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Projection theorems in hyperbolic space

Zoltán M. Balogh and Annina Iseli

Abstract. We establish Marstrand-type projection theorems for orthog-
onal projections along geodesics onto m-dimensional subspaces of the
hyperbolic n-space by a geometric argument. Moreover, we obtain a
Besicovitch–Federer type characterization of purely unrectifiable sets in
terms of these hyperbolic orthogonal projections.
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1. Introduction. Marstrand’s theorem [20] states that given a Borel set A in
R

2, for almost every line L the orthogonal projection of A onto L is a set of
Hausdorff dimension equal to the minimum of 1 and the Hausdorff dimension
of A. This result has marked the start of a large sequence of results in the same
spirit. In particular, Marstrand’s theorem has been sharpened and generalized
to higher dimensions by Kaufman [19], Falconer [9], and Mattila [22]. Also,
similar problems have been studied in various other settings such as Heisen-
berg groups [1,2,15] and normed spaces [3,17], as well as for radial projections
in [25], different notions of measure and dimension [10,11,14], and restricted
families of projections [8,12,26] (and references therein). In this paper, we
prove Marstrand-type projection theorems as well as a Besicovitch-Federer-
type projection theorem (i.e. a characterization of purely unrectifiable sets in
terms of projections) for orthogonal projection along geodesics in the hyper-
bolic n-space. In particular, we generalize previous results of the authors [4] to
higher dimensions. An extended introduction to the topic is provided in this
previous work. For a more exhaustive background on projection theorems in
various settings, we recommend the recent survey article [21] and the references
therein.

This research was supported by the Swiss National Science Foundation Grant Nr. 00020
165507.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-018-1252-3&domain=pdf
http://orcid.org/0000-0002-7350-4408


330 Z. M. Balogh and A. Iseli Arch. Math.

By H
n denote the hyperbolic n-space and by d the hyperbolic metric on H

n.
Fix a base point p ∈ H

n and identify the tangent plane TpH
n with R

n. Now,
consider the exponential mapping expp : R

n → H
n at p. Note that for every

m-plane V (i.e. m-dimensional linear subspace of R
n) the image expp(V ) is a

geodesically convex m-dimensional submanifold of H
n that is isometric to H

m.
Since H

n is a simply connected Riemannian manifold of constant sectional
curvature equal to −1, for all x ∈ H

n, there exists a unique point q ∈ expp(V )
such that

dist(x, expp(V )) = d(x, q).

Define the projection of H
n onto the hyperbolic m-plane expp(V ) by

PV : H
n → expp(V ), PV (x) = q.

As standard arguments show (see Proposition 2.4 in [7]), for all x ∈ H
n and all

m-planes V , the geodesic segment [x, PV (x)] intersects expp(V ) orthogonally
in the point PV (x). Therefore, we will refer to the collection of mappings
PV : H

n → expp(V ), for m-planes V , as the family of orthogonal projections
(along geodesics) onto m-planes in H

n.
It is known that the projections PV : H

n → expp(V ) are 1-Lipschitz (i.e.
distance non-increasing) with respect to the hyperbolic metric d, and hence
dim PV (A) ≤ dim A, for all sets A ⊆ H

n and all m-planes V . Moreover, the
facts that PV A ⊂ V and dimV = m imply that dimPV A ≤ m for all m-
planes V . This yields the same upper bound

dim PV A ≤ min{m,dim A}
as in the Euclidean setting. It is therefore a natural question whether the
generic lower bounds for dimPV A is the same as well, i.e. whether Marstrand-
type projection theorems generalize to the hyperbolic setting.

We call the family of all m-planes V in R
n the Grassmannian of m-planes (in

R
n) which we denote by G(n,m). The Grassmannian G(n,m) carries a natural

measure σn,m that is induced by the Haar measure on O(n) via the group
action of O(n) on G(n,m); see [23, Chapter 3]. Moreover, the Grassmannian
can be smoothly parametrized by local charts in R

K , where K = (n − m)m;
see [18, Section 2.3]. This yields a notion of zero sets for the s-dimensional
Hausdorff measure H s, s > 0, and of Hausdorff dimension dim of subset of
G(n,m).

The following Marstrand-type theorem is a main result of this paper. It can
be considered an analog of results in Euclidean space due to Marstrand [20],
Kaufman [19], Falconer [9], Mattila [22], and Peres–Schlag [27].

Theorem 1. For the family of orthogonal projections PV : H
n → expp(V ),

V ∈ G(n,m), onto m-planes in H
n and for all Borel sets A ⊆ H

n, the following
hold.
(1) If dim A ≤ m, then

(a) dim(PV A) = dim A for σn,m-a.e. V ∈ G(n,m),
(b) For 0 < α ≤ dim A,

dim({V ∈ G(n,m) : dim(PV A) < α}) ≤ (n − m − 1)m + α.
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(2) If dim A > m, then
(a) H m(PV A) > 0 for σn,m-a.e. V ∈ G(n,m),
(b) dim({V ∈ G(n,m) : H m(PV A) = 0}) ≤ (n − m)m + m − dim A.

(3) If dim A > 2m, then
(a) PV A has non-empty interior in V for σn,m-a.e. V ∈ G(n,m),
(b) dim({V ∈ G(n,m) : (PV A)◦ �= ∅}) ≤ (n − m)m + 2m − dim A.

We will prove Theorem 1 by a comparison argument. Namely, we will define
a self-map of the unit ball that by conjugation transforms hyperbolic orthog-
onal projections (displayed in the Poincaré model) into Euclidean orthogonal
projections; see Section 2. The same arguments will allow us to establish a
Besicovitch–Federer-type [6,13] characterization of purely m-unrectifiable sub-
sets of H

n. Recall that a subset A of a metric space X is called m-rectifiable
if there exist at most countably many Lipschitz mappings fi : R

m → X such
that

H m
(
A \

⋃
fi(Rm)

)
= 0.

On the other hand, a set F ⊆ X is called purely m-unrectifiable if H m(F ∩
A) = 0 for every m-rectifiable set A ⊆ X.

Theorem 2. A set A ⊆ H
n with H m(A) < ∞ is purely m-unrectifiable if and

only if for σn,m-a.e. V ∈ G(n,m), we have H m(PV (A)) = 0.

The Euclidean version of this result is sometimes also referred to as the
Besicovitch–Federer projection theorem; see Theorem 18.1 in [23].

2. Proofs of Theorems 1 and 2. First, we recall some preliminaries on hyper-
bolic geometry and fix the notation used in the sequel. For a more detailed
account on hyperbolic geometry as it is used here, we recommend the text-
books [5,7].

Consider the Poincaré model of the hyperbolic n-space H
n, that is, the

metric space (Dn, dP) where Dn := {x ∈ R
n : |x| < 1} is the open unit ball in

R
n and and the Poincaré metric dP is given by

dP(x, y) = 2 arctanh
( |x − y|

(1 − 2〈x, y〉 + |x|2 + |y|2) 1
2

)
.

for all x, y ∈ Dn.
Let Γ be a circle in R

n that intersects ∂Dn orthogonally. Then Γ ∩ Dn is a
hyperbolic geodesic in the Poincaré model (Dn, dP). The same holds for L∩Dn

for L ∈ G(n, 1). Conversely, every geodesic of hyperbolic space displayed in
the Poincaré model is distance minimizing with respect to dP and is either
of the type Γ ∩ Dn or L ∩ Dn. Moreover, the Poincaré model is known to
be a conformal model of hyperbolic space, i.e., the angle in which two curves
in the hyperbolic n-space intersect equals the Euclidean angle in which their
representatives in (Dn, dP) intersect. This makes the Poincaré model a natural
choice for studying orthogonal projections of hyperbolic n-space.

Choose 0 to be the representative of the base point p ∈ H
n in the model

(Dn, dP). This choice is made without loss of generality since the hyperbolic
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Figure 1. The projection P P
V : D3 → D3 ∩ V

space is homogeneous with respect to its group of isometries. Then, for all V ∈
G(n,m), the hyperbolic m-plane expp(V ) corresponds to the m-dimensional
disc V ∩ Dn in the model (Dn, dP). For each V ∈ G(n,m), define

P P
V : Dn → V ∩ Dn

to be the closest-point projection onto V ∩ Dn with respect to the metric dp;
see Fig. 1. Then, the family of hyperbolic orthogonal projections PV : H

n →
expp(V ), V ∈ G(n,m), can be viewed as P P

V : Dn → V ∩ Dn, V ∈ G(n,m).
Moreover, by conformality of the Poincaré model (Dn, dP), the family the
projections P P

V : Dn → V ∩ Dn are orthogonal projections along geodesics in
(Dn, dP).

Now, consider the mapping Ψ : Dn → Dn, defined by

Ψ(x) :=
tanh(2arctanh|x|)

|x| x,

for x ∈ Dn\{0}, and Ψ(0) = 0. Notice that Ψ is a bijection with inverse defined
by

Ψ−1(y) =
tanh

(
1
2arctanh|y|)

|y| y

for x ∈ Dn\{0}, and Ψ−1(0) = 0. One can check that Ψ maps every geodesic
Γ ∩ Dn (where either Γ ∈ G(n, 1) or Γ is a circle that intersects ∂Dn orthog-
onally) to the Euclidean line segment that connects the endpoints p1, p2 of
Γ ∩ Dn; see Fig. 2.

The metric space (Dn, dK) where dK(x, y) := dP(Ψ−1(x),Ψ−1(y)), for all
x, y ∈ Dn, is often called the Klein model or the projective model of hyperbolic
space; see [5] for details. Note that the Klein model is not a conformal model
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Figure 2. The mapping Ψ : D3 → D3 where Γ is a geodesic
in (D3, dP)

of hyperbolic space. However, if Γ1 and Γ2 are representatives of hyperbolic
geodesics in (Dn, dK) and if 0 ∈ Γ1, then the respective geodesics in hyperbolic
space intersect orthogonally if and only if Γ1 and Γ2 intersect orthogonally in
the Euclidean sense in Dn.

The symmetry of Ψ yields the following relation between the hyperbolic
orthogonal projections P P

V : Dn → V ∩ Dn, V ∈ G(n,m), in the Poincaré
model and the Euclidean orthogonal projections P E

V : R
n → V , V ∈ G(n,m),

restricted to Dn.

Lemma 3. For all V ∈ G(n,m), the following holds: P P
V = Ψ−1 ◦ P E

V ◦ Ψ.

Proof. Let x ∈ Dn and V ∈ G(n,m). By Γ denote the circular arc in Dn that is
perpendicular to V and ∂Dn and contains x. Then, by definition, P P

V (x) is the
unique intersection point of V and Γ. Since Γ intersects V orthogonally, the set
Γ∩∂Dn = {p1, p2} is symmetric under the reflection through V . Thus, the line
segment Ψ(Γ) connecting p1 and p2 intersects V orthogonally; see Fig. 2. By
definition, Ψ(x) is the unique intersection point of Γ with the ray that emerges
from the origin and goes through x within Dn. Then, since Ψ(x) ∈ Ψ(Γ), and
Ψ(Γ) intersects V orthogonally, P E

V (Ψ(x)) is the point where Ψ(Γ) intersects
V ∩ Dn. On the other hand, Ψ(P P

V (x)) is the intersection point of Ψ(Γ) and
the ray that emerges from the origin and passes through P P

V (x). However, this
intersection point is exactly P E

V (Ψ(x)); see Fig. 2. �
Proof of Theorems 1 and 2. Note that the restriction of the mapping Ψ :
Dn → Dn to Dn\{0} is a C∞-diffeomorphism. Moreover, the metric dP
is locally bi-Lipschitz to the Euclidean metric on Dn. Hence, for every set
A, every m-plane V ∈ G(n,m) and every s > 0, P E

V (A) is an H s-zero
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set if and only if P P
V (A) is an H s- zero set. In particular, it follows that

dim P E(A) = dimP P
V (A). Moreover, P E

V (A) has non-empty interior in V if
and only if P P

V (A) has non-empty interior in V . Hence, Theorems 1 and 2
follow from their well-known analogs for orthogonal projection onto m-planes
in R

n. �
3. Remark on transversality and projection theorems. In [27] Peres and
Schlag establish a very general projection theorem for families of (abstract)
projections from compact metric spaces to the Euclidean space. Namely, their
result states that if a sufficiently regular family of projections satisfies a certain
transversality condition, then this yields bounds for the Sobolev dimension of
the push-forward (by the projections) of certain measures. While Peres and
Schlag’s main applications of this result concern Bernoulli convolutions, all the
classical Marstrand-type projection theorems for Euclidean spaces R

n can be
deduced as corollaries from their result; see Section 6 in [27] and Section 18.3
in [24]. Moreover, Hovila et. al. [16] have proven that if a family of abstract pro-
jections satisfies transversality with sufficiently good transversality constants,
then a Besicovitch–Federer type characterization of purely unrectifiable sets in
terms of this family of projections follows. Therefore, transversality has proven
to be a powerful method in establishing Marstrand-type as well as Besicovitch–
Federer type projection theorems in various settings. In particular, the works
[15] (Heisenberg groups) and [4] (Riemannian surfaces of constant curvature)
are based on Peres and Schlag’s notion of transversality.

In fact, it is possible to establish transversality for the family of orthogonal
projections in the Poincaré model, P P

V : Dn → expp(V ) ∩ Dn, V ∈ G(n,m).
This is worked out in detail in the second author’s PhD thesis [18, Section 6.2].
The transversality constants obtained (namely L = 2 and δ = 0 in the notation
of [18]) are sufficient to imply both Marstrand-type as well as Besicovitch–
Federer-type projection theorems. In particular, Theorem 2 can be deduced
as a corollary from this result. However, the upper bounds for the dimension
of the exceptional set of planes for Marstrand-type projection theorems in
general depend on the transversality constants; see Theorem 7.3 in [27]. In
particular, in the cases where dim A > m, the bounds obtained by establishing
transversality are worse than the bounds in Conclusions (2.b) and (3.b) of
Theorem 1. The transversality constants L = 2 and δ = 0 obtained in [18]
could still be improved. In particular, a lengthy but straightforward calculation
shows that L can be improved to 3. However, in order to obtain Theorem 1
as a consequence of transversality, one would need L = ∞. However, this is
not possible due to insufficient regularity of the mapping Ψ : Dn → Dn in the
origin.
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