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Counter-examples to the Dunford–Schwartz pointwise ergodic
theorem on L1 + L∞

Dávid Kunszenti-Kovács

Abstract. Extending a result by Chilin and Litvinov, we show by construc-
tion that given any σ-finite infinite measure space (Ω, A, μ) and a function
f ∈ L1(Ω)+L∞(Ω) with μ({|f | > ε}) = ∞ for some ε > 0, there exists a

Dunford–Schwartz operator T over (Ω, A, μ) such that 1
N

∑N
n=1(T

nf)(x)
fails to converge for almost every x ∈ Ω. In addition, for each operator
we construct, the set of functions for which pointwise convergence fails
almost everywhere is residual in L1(Ω) + L∞(Ω).
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1. Introduction. For σ-finite measure spaces X = (Ω,A, μ) that have infi-
nite total measure, operator theoretic aspects of ergodic theory become much
more complicated than for probability spaces (or, equivalently, finite measure
spaces). On the one hand, the Dunford–Schwartz pointwise ergodic theorem
holds, i.e., for any function f ∈ L1(X), and any Dunford–Schwartz operator
over Ω, the ergodic averages 1

N

∑N
n=1 Tnf converge almost everywhere (cf. [3,

Theorem VIII.6.6.]). On the other hand, the same averages need not converge
in norm, i.e., the mean ergodic theorem fails in general. In the background
lies the non-equivalence of mean ergodicity and weak almost periodicity (or-
bits of funtions being weakly sequentially relatively compact), boiling down to
1Ω /∈ L1(X) (cf. [5]). In particular, there is no Jacobs–Glicksberg–de Leeuw-
type decomposition (cf., e.g., [4, Theorem 1.15]) for general Dunford-Schwartz
operators on L1(X).

In a recent paper ([2]), Chilin and Litvinov investigated pointwise ergodic
theorems on infinite measure spaces for functions beyond the classical L1 space.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-018-1248-z&domain=pdf
http://orcid.org/0000-0002-1314-8528


206 D. Kunszenti-Kovács Arch. Math.

Namely, they determined which functions in the symmetric space L1+L∞ yield
pointwise almost everywhere convergence for all Dunfod–Schwartz operators
under the assumption that the infinite σ-finite measure space is quasi-non-
atomic, i.e., it only contains atoms that have the same measure. In a compan-
ion paper ([1]) with a third author, Çömez, it was proved that the Dunford–
Schwartz pointwise ergodic theorem holds on symmetric spaces E contained
in L1 +L∞ provided the constant 1 function is not in E, for any σ-finite mea-
sure space. For quasi-non-atomic measures these two papers give a complete
characterization of functions for which the Dunford–Schwartz theorem holds
true, but the general σ-finite case was left open. Our aim in this paper is to
close this gap, and show that the same result holds without restriction on the
atomic part of the measure.

The open question pertains to functions that do not “decay” in the sense
that for some interval [a, b] ⊂ (0,∞), the level set {|f | ∈ [a, b]} has infinite
measure. The original approach used in [2] was to first provide a counter-
example separately for the Lebesgue measure on the positive half-line and for
the “exceptional case” �∞(N). Then the general result followed by decomposing
the original measure into its atomic and non-atomic parts, and using isomor-
phisms between complete Boolean algebras to reduce to the already proven
two special cases. Key to their construction was the idea of using measure-
preserving point maps and the corresponding Koopman operators, perturbed
by a suitably chosen multiplication operator.
Our way of approaching the structure of the measure space is in some sense the
opposite: we do not aim at transforming the non-atomic part into its standard
Lebesgue space form and then add on a uniform atomic part when necessary,
but rather consider fully atomic measures as our base case, and reduce general
σ-finite measure spaces to fully atomic ones by factorisation, stepping away
from measure preserving maps and corresponding Koopman operators on the
original space.
We also show that the counter-example operator that we construct for a specific
function is actually a counter-example in the strongest possible sense in that
it yields Cesàro averages that fail to converge not only on a set of positive
measure, but almost everywhere. In addition, we show that each constructed
operator actually has this same property for any “typical” function in L1+L∞

– in the Baire category sense.
Note that in this paper we include 0 in N.

2. Results.

Theorem 2.1. Let X = (Ω,A, μ) be a σ-finite infinite measure space, and
f ∈ L1(X) + L∞(X). Suppose that there exists an ε > 0 such that μ({|f | >
ε}) = ∞. Then there exists a Dunford–Schwartz operator T over X such that
1
N

∑N
n=1(T

nf)(x) fails to converge for almost every x ∈ Ω.

Proof. By definition there exist functions f1 ∈ L1(X) and f2 ∈ L∞(X) with
f = f1 +f2, and so we have that μ({|f | > 2‖f2‖∞}) < ∞. We may assume the
existence of an ε ∈ (0, 2‖f2‖∞) with μ({|f | > ε}) = ∞. This then implies that
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there exists a z0 ∈ C\{0} such that μ({�(f/z0) ∈ [1/2, 1]}) = ∞, since finitely
many such sets cover {|f | ∈ [ε, 2‖f2‖∞]}. Let us write A := {�(f/z0) ∈
[1/2, 1]}. By the σ-finiteness of X together with μ(A) = ∞, there exists a
countable index set J and a countable collection of pairwise disjoint sets of
positive measure Hj,n with j ∈ J and n ∈ N such that

⋃

j∈J ,n∈N

Hj,n = Ω,
⋃

j∈J ,n∈N+

Hj,n ⊂ A,

and for each j ∈ J and n ∈ N we have

μ(Hj,n+1) ∈ [μ(Hj,n),∞).

Now define the operator T : L1(X)+L∞(X) → L1(X)+L∞(X) as follows:

(Tg)(x) :=
(−1)1log3(n+1)∈N

μ(Hj,n+1)

∫

Hj,n+1

gdμ when x ∈ Hj,n.

This operator T turns any function into a stepfunction with steps Hj,n (j ∈ J ,
n ∈ N), averaging the value on each set, and shifting the value to the set with
n-index one less, with a change in sign at powers of 3. It follows easily that
T |Lp : Lp → Lp is a contraction for every 1 ≤ p ≤ ∞, hence it is a Dunford–
Schwartz operator over X. It remains to show that

1
N

N∑

m=1

(Tmf)(x)

fails to converge for almost every x ∈ Ω. It is sufficient to instead show that

1
N

N∑

m=1

� ((Tmf)(x)/z0)

fails to converge for almost all x ∈ Ω.
Note that when iterating T , the averaging of the function on each of the

Hj,n’s becomes redundant due to the range of T consisting of stepfunctions
with those exact steps, hence we only need to keep track of the number of
index-shifts (which is the number of iterations) and the number of changes of
signs. Thus for any m ∈ N

+, j ∈ J , n ∈ N, and x ∈ Hj,n, we have

(Tmf)(x) =
∏m

k=1(−1)1log3(n+k)∈N

μ(Hj,n+m)

∫

Hj,n+m

fdμ

=
(−1)�log3(n+m)�−�log3 n�

μ(Hj,n+m)

∫

Hj,n+m

fdμ.

Now fix j ∈ J and n ∈ N, and let b := 	log3 n
. Since �(f/z0) ∈ [1/2, 1] on
Hj,k for all k ≥ 1, we then have for any x ∈ Hj,n and every � ∈ N

+ that on
the one hand
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1
3b+2� − n − 1

3b+2�−n−1∑

m=1

� ((Tmf)(x)/z0)

=
1

3b+2� − n − 1

3b+2�−1∑

m=n+1

(−1)�log3 m�−�log3 n�

μ(Hj,m)

∫

Hj,m

� (f/z0) dμ

=
1

3b+2� − n − 1

∑

0≤d≤2�−1
0≤r≤2·3b+d−1

n+1≤3b+d+r≤3b+2�−n−1

(−1)d

μ(Hj,3b+d+r)

∫

H
j,3b+d+r

� (f/z0) dμ

≤ 1
3b+2� − n − 1

2�−1∑

d=0

2·3b+d−1∑

r=0

(−1)d

μ(Hj,3b+d+r)

∫

H
j,3b+d+r

� (f/z0) dμ

≤ 1
3b+2� − n − 1

�−1∑

a=0

(

2 · 3b+2a · 1 − 2 · 3b+2a+1 · 1
2

)

≤ −3b+2(�−1)

3b+2� − n − 1
≤ −3b+2(�−1)

3b+2�
= −1/9,

and on the other hand

1

3b+2�+1 − n − 1

3b+2�+1−n−1∑

m=1

� ((T mf)(x)/z0)

=
1

3b+2�+1 − n − 1

3b+2�+1−1∑

m=n+1

(−1)�log3 m�−�log3 n�

μ(Hj,m)

∫

Hj,m

� (f/z0) dμ

=
1

3b+2�+1 − n − 1

∑

0≤d≤2�
0≤r≤2·3b+d−1

n+1≤3b+d+r≤3b+2�+1−n−1

(−1)d

μ(Hj,3b+d+r)

∫

H
j,3b+d+r

� (f/z0) dμ

≥ 1

3b+2�+1 − n − 1

2�∑

d=1

2·3b+d−1∑

m=0

(−1)d

μ(Hj,3b+d+m)

∫

H
j,3b+d+m

� (f/z0) dμ

≥ 1

3b+2�+1 − n − 1

�∑

a=1

(

2 · 3b+2a · 1

2
− 2 · 3b+2a−1 · 1

)

≥ 3b+2�−1

3b+2�+1 − n − 1
≥ 3b+2�−1

3b+2�+1
= 1/9,

where the first inequality in each was obtained by adding/removing a few terms
with the appropriate sign.

In other words, for almost all x ∈ Hj,n, we have (letting � → ∞)

lim sup
1
N

N∑

m=1

� ((Tmf)(x)/z0) ≥ 1/9
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and

lim inf
1
N

N∑

m=1

� ((Tmf)(x)/z0) ≤ −1/9,

hence, since we have countably many sets Hj,n, pointwise convergence of
1
N

∑N
m=1(T

mf) fails in almost every point of Ω. �

Next, we shall have a closer look at the structure of this operator T . Let
O := J × N, and ϕ : Ω → O be the factor map x �→ (j, n) whenever x ∈ Hj,n

(j ∈ J , n ∈ N). This map induces a fully atomic push-forward measure ν on
O with ν({(j, n)}) := μ(Hj,n). Further, with the notation Y := (O,P(O), ν),
on the level of functions, we have the natural operators

P : L1(X) + L∞(X) → L1(Y ) + L∞(Y )

and

Q : L1(Y ) + L∞(Y ) → L1(X) + L∞(X)

defined through

(Pg)(j, n) =
1

μ(Hj,n)

∫

Hj,n

g dμ and

(Qv)(x) = v(j, n)∀x ∈ Hj,n

for all j ∈ J , n ∈ N. This allows us to define the operator S := PTQ on
L1(X) + L∞(X) endowed with the standard norm

‖f‖ := inf {‖f1‖∞ + ‖f2‖1 : f = f1 + f2} .

Consider the Koopman operator K induced by the left shift acting on the
N component of O, and the multiplication operator Mψ : Lp(Y ) → Lp(Y ) (for
all p) which multiplies by the function ψ ∈ �∞(O) where ψ takes the value −1
on pairs (j, n) where n ∈ N is a power of 3 and the value 1 at all other points.
Then from the definition of these operators we may see that also S = KMψ

holds.

Lemma 2.2. For any function g ∈ L1(X)+L∞(X), the averages 1
N

∑N
n=1 Tng

converge almost nowhere if and only if the averages 1
N

∑N
n=1 Sn(Pg) converge

nowhere.

Proof. To this end, note that P is an isometric isomorphism from the range of
T on L1(X) + L∞(X) (step functions with steps (Hj,n)) to L1(Y ) + L∞(Y ),
and its inverse is Q, hence T = QSP . Fixing j ∈ J and n ∈ N, we have for
(almost every) x ∈ Hj,n that

1
N

N∑

k=1

(T kg)(x) =
1
N

N∑

k=1

((QSP )kg)(x) =
1
N

N∑

k=1

(Sk(Pg))(j, n),

from which the claim easily follows (in essence, for powers of T vs. S, a set
Hj,n acts as a blow-up of the single point (j, n) ∈ O). �
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Given a function v ∈ L1(Y ) + L∞(Y ), let C(v; j, n) ⊂ C denote the set of
accumulation points of the sequence

(
1
N

∑N
k=1(S

kv)(j, n)
)

N∈N+
, and let

d(v; j, n) := diam(C(v; j, n)).

We then have the following result.

Lemma 2.3. For any v ∈ L1(Y )+L∞(Y ) and j ∈ J , we have that C(v; j, n) is
up to a factor of −1 independent of n ∈ N, and the sequence 1

N

∑N
k=1(S

kv)(j, n)
converges if and only if d(v; j, 0) = 0.

Proof. The first part follows from the fact that for n ∈ N and k ∈ N
+, we

have

(Skv)(j, n + 1) = (Sk+1v)(j, n) · (−1)1log3(n+1)∈N .

For the second part, we only have to show that the sequence 1
N

∑N
k=1(S

kv)(j, 0)
is always bounded. Since ν({(j, �)}) is monotone increasing in �, we have that
(v(j, �))�∈N ∈ �∞(N). Also, ‖ψ‖∞ = 1, hence

∣
∣
∣
∣
∣

1
N

N∑

k=1

(Skv)(j, 0)

∣
∣
∣
∣
∣
≤ ‖(v(j, �))�∈N‖∞

�

With these results at hand, we are ready to show that T is a counter-
example not only for the function f , but also provides almost nowhere conver-
gence of the ergodic means for a large class of functions, in the Baire category
sense.

Theorem 2.4. With T and X as in Theorem 2.1, the set

H :=

{

g ∈ L1(X) + L∞(X)

∣
∣
∣
∣
∣

1
N

N∑

n=1

Tng is almost nowhere convergent

}

is residual in L1(X) + L∞(X).

Proof. Consider the closed subspace

U :=

⎧
⎪⎨

⎪⎩
g ∈ L1(X) + L∞(X)

∣
∣
∣
∣
∣
∣
∣

∫

Hj,n

g dμ = 0∀j ∈ J , n ∈ N

⎫
⎪⎬

⎪⎭
.

Then it is clear that we have the direct sum decomposition

L1(X) + L∞(X) = U ⊕ rg(Q)

with rg(Q) also closed. Also, we have U ⊂ ker(T), whence

H = (H ∩ rg(Q)) + U.

Thus to show that H is residual, it is enough to prove that H ∩rg(Q) is resid-
ual in rg(Q). However, we have seen that the subspace rg(Q) is isometrically
isomorphic to L1(Y ) + L∞(Y ), and by Lemma 2.2,
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PH =

{

v ∈ L1(Y ) + L∞(Y )

∣
∣
∣
∣
∣

1
N

N∑

n=1

Snv is nowhere convergent

}

=: G ,

so this is equivalent to showing that G is residual in L1(Y ) + L∞(Y ).
Actually, we shall instead show that a somewhat smaller set,

G0 =
{

v ∈ L1(Y ) + L∞(Y )
∣
∣
∣
∣ inf
j∈J

d(v; j, 0) > 0
}

,

is already residual. The fact that G0 ⊂ G follows from Lemma 2.3.
Let v0 ∈ G0, and ε := infj∈J d(v0; j, 0), and w ∈ L1(Y ) + L∞(Y ) with

‖w‖L1(Y )+L∞(Y ) < ε/3.

Then there exist w1 ∈ L1(Y ) and w2 ∈ L∞(Y ) such that w = w1 + w2 and
‖w1‖1, ‖w2‖∞ < ε/3. Since for each j ∈ J we have that ν({(j, n)}) is monotone
increasing, we also have that

((w1(j, n))n∈N
∈ c0(N),

meaning that for each j ∈ J

lim
n→∞(Snw1)(j, 0) · (−1)|{0<�≤n, �∈N, log3 �∈N}| = lim

n→∞ w1(j, n) = 0.

Thus for any (j, n) ∈ O we have limN→∞ 1
N

∑N
k=1(S

kw1)(j, n) = 0. On the
other hand, since S is contractive on L∞(Y ), we also have d(w2; j, n) ≤ 2ε/3
for all (j, n) ∈ O. But then we have

d(v0 + w; j, n) = d(v0 + w1 + w2; j, n) = d(v0 + w2; j, n)

≥ d(v0; j, n) − d(w2; j, n) ≥ ε/3,

implying v0 + w ∈ G0. This shows that G0 is an open set in L1(Y ) + L∞(Y ).
It now only remains to be shown that its complement contains no open ball.
Let v1 ∈ L1(Y ) + L∞(Y )\G0 and δ > 0 be arbitrary. Let further

J1 := {j ∈ J |d(v1; j, 0) < δ/9} ,

which by the choice of v1 is not empty. Note that by the construction of S and
the proof of Theorem 2.1, the characteristic function 1J1×N ∈ L1(Y )+L∞(Y )
is such that the following three properties hold.

1. ‖1J1×N‖L1(Y )+L∞(Y ) = 1;
2. for each j1 ∈ J1 we have d(1J1×N; j1, 0) ≥ 2/9;
3. d(1J1×N; j2, 0) = 0 for all j2 �∈ J1.

The first follows from ν(J1 ×N) = ∞, hence the optimal decomposition is into
0 ∈ L1(Y ) and 1J1×N ∈ L∞(Y ). The second property follows from the bounds
on lim inf and lim sup obtained at the end of the proof of Theorem 2.1, and
the third is trivial, since all values in the Cesàro-averages are zero.
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Consequently, we have

inf
j∈J

d (v1 + δ1J1×N; j, 0)

= min
{

inf
j∈J1

d (v1 + δ1J1×N; j, 0) ; inf
j �∈J1

d (v1 + δ1J1×N; j, 0)
}

= min
{

inf
j∈J1

d (v1 + δ1J1×N; j, 0) ; inf
j �∈J1

d (v1; j, 0)
}

≥ min
{

inf
j∈J1

d (v1 + δ1J1×N; j, 0) ; δ/9
}

≥ min
{

δ · 2
9

− inf
j∈J1

d(v1; j, 0); δ/9
}

= δ/9.

This means that the open ball of radius 2δ around v1 intersects G0, and we
are done. �

Remark. If J is finite, then the set G0 is actually all of G . Also, the proof in
fact shows the stronger fact that H contains an open dense set.
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