerate maximum.

Theorem 1.3. Let M be a symplectic manifold and let x be a one-periodic orbit
of a Hamiltonian H : S1 × M → R. Assume that xk is isolated and not a
symplectically degenerate maximum for all k ∈ N. Then the local Floer algebra
FA(H,x) is non-uniformly nilpotent.

2. Preliminaries.

2.1. Conventions and basic definitions. Let (M,ω) be a closed symplectic man-
ifold and H be a one-periodic in time Hamiltonian on (M,ω), i.e., H : S1×M →
R, where S1 = R/Z. The Hamiltonian vector field XH of H is defined by
iXH

ω = −dH. The time-one map of the time-dependent flow of XH is denoted
by ϕH . Such time-one maps are referred as Hamiltonian diffeomorphisms.

A capping of a contractible loop x : S1 → M is a map A : D2 → M such
that A|S1 = x. The action of a Hamiltonian H on a capped closed curve
x̄ = (x,A) is

AH(x̄) = −
∫

A

ω +
∫

S1

H(t, x(t)) dt.

The critical points of AH on the space of capped closed curves are exactly
the capped one-periodic orbits of XH . The set of critical values of AH is
called the action spectrum S(H) of H (or of ϕH). These definitions extend to
Hamiltonians of any period in an obvious way.

For k ∈ N, the kth iteration of H, by which we simply mean H treated
as k-periodic, is denoted by H�k. With this notation, the mean action spec-
trum Ŝ(H) of H (or of ϕH) is defined as the union of the normalized spectra
S(

H�k
)
/k. Note that the action functional is homogeneous with respect to

iteration:

AH�k(x̄k) = kAH(x̄)

where x̄k is the kth iteration of the capped orbit x̄. Furthermore, attaching a
sphere A ∈ π2(M) to x̄k changes AH�k(x̄k) by ω(A). So Ŝ(H) is always infinite
when ω does not vanish on π2(M), and when ω is aspherical (i.e. ω|π2(M) = 0)
Theorem 1.1 implies the existence of infinitely many simple (i.e., not iterated)
periodic orbits.

A periodic orbit x of H is called non-degenerate if the linearized return
map dϕH : Tx(0)M → Tx(0)M has no eigenvalues equal to one. The Conley-
Zehnder index μCZ(x̄) ∈ Z of a non-degenerate capped orbit x̄ is defined, up to
a sign, as in [13,14]. In this paper, μCZ is normalized so that μCZ(x̄) = n when
x is a maximum, with trivial capping, of an autonomous Hamiltonian with
small Hessian. The mean index Δ(x̄) ∈ R is defined even when x̄ is degenerate
and depends continuously on H and x̄, see [9,14]. Furthermore, it satisfies∣
∣Δ(x̄) − μCZ(x̄)

∣
∣ ≤ n, and it is homogeneous with respect to iteration:

Δ
(
x̄k

)
= kΔ(x̄).
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2.2. Floer homology. In this section, we recall some properties of local Floer
homology and pair-of-pants product, then define Floer algebra. See [3,5,8,10,
13,14] for a detailed account on (filtered) Floer homology, and [1,10,12] for
pair-of-pants product.

2.2.1. Local Floer homology. Let x̄ be an isolated capped periodic orbit of a
Hamiltonian H. The local Floer homology HF∗(H, x̄) of x̄ is defined as in [4–6].
The capping is only used to fix a trivialization of TM |x and hence to give a
Z-grading to HF∗(H, x̄). Recapping a capped orbit shifts the Conley-Zehnder
index by an even integer. So Z2-graded homology HF∗(H,x) is defined without
fixing a trivialization.

The support of HF∗(H, x̄) is the collection of integers m such that HFm(H,
x̄) �= 0. A capped periodic orbit x̄ is called a symplectically degenerate max-
imum (SDM) if Δ(x̄) is an integer and HFΔ(x̄)+n(H, x̄) �= 0, this property
is independent of the capping. The mean action spectrum of a Hamiltonian
diffeomorphism ϕH with an SDM orbit is infinite, see [4] for details. If x̄ is not
an SDM, then the support of HF∗(H, x̄) is contained in the half-open interval
[Δ(x̄) − n,Δ(x̄) + n).

We will use the properties of Z-grading by the Conley-Zehnder index in the
proof of Theorem 1.3. When proving Theorem 1.1, for the sake of simplicity,
we work with Z2-graded homology.

2.2.2. Pair-of-pants product. Let (M,ω) be a closed symplectic manifold with
rational ω, i.e., ω|π2(M) is discrete. The filtered Floer homology on (M,ω) car-
ries the so-called pair-of-pants product; see, e.g., [1]. On the level of complexes,
this product is a map

CF(a, b)
m (H) ⊗ CF(c, d)

l (K) → CF(max{a+d, b+c}, b+d)
m+l−n (H�K)

giving rise on the level of homology to an associative, commutative product

HF(a, b)
m (H) ⊗ HF(b, d)

l (K) → HF(max{a+d, b+c}, b+d)
m+l−n (H�K)

where H, K are one-periodic Hamiltonians that satisfy H(0, ·) = K(0, ·) with
all the time derivatives and H�K is the two-periodic Hamiltonian given by
H(t, ·) for t ∈ [0, 1] and K(t − 1, ·) for t ∈ [1, 2]. Here H, K could be Hamilto-
nians of any period, then H�K would have the sum of the periods. The product
turns the direct sum of the filtered Floer homology

FA(−∞, b)(H) :=
∞⊕

k=1

HF(−∞, kb)
∗

(
H�k

)

into an associative and graded-commutative non-unital algebra, which we call
the filtered Floer algebra. The local Floer algebra

FA(H,x) :=
∞⊕

k=1

HF∗(H�k, xk)

and the total Floer algebra FA(H) are defined in a similar way. In all three,
we work with Z2-graded homology when c1(TM) �= 0. In the local case, sim-
ilar to how local Floer homology is defined, the product is given by counting
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pair-of-pants curves between the orbits contained (as fixed points) in a small
neighborhood of x (as a fixed point). At the end of this section, we justify why
this restricted product is a chain map. Note that we only use the rationality
assumption for ω to define filtered Floer homology; in the case of local and
total algebras the assumption is not needed.

In Section 3.1 when proving nilpotency of local Floer algebras, we use
properties of Z-grading by the Conley–Zehnder index, in other words we work
with the Z-graded local algebra FA(H, x̄) of a capped orbit x̄. Here to cap
iterated orbits xk, we iterate the capped orbit x̄. Once we prove the nilpotency
result, we will forget Z-grading and go back to the Z2-graded algebra FA(H,x)
which does not depend on the capping.

The product structure in total Floer algebra, under the isomorphism with
the (dual of) the quantum cohomology at each summand, agrees with the
(dual of) the quantum cup-product. Using the unit element of the quantum
cup-product at each summand of FA(H), one can form a non-zero product
of any length. We prove Theorem 1.1 by contradiction: we show that FA(H)
would be nilpotent if the mean action spectrum was finite.

In Section 3.2, arguing by contradiction, we will extend the nilpotency
result in local Floer algebras to the total algebras under the assumption that
the mean action spectrum is finite. Below is the first step towards building
a total algebra out of local algebras of isolated orbits; one can also use this
approach to define the pair-of-pants product in the local Floer homology of an
isolated orbit under the rationality assumption. Suppose that ω is aspherical.
For an isolated mean action value c one can consider the filtered Floer algebra
around c:

FA(c−ε, c+ε)(H) :=
∞⊕

k=1

HF(kc−kε, kc+kε)
∗

(
H�k

)
.

Here it is essential that the interval (c− ε, c+ ε) contains a single mean action
value. Similar to Floer homology of a single Hamiltonian, as a vector space,
the filtered algebra FA(c−ε, c+ε)(H) splits

FA(c−ε, c+ε)(H) =
⊕

A
H�k (x̄i)=kc

FA(H�k, x̄i)

where the x̄i’s are simple (not iterated) capped orbits. This splitting also re-
spects product structure. In particular, one can show that (see [7]) on the level
of complexes there are no pair-of-pants curves between distinct summands of
this splitting for sufficiently small non-degenerate perturbations of Hamilto-
nians. Such a pair-of-pants curve would have an a priori energy lowerbound
that does not depend on non-degenerate pertubations of the Hamiltonians
(see [7, Prop. 2.2]). On the other hand, the energy identity for pair-of-pants
curves implies that by controlling perturbations, we can keep the energy of all
pair-of-pants curves as small as we want (here we are using the fact that all
non-perturbed orbits have the same mean action value).

Recall that the product in the local algebra FA(H,x) is given by counting
pair-of-pants curves that connects orbits contained in a small neighborhood of



652 E. Çi̇neli̇ Arch. Math.

x. Arguing as in the previous paragraph, by controlling perturbations, one can
guarantee that index one pair-of-pants curves cannot brake at an orbit outside
of the chosen neighborhood of x; which implies that the restricted product is
a chain map. Such a curve would have an a priori energy lower bound that
does not depend on the perturbations (see [7, Prop. 2.2]), and we can keep the
energy of all curves as small as we want by controlling perturbations.

3. Proofs.

3.1. Proof of Theorem 1.3. Let x be a one-periodic orbit of a Hamiltonian
H : S1 × M → R. Assume that x and all of its iterations are isolated, and
non-SDM. Choose a capping x̄ = (x,A) and iterate it x̄k = (xk, Ak). For a
fixed N ∈ N, consider products of the form w1 · . . . ·wr ∈ HFl(H�k, x̄k) with
non-zero wi ∈ HFli(H

�ki , x̄ki); where ki ≤ N , l =
∑

li−(r−1)n and k =
∑

ki.
Since xki is not an SDM, support of HF∗(H�ki , x̄ki) is contained in the half

open interval [kiΔ(x̄) − n, kiΔ(x̄) + n). So there exists δki
> 0 depending on

ki but not on the capping, such that li − kiΔ(x̄) − n ≤ −δi. Summing over i
gives

r∑

i=1

li − kΔ(x̄) − rn = l − kΔ(x̄) − n ≤ −
r∑

i=1

δki
≤ −rδ,

where δ = min{δki
| ki ≤ N}. So when r > 2n/δ, l goes out of the support of

HF∗(H�k, x̄k).

Remark 3.1. When the mean index is an integer, we can choose δ = 1 inde-
pendent of N . Thus, in that case the algebra is uniformly nilpotent. But this
is not true in general. For an example, consider the autonomous Hamiltonian
H(x, y) = −λ(x2 + y2) where λ > 0 is a small irrational number. For C2-small
autonomous Hamiltonians, e.g., H, the pair-of-pants product in the local Floer
homology of an isolated critical point agrees with the dual of the cup-product
in the local Morse homology of the same point. The latter is non-zero for a
local maximum. So the map

HF∗(H, 0) ⊗ · · · ⊗ HF∗(H, 0) → HF∗(H�k, 0)

given by a k-fold pair-of-pants product is non-zero provided that H�k is C2-
small. Here the notion of being C2-small changes with iteration, since we are
considering H�k as k-periodic (since we are not normalizing the period). Now
let l ∈ N such that λ 	 lλ−
lλ� = θ > 0, and let K(x, y) = −θ(x2 + y2). The
isomorphism

HF∗(K, 0) → HF∗(H�l, 0)

given by composing with the loop diffeomorphism generated by the Hamil-
tonian G(x, y) = −
lλ�(x2 + y2) preserves the pair-of-pants product (see [6,
Section 5.2]). Since the iterated Hamiltonian K�k stays C2-small for higher
iterations compare to H�k, the map

HF∗(H�l, 0) ⊗ · · · ⊗ HF∗(H�l, 0) → HF∗(H�lk, 0)
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would not vanish for larger k. Hence the algebra FA(H, 0) is not uniformly
nilpotent.

Remark 3.2. The conclusion of Theorem 1.3 is false in the presence of a sym-
plectically degenerate maximum. In fact, see [6, Section 5.2] for details, if
w ∈ HFΔ(x̄)+n(H, x̄) is the generator of the top degree homology (which is
one-dimensional) of an SDM orbit x̄, then for every large prime k the kth
power of w is non-zero in HFΔ(x̄k)+n(H�k, x̄k).

Remark 3.3. Roughly speaking, the only restriction on the local Morse homol-
ogy of an isolated critical point is that with all the algebraic structures it is
isomorphic to the homology of a suspension, see [2,11]. In particular, the cup-
product and the Massey products vanish in the local Morse (co)homology, [15],
but other cohomology operations need not be trivial (e.g., Steenrod squares).
Non-uniform nilpotency of the pair-of-pants product is a Floer theoretic coun-
terpart of this vanishing phenomenon. However, similar to the local Morse
homology, the local Floer homology can carry many non-nilpotent cohomol-
ogy operations.

3.2. Proof of Theorem 1.1. As discussed in Section 2.1, the mean action spec-
trum Ŝ(H) of H : S1 × M → R is infinite when ω is not aspherical; or in the
existence of an SDM orbit, see [4] for details. In this section, we assume that
ω is aspherical and none of the orbits of ϕH is an SDM.

Arguing by contradiction, assuming in addition that Ŝ(H) is finite, let
Ŝ(H) = {a1, . . . , am} be the mean action spectrum (ordered) of H. Choose
ci ∈ R such that ai < ci < ai+1. By the energy estimates for the product, see
Section 2.2.2 and [7] for details, the filtered Floer algebra FA(−∞, c1)(H) splits

FA(−∞, c1)(H) =
⊕

A
H�k (xi)=ka1

FA(H�k, xi)

as an algebra. Each summand is non-uniformly nilpotent by Theorem 1.3 and
there are finitely many summands less than a fixed iteration, so the sum is
non-uniformly nilpotent. Next we will inductively argue that the total alge-
bra FA(H) is non-uniformly nilpotent (or just nilpotent, since summands are
isomorphic), which is impossible (see Section 2.2.2).

Recall that a graded algebra
⊕∞

k=1 Ak is called non-uniformly nilpotent
if for all N ∈ N there is m ∈ N such that all m-fold products vanish when
restricted to

⊕N
k=1 Ak. We call the minimum such m the degree of nilpotentcy

of
⊕N

k=1 Ak. Fix N ∈ N and let l, k be the degrees of nilpotency of

FA(ci, ci+1)(H) :=
⊕

A
H�k (xj)=kai+1

FA(H�kxj)

and FA(−∞,ci)(H) when restricted to the first N and Nl iterations, respec-
tively. We will show that FA(−∞,ci+1)(H) is nilpotent with degree at most kl
when restricted to the first N iterations, and hence non-uniformly nilpotent.

Let A,B,C be the Floer chain complexes which give rise to the Floer al-
gebras above, i.e., H∗(A) = FA(−∞,ci)(H), H∗(B) = FA(ci,ci+1)(H), H∗(C) =
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FA(−∞,ci+1)(H). Let D be the qoutient chain complex coming from the inclu-
sion A ⊗ A → C ⊗ C. Using the auxilary complex D we form a commutative
diagram

0 A ⊗ A C ⊗ C D 0

0 A C B 0

with exact rows, where the vertical arrows are pair-of-pants product. It induces
a commutative diagram

HF∗(A) ⊗ HF∗(A) HF∗(C) ⊗ HF∗(C) HF∗(D)

HF∗(A) HF∗(C) HF∗(B)P R

in homology. Note that the product map D → B factors through B ⊗ B; so
HF∗(D) has the same product structure with HF∗(B) ⊗ HF∗(B).

Now take kl classes wi ∈ HF∗(C) that belong to the first N iterations. If
at least k of them are in the image of P , using the associativity of the product
and the commutativity of the first block in the diagram, we conclude that
w1 · . . . ·wkl = 0.

If not, take l of the classes wij
that are not in the image of P . This time

using commutativity of the second block, we conclude that the product wi1 ·
. . . ·wil

is in the kernel of R and hence in the image of P . There are at least
k − 1 such l-tuples; and if that is the case, then there is at least one class
among the remaining l-classes that is in the image of P . So in total we obtain
k classes (from the first Nl iterations) in the image of P and we go back to
the first case to conclude that w1 · . . . ·wkl = 0.

Remark 3.4. In fact a slightly stronger result holds. Let c ∈ R such that
c /∈ Ŝ(H) and c bounds from above the action spectrum of H. Consider the
commutative diagram

HF∗(H) ⊗ · · · ⊗ HF∗(H) HF(−∞, kc)
∗ (H�k)

HF∗(H) ⊗ · · · ⊗ HF∗(H) HF∗(H�k)

where horizontal arrows are the k-fold pair-of-pants product, the left vertical
arrow is the identity map, and the right vertical arrow is the induced map
coming from the inclusion of the subcomplex CF(−∞, kc)

∗ (H�k). If Ŝ(H) has
no accumulation point, then using the same argument as above, one can show
that the first row in the diagram is identically zero for sufficiently large k. Then
the second row is also zero, which is not possible since a quantum cup-product
has a unit.
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Erman Çi̇neli̇
Department of Mathematics
UC Santa Cruz
Santa Cruz, CA 95064
USA
e-mail: scineli@ucsc.edu

Received: 8 December 2017


	Conley conjecture and local Floer homology
	Abstract
	1. Introduction and main results
	1.1. Introduction
	1.2. Main results

	2. Preliminaries
	2.1. Conventions and basic definitions
	2.2. Floer homology
	2.2.1. Local Floer homology
	2.2.2. Pair-of-pants product


	3. Proofs
	3.1. Proof of Theorem 1.3
	3.2. Proof of Theorem 1.1

	Acknowledgements
	References




