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Abstract. In this paper, for finite dimensional, basic, and connected alge-
bras over a field, we give a sufficient condition, related to 2-cocycles, for
Hochschild extension algebras to be symmetric. Moreover, we define the
normalized 2-cocycle associated with a complete set of primitive orthog-
onal idempotents, and we show that for every 2-cocycle there exists a
normalized 2-cocycle such that their cohomology classes coincide.
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1. Introduction. Hochschild extensions of algebras give many self-injective
algebras. For a finite dimensional algebra A over a field K, the trivial exten-
sion algebra T (A) := A � HomK(A,K) of a K-algebra A by the standard
duality module HomK(A,K) is very important in the representation theory
of self-injective algebras. This is also one of the Hochschild extension algebras
of A. In particular, trivial extension algebras correspond to the zero cocycle
in the second Hochschild cohomology groups H2(A,HomK(A,K)). It is well
known that the trivial extension algebra T (A) of a K-algebra A is symmetric
by the symmetric regular K-linear map μ : T (A) → K,μ(a, f) = f(1), where
a ∈ A and f ∈ HomK(A,K). However, it is known that Hochschild extension
algebras by duality bimodules are always self-injective [5] but they are not
symmetric in general [4].

This paper has two aims:
(1) We will give a sufficient condition, related to 2-cocycles, for Hochschild

extension algebras to be symmetric.
(2) For any 2-cocycle α we define normalized 2-cocycles related to a complete

set of primitive orthogonal idempotents and construct such a normalized
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2-cocycle whose cohomology class coincides with the cohomology class of
α.

In [4], Ohnuki, Takeda, and Yamagata gave a sufficient condition, related
to 2-cocycles, for Hochschild extension algebras to be symmetric by giving a
symmetric regular linear map. They already provided an example (Example
3.3) showing that their condition is not necessary. We give another sufficient
condition (Theorem 3.1) which this example satisfies. We also give another
proof of [4, Theorem 2.2]. More precisely, we show the following: If 2-cocycles
satisfy the sufficient condition in [4], then the corresponding Hochschild exten-
sion algebras have a symmetric regular linear map. Then, this map is equal to
the symmetric regular linear map μ of the trivial extension algebra as linear
maps. In order to show that, we define a normalized 2-cocycle related to a com-
plete set E of primitive orthogonal idempotents, and we call it E-normalized
2-cocycle. Such a normalized 2-cocycle has similar properties as E0-normalized
projective resolutions in [2], where E0 is a subalgebra of an algebra A such
that A = E0 ⊕ radA.

This paper is organized as follows: In Section 2, we recall the definition
and the notation for the Hochschild extension algebras. In Section 3, we give a
sufficient condition, related to 2-cocycles, for Hochschild extension algebras to
be symmetric (Theorem 3.1), and we also give several examples. In Section 4,
for an algebra A and a complete set E of primitive orthogonal idempotents in
A, we define E-normalized 2-cocycles of A (Definition 4.1) and we show that
for every 2-cocycle α there exists an E-normalized 2-cocycle α such that the
cohomology classes of α and α coincide. By means of normalized 2-cocycles, we
also give another proof of [4, Theorem 2.2]. Finally, we show that a complete
set of primitive orthogonal idempotents of a Hochschild extension algebra by
an E-normalized 2-cocycle is given by the formula of a complete set of primitive
orthogonal idempotents of trivial extension algebras (Corollary 4.10).

Throughout this paper, we denote ⊗K and the n-fold tensor product of A
by ⊗ and A⊗n, respectively, for the sake of simplicity.

2. Preliminaries. Let K be a field and A a finite dimensional K-algebra. In
this section, by following [1] and [5], we recall the definition, the notation, and
several properties of Hochschild extensions of A by a duality bimodule.

Let D be a duality between A-mod and Aop-mod. Then, there is an A-
bimodule M such that D ∼= HomA(−,M). In particular, M ∼= DA as A-
bimodules. Such a module DA is called a duality module.

An extension of an algebra A is an epimorphism ρ : T → A of K-algebras.
Throughout this paper, we assume that the kernel of ρ is isomorphic to a dual-
ity module DA as T -bimodule. When K is a commutative ring, an extension
of a K-algebra A with kernel DA is called a Hochschild extension of A by the
duality module DA if the extension is K-split. Then, T is called a Hochschild
extension algebra of A by DA. In our situation, all extensions of algebras are
Hochschild extensions.
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The Hochschild extension algebra T is defined by a 2-cocycle. A 2-cocycle
α : A × A → HomK(A,DA) is a K-bilinear map with the 2-cocycle condition

(a, b, c)α := aα(b, c) − α(ab, c) + α(a, bc) − α(a, b)c = 0

for a, b, c ∈ A. The Hochschild extension algebra T ∼= A ⊕ DA as K-modules
and the multiplication is defined by

(a, f)(b, g) = (ab, ag + fb + α(a, b))

for a, b ∈ A and f, g ∈ DA. We denote such a Hochschild extension algebra T
by Tα(A,DA). The identity of Tα(A,DA) has the form (1,−α(1, 1)). In partic-
ular, the trivial extension of A by DA is the Hochschild extension T0(A,DA)
of A by DA for zero-map.

Hochschild extension algebras of A are related to the second Hochschild
cohomology H2(A,DA) of A with coefficient in DA, which is the cohomology
of the complex

HomK(A,DA) δ1

→ HomK(A⊗2,DA) δ2

→ HomK(A⊗3,DA),

where δ1 and δ2 are given by

[δ1(f)](a ⊗ b) = af(b) − f(ab) + f(a)b

[δ2(α)](a ⊗ b ⊗ c) = aα(b ⊗ c) − α(ab ⊗ c) + α(a ⊗ bc) − α(a ⊗ b)c

for a, b, c ∈ A, f ∈ HomK(A,DA) and α ∈ HomK(A⊗2,DA). Hochschild
extensions (T ) : 0 → DA → T → A → 0 and (T ′) : 0 → DA → T ′ → A → 0
are called equivalent if there exists a homomorphism ι : T → T ′ as K-algebras
such that the following diagram commutes:

0 �� DA ��

1

��

T ��

ι

��

A ��

1

��

0

0 �� DA �� T ′ �� A �� 0

In particular, if Hochschild extension algebras T, T ′ are equivalent, then T ∼= T ′

as K-algebras. It is well known that there exists a one-to-one correspondence
between the set of all equivalent classes of Hochschild extensions of A by DA
and H2(A,DA) (cf. [3]).

The K-linear map α : A⊗2 → DA which belongs to Z2(A,DA) is induced
by a 2-cocycle, so we also call the K-linear map α 2-cocycle if there is no risk
of confusion. For f ∈ HomK(A,DA) we define a 2-cocycle δ(f) by

[δ(f)](a, b) = af(b) − f(ab) + f(a)b.

Then for a 2-cocycle α : A × A → DA, for any f ∈ HomK(A,DA) the
Hochschild extension of A by DA for α and the one for α−δ(f) are equivalent.
In particular, their Hochschild extension algebras are isomorphic.

Let Q be a finite quiver and A = KQ/I, where I is an admissible ideal.
We denote by Q0 and Q1 the set of all vertices in Q and the set of all arrows
in Q, respectively. Let Q0 = {1, 2, . . . , n} and ei the primitive idempotent
corresponding to i ∈ Q0. Then it is well known that {ei | i ∈ Q0} is a complete
set of primitive orthogonal idempotents of A. For a nonzero element a ∈ A,
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with a = eiaej for some i, j, we denote ei and ej by s(a) and t(a), respectively.
For a path p in KQ we denote by p again the image of p under the canonical
map KQ → A if there is no risk of confusion.

The following theorem is convenience.

Theorem 2.1 ([4, Theorem 2.2]). Let Q be a finite quiver, A = KQ/I a bound
quiver algebra, DA = HomK(A,K), and α : A × A → DA a 2-cocycle. If α
satisfies [α(p, q)](t(q)) = [α(q, p)](t(p)) for all paths p, q which pq is a cycle in
Q and p, q �∈ Q0, then the Hochschild extension algebra of A for α is symmetric.

3. Symmetric Hochschild extension algebras. In this section, for connected
bound quiver algebras over a field, we give a sufficient condition, related to
2-cocycles, for Hochschild extension algebras to be symmetric.

Let K be a field and A = KQ/I a bound quiver algebra. The algebra
A is called symmetric if A is isomorphic to HomK(A,K) as A-bimodules or,
equivalently, there exists a K-bilinear map μ : A → K such that the following
holds:
(S1) μ is regular, that is, μ(Ax) �= 0 for any x ∈ A.
(S2) μ is symmetric, that is, μ(xy) = μ(yx) for any x, y ∈ A.

In [5], it is shown that every Hochschild extension algebra T of A by
the duality module DA is self-injective. In particular, the Nakayama per-
mutation of T and the Nakayama permutation by A(DA)A coincide. How-
ever, Hochschild extension algebras are not symmetric in general. It is shown
that there is a Hochschild extension algebra which is symmetric if and only
if DA ∼= HomK(A,K) by [6, Proposition 2.2]. Thus, in this section, a dual-
ity module DA means a standard duality module HomK(A,K). In particu-
lar, Hochschild extension algebras are always weakly symmetric, that is, their
Nakayama permutations are the identity.

In order to describe our assertion, we explain some notation. For a basis
element b ∈ B of a K-algebra A, we denote the dual basis element of b by
b∗. For a 2-cocycle α : A × A → DA, we denote by ηα a K-bilinear map
A × A → DA given by ηα(x, y) = α(x, y) − α(y, x), where x, y ∈ A. Let
Vα = {a ∈ Z(A) | f(a) = 0 for any f ∈ ηα(A × A)}.

Theorem 3.1. Let A = KQ/I be a connected bound quiver algebra and α :
A × A → DA a 2-cocycle. If there exists x0 ∈ Vα such that e∗

i (x0) �= 0 for all
i(1 ≤ i ≤ n), then the Hochschild extension algebra Tα(A,DA) of A defined
by α is symmetric.

Proof. We define a K-linear map λ : Tα(A,DA) → K by λ(a, f) = f(x0).
First, we show that λ is symmetric. Since x0 ∈ Vα, for all (a, f), (b, g) ∈
Tα(A,DA), we have

λ((a, f)(b, g) − (b, g)(a, f))

= λ((ab − ba, ag − ga + fb − bf)) + λ(0, α(a, b) − α(b, a))

= (ag − ga + fb − bf)(x0) + (α(a, b) − α(b, a))(x0)
= 0.
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Thus λ is symmetric.
Finally, we show that λ is regular. Let B be a basis of A whose elements

are paths. Since e∗
i (x0) �= 0 for all i(1 ≤ i ≤ n), there exists k ∈ K such that

e∗
i (x0) = k for all i(1 ≤ i ≤ n). For every (a, f) ∈ Tα(A)\{(0, 0)}, we divide

into the following two cases: a = 0 and a �= 0.
If a = 0, then f �= 0. Hence, there exists a minimal set B′(⊂ B) such that

the equation f =
∑

r∈B′ krr
∗ holds for some kr �= 0. We can take a path of

maximal length in B′ without paths including a path in a minimal relation of
A if there exists such a path. If there is no such a path, then for each p ∈ B′

we set

lp := min

{

(length p) − (length q)
∣
∣
∣
∣

q ∈ B, q is a subpath of p and there
exists a minimal relation

∑t
l=1 klql = 0

such that qj = q for some j

}

and we can take a path p ∈ B′ such that lp = max {lq | q ∈ B′}. So, there
exists p ∈ B′ such that pr∗ = 0 for any r ∈ B′\{p}. Therefore, λ((p, 0)(0, f)) =
λ((0, kps(p)∗) = kps(p)∗(x0) �= 0.

If a �= 0, then there exists B′ ⊂ B such that a =
∑

q∈B′ kqq for some
kq ∈ K\{0}. Then, by taking a path of minimal length in B′ without paths
including a path in a minimal relation of A (if there is no such a path, then we
take a path p with lp = min {lq | q ∈ B′}), there exists a path p in B′ such that
p∗q = 0 for any q ∈ B′\{p}. Hence we have λ((0, p∗)(a, f)) = λ((0, kpp

∗p)) =
λ((0, kpt(p)∗)) = kpt(p)∗(x0) �= 0.

Therefore, λ is regular. �

Remark 3.2. If α = 0, then T0(A,DA) is trivial extension and V0 = Z(A).
In particular, 1 ∈ V0, so the K-linear map λ in this proof is a well-known
symmetric regular K-linear map.

Example 3.3 ([4]). Let Q be a quiver with a vertice and three loops x, y, z. Let
A = KQ/R2

Q, where RQ is the arrow ideal of KQ, B = {1, x, y, z} a basis of
A and α : A × A → DA a 2-cocycle given by

α(x, y) = 1∗ − z∗, α(y, z) = 1∗ − x∗, α(z, x) = 1∗ − y∗, α(a, b) = 0

for (a, b) ∈ B ×B \{(x, y), (y, z), (z, x)}. Then, by direct computation, we have
Vα = 〈1 + x + y + z〉K . Since 1∗(1 + x + y + z) = 1, the Hochschild extension
algebra Tα(A,DA) of A by DA for α is symmetric by Theorem 3.1.

Moreover, Tα(A,DA) ∼= KQ/I, where I is an ideal of KQ generated by

x2, y2, z2, xz, yx, zy, xyz − yzx, yzx − zxy.

4. Normalized 2-cocycles and their applications. Let A be a finite dimensional
algebra over a field, E a complete set of primitive orthogonal idempotents
of A, M an A-bimodule, and α : A × A → M a 2-cocycle. If α satisfies
that α(1, a) = α(a, 1) = 0 for all a ∈ A, then α is called a normalized 2-
cocycle. If M = DA, then α is normalized if and only if (1, 0) is the identity of
Tα(A,DA). Moreover, for every 2-cocycle α, α− δfα is a normalized 2-cocycle
whose cohomology class coincides the cohomology class of α, where fα is given
by fα(a) = α(a, 1) for a ∈ A.
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In this section, we define E-normalized 2-cocycles and we show that for
every 2-cocycle there exists an E-normalized 2-cocycle such that their cohomol-
ogy classes coincide. By means of that construction of E-normalized 2-cocycles,
for bound quiver algebras we give another proof of a result by Ohnuki, Takeda
and Yamagata in [4] by means of Theorem 3.1.

Definition 4.1. Let A be a basic connected finite dimensional algebra over a
field, E a complete set of primitive orthogonal idempotents of A, M an A-
bimodule, and α : A × A → M a 2-cocycle. If α satisfies

α(e,A) = α(A, e) = 0

for all e ∈ E, then α is called an E-normalized 2-cocycle.

Remark 4.2. If α is an E-normalized 2-cocycle, then α is a normalized 2-
cocycle.

Example 4.3. Let K be a field with characteristic 0 and Q the following quiver:

1
x

�� 2
y

��

Moreover, let A = KQ/(x, y)2, E = {e1, e2} a complete set of primitive orthog-
onal idempotents of A, B = {e1, e2, x, y} a K-basis, and {e∗

1, e
∗
2, x

∗, y∗} the dual
basis of B and α : A × A → DA = HomK(A,K) a 2-cocycle given by

α e1 e2 x y

e1 e∗
1 e∗

1 e∗
2 0

e2 e∗
1 + 2x∗ −e∗

1 e∗
2 0

x e∗
1 e∗

1 0 e∗
1

y 0 0 0 0

Then, α − δfα is given by

α − δfα e1 e2 x y

e1 −e∗
1 e∗

1 e∗
2 0

e2 e∗
1 −e∗

1 −e∗
2 0

x −e∗
1 e∗

1 0 e∗
1

y 0 0 0 0

Therefore, the 2-cocycle α − δfα is normalized, however, α − δfα is not E-
normalized.

From now on, for every 2-cocycle α we will construct an E-normalized
2-cocycle whose cohomology class coincides with the cohomology class of α.

We will define some notation. For a 2-cocycle α : A × A → M , we define
hR(α) ∈ HomK(A,M) by [hR(α)](a) =

∑n
k=1 α(a, ek)ek for a ∈ A. Similarly,

we define hL(α) ∈ HomK(A,M) by [hL(α)](a) =
∑n

k=1 ekα(ek, a) for a ∈ A.
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Moreover, we put HR(α) = α − δ(hR(α)) and HL(α) = α − δ(hL(α)) which
belong to Z2(A,M).

Proposition 4.4. The following statements hold:
(1) [HR(α)](A, ei) = 0 for every i(1 ≤ i ≤ n).
(2) [HL(α)](ei, A) = 0 for every i(1 ≤ i ≤ n).
(3) H2

R(α) = HR(α).
(4) H2

L(α) = HL(α).
(5) HLHR(α) = HRHL(α).

Proof. (1) For a ∈ A and e ∈ E, we have

[HR(α)](a, e)

= α(a, e) − a

n∑

k=1

α(e, ek)ek +
n∑

k=1

α(ae, ek)ek −
n∑

k=1

α(a, ek)eke

= α(a, e) − a

n∑

k=1

α(e, ek)ek +
n∑

k=1

(aα(e, ek)ek + α(a, eek)ek − α(a, e)ek)

− α(a, e)e
= 0.

(2) By the similar computation of (1), we have [HL(α)](e, a) = 0.
(3) By the assertion (1), for a, b ∈ A we have

[H2
R(α)](a, b) = [HR(α)](a, b) − a

n∑

k=1

[HR(α)](b, ek)ek

+
n∑

k=1

[HR(α)](ab, ek)ek −
n∑

k=1

[HR(α)](a, ek)ekb

= [HR(α)](a, b).

(4) By the similar way of the proof of (3), we can show the assertion (4).
(5) We note that A = ⊕n

i=1 ⊕n
j=1 eiAej as a K-module. For p ∈ ei1Aej1 , q ∈

ei2Aej2 , we have

[HR(α)](p, q)

= α(p, q) − p
n∑

k=1

α(q, ek)ek +
n∑

k=1

α(pq, ek)ek −
n∑

k=1

α(p, ek)ekq

= α(p, q) − p
n∑

k=1

α(q, ek)ek +
n∑

k=1

(pα(q, ek)ek + α(p, qek)ek − α(p, q)ek)

− α(p, ei2)q

= α(p, q)ej2 − α(p, ei2)q.

Similarly, we have [HL(α)](p, q) = ei1α(p, q) − pα(ej1 , q) for p ∈ ei1Aej1 ,
q ∈ ei2Aej2 . Hence, for p ∈ ei1Aej1 , q ∈ ei2Aej2 we have
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[HLHR(α)](p, q)

= ei1 [HR(α)](p, q) − p[HR(α)](ej1 , q)

= (ei1α(p, q) − pα(ej1 , q))ej2 − (ei1α(p, ei2) − pα(ej1 , ei2))q

= [HL(α)](p, q)ej2 − [HL(α)](p, ei2)q

= [HRHL(α)](p, q).

�
By Proposition 4.4, we put α = HLHR(α) ∈ Z2(A,DA) for every 2-cocycle

α. Then, by direct computation, we have the following properties.

Proposition 4.5. For a 2-cocycle α : A × A → M , the 2-cocycle α satisfies the
following:
(1) The cohomology class [α] of α coincides with the cohomology class [α] of

α.
(2) The 2-cocycle α is an E-normalized 2-cocycle.
(3) If A is a bound quiver algebra KQ/I over a field K, then

α(p, q) =
{

s(p)α(p, q)t(q) − pα(t(p), s(q))q if pq �= 0 in KQ
0 if pq = 0 in KQ

for all paths p, q in Q.

Proof. The assertions (1) and (2) are trivial by the construction of α. The proof
of the assertion (3) is obtained by the 2-cocycle conditions (p, t(p), t(p))α = 0,
(s(q), s(q), q)α = 0 and the following equation:

α(p, q) = s(p)α(p, q)t(q) − pα(t(p), q)t(q) − s(p)α(p, s(q))q + pα(t(p), s(q))q

for p, q paths in A. �
Example 4.6. Let α be a 2-cocycle given in Example 4.3. Then, α is given by

α e1 e2 x y

e1 0 0 0 0
e2 0 0 0 0
x 0 0 0 e∗

1

y 0 0 0 0

As an application of E-normalized 2-cocycles, we give another proof of
Theorem 2.1 by means of a normalized 2-cocycle.

The proof of Theorem 2.1. Let h : A → DA be a K-linear map given by

h(p) =
{

0 if l(p) ≥ 1 and p is a cycle,
[hR(α)](p) otherwise

for path p in A. Let β = α − δ(h). Then, the following hold:
(1) If α satisfies the assumption of Theorem 2.1, then β also satisfies the

assumption.
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(2) β(ei, ej) = 0 for all i(1 ≤ i ≤ n).

Now we assume that α satisfies the assumption of Theorem 2.1. Then β
also satisfies the assumption of Theorem 2.1 by the above two properties with
respect to the 2-cocycle β.

We will show that Tβ(A) is symmetric. Let p, q be paths in Q. Suppose
that l(p), l(q) ≥ 1. Then, it is clear that β(p, q) = 0 if pq = 0 in KQ and
[β(p, q)](1) = 0 if pq is not a cycle. Hence, if pq = 0 in KQ or pq is not
a cycle, then [〈p, q〉β ](1) = 0 by Proposition 4.5. Moreover, if pq is a cycle,
then 〈p, q〉β(1) = [β(p, q) − β(q, p)](1) = [β(p, q)](t(q)) − [β(q, p)](t(p)) = 0.
Therefore, 1 ∈ Vβ , so the Hochschild extension of A defined by β is symmetric
by Theorem 3.1.

Since Tα(A,DA) is isomorphic to Tβ(A,DA), the Hochschild extension of
A defined by α is also symmetric. �

Finally, we show that a complete set of primitive orthogonal idempotents
of Hochschild extension algebras by E-normalized 2-cocycles is the same form
of a complete set of primitive orthogonal idempotents of the trivial extension
algebras. In order to show that assertion, we prepare the following lemma.

Lemma 4.7. Let A = KQ/I be a bound quiver algebra, α : A × A → DA a 2-
cocycle, and ei = (ei,−

∑n
k=1 α(ei, ek)ek) for i ∈ Q0. Then the set {ei | i ∈ Q0}

is a complete set of primitive orthogonal idempotents of Tα(A,DA).

Proof. First, we check that e2i = ei. By the 2-cocycle condition (ei, ei, ej)α

= 0, we have

e2i =

(

ei,−
n∑

k=1

α(ei, ek)ek

)(

ei,−
n∑

k′=1

α(ei, ek′)ek′

)

=

(

ei,−
n∑

k=1

α(ei, ek)ekei −
n∑

k′=1

eiα(ei, ek′)ek′ + α(ei, ei)

)

=

(

ei,−α(ei, ei)ei −
n∑

k′=1

α(ei, ek′)ek′ +
n∑

k′=1

α(ei, eiek′)ek′

−
n∑

k′=1

α(ei, ei)ek′ + α(ei, ei)

)

=

(

ei,−
n∑

k′=1

α(ei, ek′)ek′

)

= ei.

Next, we show that eiej = 0. By the 2-cocycle condition (ei, ej , ek)α = 0,
we have



258 T. Itagaki Arch. Math.

eiej =

(

ei,−
n∑

k=1

α(ei, ek)ek

)(

ej ,−
n∑

k′=1

α(ej , ek′)ek′

)

=

(

0,−
n∑

k=1

α(ei, ek)ekej −
n∑

k′=1

eiα(ej , ek′)ek′ + α(ei, ej)

)

=

(

ei,−α(ei, ej)ej +
n∑

k′=1

α(ei, ejek′)ek′ −
n∑

k′=1

α(ei, ej)ek′ + α(ei, ej)

)

= 0.

It is easily shown that ei is primitive for i(1 ≤ i ≤ n).
Finally, we show that (1,−α(1, 1)) =

∑n
i=1 ei. By the 2-cocycle condition

(1, ei, ej)α = α(1, ei)ej = 0 for i �= j, we have
n∑

i=1

ei =
n∑

i=1

(

ei,−
n∑

k=1

α(ei, ek)ek

)

=

(

1,−
n∑

k=1

α(1, ek)ek

)

= (1,−α(1, 1)).

�

Remark 4.8. Let e′
i = (ei,−

∑n
k=1 ekα(ek, ei)) for i ∈ Q0. Then, the set

{e′
i | i ∈ Q0} is a complete set of primitive orthogonal idempotents of

Tα(A,DA).

Remark 4.9. For basic Artin algebras, Proposition 4.7 holds.

By Proposition 4.5 and Lemma 4.7, we have the following result.

Corollary 4.10. Let A = KQ/I be a bound quiver algebra and α : A×A → DA
a 2-cocycle. Then the set {(ei, 0) | i ∈ Q0} ∈ A ⊕ DA is a complete set of
primitive orthogonal idempotents of Tα(A,DA).
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