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1. Introduction and statement of the main results. Neither the horizontal
distribution of the nontrivial (non-real) zeros of the Riemann zeta-function
ζ(s) is well understood nor their vertical distribution. In 1942, Albert Edward
Ingham [1] observed that the truth of the Mertens conjecture in the form∑

n≤x μ(n) = O(x1/2) with the Möbius μ-function would not only imply that
all nontrivial zeros lie on the critical line 1/2 + iR (the Riemann hypothesis)
and are simple (the simplicity hypothesis)—consequences well known at his
time—but that in addition “the imaginary parts of the zeros above the real
axis must be linearly dependent (with rational integral multipliers)” too. The
stronger original form of the Mertens conjecture, |∑n≤x μ(n)| ≤ x1/2, has
been disproved by Andrew Odlyzko and Herman te Riele [5] in 1985; on the
other hand, no linear relation for zeros has been found so far. A slightly weaker
open problem than proving linear independence is to show that there are no
three or more nontrivial zeros in arithmetic progression. In that direction Put-
nam [7,8] showed that there is no infinite arithmetic progression of nontrivial
zeros. A different approach was found by Lapidus and van Frankenhuijsen
[2]. In a later paper [11] van Frankenhuijsen obtained an explicit bound for
the length of any hypothetical arithmetic progression, in particular proving
ζ( 12 + imδ) = 0 for 1 ≤ m < M with positive real δ > 44,000 is possible only
for M < 13δ by use of the explicit formula. More recently, Elias Wegert and
the second author [9] as well as Martin and Ng [4] found another method using
discrete moments in combination with estimates for exponential sums. Very
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recently, Li and Radziwi�l�l [3] showed by a similar approach that at least one
third of the values on arithmetic progression is different from zero; moreover,
they proved that among these values there are infinitely many extremely large
(resp. small) in absolute value. Here we continue these investigations (and
our previous related work [6]) by studying the values of the zeta-function on
generalized arithmetic progressions.

In [6] it was observed that the mean of the values of the zeta-function taken
on a vertical arithmetic progression s0 + imδ with m = 0, 1, 2, . . . ,M inside
the critical strip exists and is equal to

lim
M→∞

1
M

∑

0≤m<M

ζ(s0 + imδ)=
{

(1−�−s0)−1 if δ= 2πq
log � , q∈N, 2≤�∈N,

1 otherwise.

(1)
Here s0 may be any complex number with real part in (0, 1) and if δ is of the
form δ = 2πq

log � with 2 ≤ � ∈ N and q ∈ N, then q is supposed to be the smallest
integer for which such a value � exists. This condition on q is necessary to
determine � uniquely since 2πq

log � = 2πqb
log �b for any b ∈ N. Any such δ with least

possible q is called a resonance value of order �, and all other δ are said to be
generic.

In this note we consider the distribution of values of the zeta-function on
generalized arithmetic progressions of the form 1

2 + i(γ + δ1m1 + . . . + δrmr),
where γ is a real number, δ1, . . . , δr are positive real numbers, and m1, . . . ,mr

are positive integers. It appears that the mean of the values of the zeta-function
exists also on generalized arithmetic progressions. The case of resonance here
is when all δj ’s oscillate with the same logarithm � in the denominators. More
precisely, we say that δ1, . . . , δr with some r ≥ 2 are in resonance if there exists
some � ∈ N such that one of the δj ’s is a resonance value of order � and all
other δj satisfy δj log � ∈ 2πZ (which implies δj = 2πqj

log � with positive integers
qj for j = 1, . . . , r); notice that this does not imply that all δj are resonance
values. It is easy to see that in the case of existence, the value of � is uniquely
determined. Otherwise, when there is no such integer �, the values δ1, . . . , δr

are said to be not in resonance.
For convenience we introduce some simplifying notation: we denote the

inner product of δ = (δ1, . . . , δr) and m = (m1, . . . ,mr) by δ · m =
∑r

j=1 δjmj .
Moreover, m ≤ M indicates that a summation is taken over all positive integers
m1, . . . ,mr satisfying mj ≤ Mj for j = 1, . . . , r, where M = (M1, . . . ,Mr).
Finally, we define Π := M1 · . . . · Mr.

Theorem 1. Let M1, . . . ,Mr be quantities tending to infinity. Then,

1
Π

∑

m≤M

ζ( 12 + i(γ + δ · m)) = cδ + o(1),

where cδ is a non-zero constant defined by

cδ =
{

(1 − �−( 1
2+iγ))−1 if all δj = 2πqj

log � are in resonance
1 otherwise.
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If the δj ’s are in resonance, the mean value is of similar form as in (1); otherwise
the mean equals 1. Here and everywhere the implicit constants may depend
on γ, δ1, . . . , δr.

In the following section we shall give a simplified proof of Formula (1) for s0
from the critical line, which may also be considered as the induction hypothesis
for the proof of Theorem 1 by induction in the final section.

2. The case of an arithmetic progression. We begin with (a very simple form
of) the approximate functional equation, namely

ζ(s) =
∑

n≤x

n−s +
x1−s

s − 1
+ O(x−σ),

valid uniformly for σ ≥ σ0 > 0 and |t| � x, where we write s = σ + it (see [10,
§4.11]); writing here and elsewhere the range of summation as n ≤ x indicates
that we sum up overall positive integers n ≤ x. This yields for x � M (meaning
that x � M � x) that

ζ( 12 + it) =
∑

n≤x

n− 1
2−it +

x
1
2−it

− 1
2 + it

+ O(M− 1
2 ),

and
∑

m≤M

ζ( 12 + i(γ + δm))

=
∑

m≤M

∑

n≤x

n− 1
2−i(γ+δm) +

∑

m≤M

x
1
2−i(γ+δm)

− 1
2 + i(γ + δm)

+ O(M
1
2 ).

The second sum on the right-hand side can be estimated as

∑

m≤M

x
1
2−i(γ+δm)

− 1
2 + i(γ + δm)

� x
1
2

∑

m≤M

1
m

� M
1
2 log M.

And the double sum on the right can be rewritten as

M +
∑

1<n≤x

n− 1
2−iγ

∑

m≤M

exp(−iδm log n).

Using the classical bound

SM (α) :=
∑

m≤M

exp(−imα) � min{M, ‖ α
2π ‖−1}, (2)

where, as usual, ‖Δ‖ denotes the distance of Δ to the nearest integer, we have
∑

1<n≤x

n− 1
2−iγ

∑

m≤M

exp(−iδm log n)

=

⎧
⎪⎪⎨

⎪⎪⎩

∑

1<n≤x
δ log n∈2πZ

+
∑

1<n≤x
δ log n�∈2πZ

⎫
⎪⎪⎬

⎪⎪⎭

n− 1
2−iγSM (δ log n) = S1 + S2,
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say. If δ log n ∈ 2πZ, then SM (δ log n) = M ; hence

S1 = M
∑

1<n≤x
δ log n∈2πZ

n− 1
2−iγ .

The condition δ log n ∈ 2πZ implies that δ = 2πq
log � is a resonance value of some

order � and n has to be a power of �. Writing n = �b, this leads after a short
calculation with geometric series to

S1 = M
∑

1≤b≤ log x
log �

�−b( 1
2+iγ) = M

(
(1 − �−( 1

2+iγ))−1 − 1
)

+ O(Mx− 1
2 ).

In view of x � M the error term is O(M
1
2 ) = o(M).

In order to treat S2, let N be the minimum of M
1
3 and the least positive

integer N for which the inequalities
∥
∥
∥
∥

δ log n

2π

∥
∥
∥
∥ > M− 1

2 for 1 < n < N

do not hold. Hence, in combination with (2),
∑

1<n<N
δ log n�∈2πZ

n− 1
2−iγSM (δ log n) � NM

1
2 = O(M

5
6 ) = o(M).

It remains to estimate
∑

N≤n≤x
(δ log n�∈2πZ)

n− 1
2−iγSM (δ log n),

where the condition on δ log n may be dropped. Of course, this sum can be
empty (if N > x). We shall use an elementary (nevertheless tricky) estimate
due to Martin and Ng [4, Proposition 4.2], which implies here

∑

N≤n≤x

n− 1
2 min

{

M,

∥
∥
∥
∥

δ log n

2π

∥
∥
∥
∥

−1
}

� MN − 1
2 + x

1
2 log x.

Since x � M and N tends to infinity as M → ∞, it follows that S2 = o(M).
Combining all estimates yields the formula from the theorem for the case

r = 1 as well as Formula (1) for s0 from the critical line; it is not difficult to
extend the above reasoning to get (1) in its full generality.

3. The general case. The general case is proved by an induction argument.
Without loss of generality, we may assume that δr is a resonance value of
order � if δ1, . . . , δr are in resonance. We write

∑

m≤M

ζ( 12 + i(γ + δ · m)) =
∑

m1≤M1

. . .
∑

mr−1≤Mr−1

∑

mr≤Mr

ζ( 12 + i(γr + δrmr)),

where γr := γ +δ1m1 + . . .+δr−1mr−1. In view of (1) with s0 from the critical
line, resp. the result proven in the previous section (that is, the case r = 1 of
the statement of the theorem),
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∑

mr≤Mr

ζ( 12 + i(γr + δrmr)) = (cr + o(1))Mr,

where

cr =
{

(1 − �− 1
2−iγr )−1 if δr = 2πqr

log � , qr ∈ N, 2 ≤ � ∈ N,

1 otherwise.

This leads to
∑

m≤M

ζ( 12 + i(γ + δ · m))

=
∑

m1≤M1

. . .
∑

mr−2≤Mr−2

∑

mr−1≤Mr−1

(cr + o(1)) · Mr. (3)

If cr = 1, then the right-hand side equals (1 + o(1))Π (even if there are reso-
nance values amongst the other δj ’s). Otherwise, when δr = 2πqr

log � is a resonance
value, then the most inner sum in (3) can be rewritten as

∑

mr−1≤Mr−1

(1 − �− 1
2−iγr )−1

=
∑

mr−1≤Mr−1

⎛

⎝1 +
∑

n≥1

�−n( 1
2+iγr−1+iδr−1mr−1)

⎞

⎠

= Mr−1 +

⎧
⎨

⎩

∑

1≤n<N

+
∑

n≥N

⎫
⎬

⎭
�−n( 1

2+iγr−1)
∑

mr−1≤Mr−1

exp(−imr−1nδr−1 log �).

If δr−1 log � ∈ 2πZ, then the most inner sum on the right-hand side equals
Mr−1 and we find

∑

mr−1≤Mr−1

(1 − �− 1
2−iγr )−1 = (1 − �− 1

2−iγr−1)−1Mr−1;

substituting this in (3) yields
∑

m≤M

ζ( 12 + i(γ + δ · m))

=
∑

m1≤M1

. . .
∑

mr−2≤Mr−2

(cr−1 + o(1)) · MrMr−1, (4)

where cr−1 equals (1 − �− 1
2−iγr−1)−1. Notice that in this case δr−1 and δr are

in resonance of order � and we may proceed with induction.
However, if δr−1 log � 
∈ 2πZ, then we may argue similar as in the previous

section. Let N be the least positive integer N for which the inequalities
∥
∥
∥
∥

nδr−1 log �

2π

∥
∥
∥
∥ > M

− 1
2

r−1 for 1 < n < N
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do not hold. In view of the trivial bound (2), we have, for n < N ,
∑

mr−1≤Mr−1

exp(−imr−1nδr−1 log �)

= SMr−1(nδr−1 log �) �
∥
∥
∥
∥

nδr−1 log �

2π

∥
∥
∥
∥

−1

� M
1
2
r−1

and thus
∑

1≤n<N
�−n( 1

2+iγr−1)
∑

mr−1≤Mr−1

exp(−imr−1nδr−1 log �) � M
1
2
r−1.

Moreover,
∑

n≥N
�−n( 1

2+iγr−1)
∑

mr−1≤Mr−1

exp(−imr−1nδr−1 log �) � �−N
2 Mr−1.

Since N tends to infinity as Mr−1 → ∞, we get
∑

mr−1≤Mr−1

(1 − �− 1
2−iγr )−1 = (1 + o(1))Mr−1.

Substituting this in (3) leads to (4) and we may proceed with the induction.
Thus, if all δj are in resonance, we finally arrive at

∑

m≤M

ζ( 12 + i(γ + δ · m))

=
∑

m1≤M1

(c2 + o(1)) · MrMr−1 · . . . · M2 = (c1 + o(1))Π.

Here c2 = (1 − �− 1
2−iγ2)−1 and c1 = (1 − �−( 1

2+iγ))−1 which equals cδ in the
case that all δj are on resonance of order �. This finishes the proof of the
theorem.
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Boston, Inc., Boston, MA (2000)

[3] Li, X., Radziwi�l�l, M.: The Riemann zeta function on vertical arithmetic progres-

sions. Int. Math. Res. Not. IMRN 2015, 325–354 (2015)

[4] Martin, G., Ng, N.: Nonzero values of Dirichlet L-functions in vertical arithmetic

progressions. Int. J. Number Theory 9, 813–843 (2013)

[5] Odlyzko, A.M., te Riele, H.J.J.: Disproof of Mertens conjecture. J. Reine Angew.

Math. 367, 138–160 (1985)



Vol. 112 (2019) The values of the Riemann zeta-function 59
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