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Abstract. This article is a continuation of an earlier work (Huang and Ye
in Int Math Res Not, 2017. https://doi.org/10.1093/imrn/rnx278), where
the long time existence and convergence for some special cases of parabolic
type special Lagrangian equations were given. The long time existence
and convergence of the flow are obtained for all cases in this article. In
particular, we can prescribe the second boundary value problems for a
family of special Lagrangian graphs.
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1. Introduction. To find special Lagrangian surfaces is an interesting subject
in geometry which attracts attention of many mathematicians. In this article,
we are concerned with the existence of a family of special Lagrangian graphs by
solving the corresponding special Lagrangian equations with second boundary
conditions. Let Ω, Ω̃ be two uniformly convex bounded domains with smooth
boundary in R

n. For convenience of the notation, we introduce two constants
a = cot θ and b =

√
| cot2 θ − 1| for θ ∈ (0, π

4 )
⋃

(π
4 , π

2 ). We consider the
minimal Lagrangian diffeomorphism problem ([9]) which is equivalent to the
following fully nonlinear elliptic equations with second boundary conditions
(cf. [1], [5], and [12]):

{
Fθ(D2v) = c, x ∈ Ω,

Dv(Ω) = Ω̃,
(1.1)
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where

Fθ(A) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑
i ln λi, θ = 0,

∑
i ln

(
λi+a−b
λi+a+b

)
0 < θ < π

4 ,

−∑
i

1
1+λi

, θ = π
4 ,∑

i arctan(λi+a−b
λi+a+b ), π

4 < θ < π
2 ,∑

i arctan λi, θ = π
2 ,

with λi (1 ≤ i ≤ n) being the eigenvalues of the n × n symmetric matrix A,
D2v being the Hessian matrix of v, and Dv being the diffeomorphism from Ω
to Ω̃.

Our motivation for studying equations (1.1) is that they have interesting
geometric meanings which were studied by many mathematicians, such as
Brendle and Warren, etc. To see this, let us recall the definitions of Lagrangian
and special Lagrangian graphs as in [12] or [6]. The graph Σ = {(x, f(x)) : x ∈
Ω} is Lagrangian if and only if there exists a function v : Ω → R such that
f(x) = Dv(x). Let δ0 be the standard Euclidean metric on C

n ∼= R
n ×R

n and
g0 be the metric defined by

dxdy =
1
2

∑

i

(dxi

⊗
dyi + dyi

⊗
dxi).

By taking linear combinations of the metrics δ0 and g0, Warren [12] con-
structed a family of metrics on R

n × R
n for 0 ≤ θ ≤ π

2 :

gθ = cos θg0 + sin θδ0.

With this family of metrics, Warren ([12]) derived that the solutions
of special Lagrangian equations (1.1) correspond to a family of extremal
Lagrangian surfaces. Warren also investigated in [12] that these families of
special Lagrangian graphs have extremal volume properties. For θ < π

4 ,
Mθ = (Rn × R

n, gθ) is a pseudo-Euclidean space of index n. For θ > π
4 ,

Mθ is a Euclidean space. For θ = π
4 , Mθ carries a degenerate metric of rank n.

We have the following definition of a special Lagrangian graph with respect
to the metrics gθ as in [12].

Definition 1.1. We say that Σ = {(x, f(x))|x ∈ Ω} is a special Lagrangian
graph in (Rn × R

n, gθ) if

f = Dv

and v satisfies

Fθ(D2v(x)) = c, x ∈ Ω.

Special Lagrangian graphs have attracted considerable interest in recent
years and we recall some work concerning equation (1.1) with second boundary
conditions. For the special case θ = 0, the equation (1.1) corresponds to the
Monge–Ampère equation with second boundary condition. In 1991, Delanoë
[3] studied first the problem where the dimension of the domain is 2, and he
obtained a unique smooth solution. Later Caffarelli ([2]) and Urbas ([11]), gave
the generalizations of Delanoë’s theorem to higher dimensional cases. In 2003,
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Schnürer and Smoczyk ([10]) also obtained the existence of solutions to (1.1)
for the case θ = 0 by using parabolic methods. As far as the case θ = π

2 is
concerned, Brendle and Warren ([1]) proved the existence and uniqueness of a
solution by elliptic methods in 2010 and the second author in [4] obtained the
existence of a solution by parabolic methods. For the case θ = π

4 , the existence
result of the above problem (1.1) was established by the second author and his
coauthors by using both elliptic methods ([5]) and parabolic methods ([6]).

Since the special cases for θ = 0, π
4 , π

2 of equations (1.1) have been solved by
using both elliptic and parabolic methods, a question can be asked naturally:
what about the intermediate cases for the equations (1.1)? The present article
is devoted to study the equations (1.1) for all the intermediate cases, that is,

θ ∈
(
0,

π

4

)
∪

(π

4
,
π

2

)
.

As in [4,6], we consider the corresponding parabolic type special
Lagrangian equations (1.1) and use a parabolic framework to solve them. We
settle the longtime existence and convergence of smooth solutions for the fol-
lowing second boundary value problem to parabolic type special Lagrangian
equations

⎧
⎨

⎩

∂v
∂t = Fθ(D2v), t > 0, x ∈ Ω,

Dv(Ω) = Ω̃, t > 0,
v = v0, t = 0, x ∈ Ω.

(1.2)

We will prove that the solutions of the above special Lagrangian equations
(1.2) converge to translating solutions as t → ∞. The translating solutions
are intimately related to the solutions of the minimal Lagrangian diffeomor-
phism problem (1.1). In general, evolution equations often have special solu-
tions called solitons which keep their shape during the evolution. For example,
two very important classes of solitons in mean curvature flow are self-shrinker
and translating solutions which evolve from a homothety or a translation,
respectively. Translating solutions are interesting examples of solutions of evo-
lution equations since they are precise solutions in the sense that their evo-
lution is known, which is very hard to determine in general. Our main result
concerning the asymptotic behavior of special Lagrangian equations (1.2) can
be summarized as follows.

Theorem 1.2. Assume Ω and Ω̃ are two bounded and uniformly convex domains
with smooth boundary in R

n. We also assume 0 < α0 < 1 and θ ∈ (0, π
4 ) ∪

(π
4 , π

2 ). Then for any given initial function v0 ∈ C2+α0(Ω̄) which is uniformly
convex and satisfies Dv0(Ω) = Ω̃, the strictly convex solution of (1.2) exists for
all t ≥ 0 and the solution v(x, t) converges to a function v∞(x, t) = ṽ∞(x) +
C∞ · t in C1+ζ(Ω̄) ∩ C4+α(Ω̄′) as t → ∞ for any Ω′ ⊂⊂ Ω, ζ < 1, and
0 < α < α0, that is, we have

lim
t→+∞ ‖v(·, t) − v∞(·, t)‖C1+ζ(Ω̄) = 0

and lim
t→+∞ ‖v(·, t) − v∞(·, t)‖C4+α(Ω̄′) = 0,
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and the function ṽ∞(x) ∈ C∞(Ω̄) is a solution of
{

Fθ(D2v) = C∞, x ∈ Ω,

Dv(Ω) = Ω̃,
(1.3)

where the constant C∞ depends only on the geometries of Ω, Ω̃ and F . The
solution to (1.3) is unique up to addition of constants.

Combining Definition 1.1 and Theorem 1.2 with the results for θ = 0, π
4 , π

2 ,
we can extend Brendle-Warren’s theorem ([1]) to the following:

Corollary 1.3. Let Ω and Ω̃ be two bounded and uniformly convex domains with
smooth boundary in R

n. Then for any 0 ≤ θ ≤ π
2 , there exists a diffeomorphism

f: Ω → Ω̃ such that

Σ = {(x, f(x))|x ∈ Ω}
is a special Lagrangian graph in (Rn × R

n, gθ).

The rest of this article is organized as follows. In Section 2, we present a
preliminary result for the convergence of general uniformly parabolic operators
which has been proved in [6]. The result will be used to give the proof of
the main Theorem 1.2. In Section 3, we prove that the geometric evolution
equations (1.2) satisfy all the hypotheses in Proposition 2.2. Therefore we are
able to characterize the long time behavior of parabolic type special Lagrangian
equations (1.2) and give the proof of Theorem 1.2.

2. Preliminaries. Consider a class of fully-nonlinear flows with second bound-
ary condition

⎧
⎨

⎩

∂v
∂t = F (D2v), t > 0, x ∈ Ω,

Dv(Ω) = Ω̃, t > 0,
v = v0, t = 0, x ∈ Ω,

(2.1)

where F is a C2+α0 function for some given 0 < α0 < 1 defined on the cone
Γ+ of positive definite symmetric matrices. The function F is monotonically
increasing and satisfies

{
F [A] := F (λ1, λ2, . . . , λn),

F (. . . , λi, . . . , λj , . . .) = F (. . . , λj , . . . , λi, . . .), for any 1 ≤ i < j ≤ n,

(2.2)
with

λ1 ≤ λ2 ≤ · · · ≤ λn

being the eigenvalues of the n × n symmetric matrix A.
For any given constants μ1 > 0 and μ2 > 0, we define

Γ+
]μ1,μ2[

= {(λ1, λ2, . . . , λn)|0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn, λ1 ≤ μ1, λn ≥ μ2}.

We assume that there exist two positive constants λ and Λ depending only on
μ1 and μ2, such that for any (λ1, λ2, . . . , λn) ∈ Γ+

]μ1,μ2[
, the function F satisfies

λ ≤
n∑

i=1

∂F

∂λi
≤ Λ (2.3)
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and

λ ≤
n∑

i=1

∂F

∂λi
λ2

i ≤ Λ. (2.4)

In addition,

F (A) and F ∗(A) � −F (A−1) are both concave functions on the cone Γ+.
(2.5)

Furthermore, we assume that there exist two functions g1 and g2 which are
monotonically increasing in the interval (0,+∞) and satisfy

g1(λ1) ≤ F (λ1, λ2, . . . , λn) ≤ g2(λn) (∀ 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn), (2.6)

and for any Φ1,Φ2 ∈ Δ,
{

g1(t) ≤ Φ1 ⇒ ∃t1 > 0, t ≤ t1,

g2(t) ≥ Φ2 ⇒ ∃t2 > 0, t ≥ t2,
(2.7)

where

Δ = {Υ|∃(λ1, λ2, . . . , λn), 0 < λ1 ≤ λ2 ≤ · · · ≤ λn,Υ = F (λ1, λ2, . . . , λn)}.

We give some remarks on the structure conditions (2.3)–(2.7). As illustrated
in our previous work ([6]), we cannot expect that F satisfies (2.3) and (2.4) for
the universal constants λ and Λ on the cone Γ+ of positive definite symmetric
matrices. The reason is the following: for any ε > 0, by taking

λ1 = λ2 = · · · = λn = ε,

we obtain

ε2Λ ≥ ε2
n∑

i=1

∂F

∂λi
=

n∑

i=1

∂F

∂λi
λ2

i ≥ λ.

In view of the above fact, we introduce the domain Γ+
]μ1,μ2[

such that the
two conditions (2.3) and (2.4) are compatible. As can be seen in [1], the range
of c should be limited for the solvability of the equation (1.1) and the con-
dition (2.6) reflects this issue to some extent. However, we can show that
there exist universal constants μ1 and μ2 depending on Fθ(D2v0), such that
(λ1, λ2, . . . , λn) are always in Γ+

]μ1,μ2[
along the flow. So F satisfies the structure

conditions (2.3) and (2.4) for the constants λ and Λ along the flow. Although
we have proved these facts for the flow equation (2.1) with a general para-
bolic operator in our previous work ([6]), we can seek out μ1 and μ2 explicitly
by direct calculation for the special case of parabolic type special Lagrangian
equation (1.2). For completeness of the article and convenience of the readers,
we state the result as a proposition and give a self-contained proof here.

Proposition 2.1. (Huang and Ye, see Lemma 2.4 and Lemma 3.1–Lemma 3.3
in [6]) Let (x, t) be an arbitrary point of ΩT = Ω × (0, T ) for any T > 0, and
let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of D2v at (x, t). For any v0 ∈ C2 +
α0)(Ω) which is uniformly convex and satisfies Dv0 = Ω̃, as long as the convex
solution to (1.2) exists, then there exists μ1 > 0, μ2 > 0 depending only on
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Fθ(D2v0), such that (λ− 1 ≤ μ1, λn ≥ μ2, and then the points (λ1, λ2, . . . , λn)
are always in Γ+

]μ1,μ2[
.

Proof. We divide the proof in three steps.
Step 1 Using the methods on the second boundary value problems for equa-

tions of Monge–Ampère type ([11]), the parabolic second boundary condition
in (1.2) can be reformulated as

h(Dv) = 0, x ∈ ∂Ω, t > 0, (2.8)

where h is a smooth defining function on ¯̃Ω satisfying Ω̃ = {p ∈ R
n|h(p) > 0},

|Dh|∂Ω̃ = 1, and h is strictly concave. By (2.9), [9, (2.9), p. 118], we know
that the boundary condition is strictly oblique on uniformly convex solutions
v, that is,

v ∈ C2(Ω̄) with D2v > 0 =⇒ inf
∂Ω

hpk
(Dv)νk > 0, (2.9)

where ν = (ν1, ν2, . . . , νn) is the unit inward normal vector of ∂Ω.
Step 2 We claim that the following v̇-estimates hold

Ψ0 � min
Ω̄

Fθ(D2v0) ≤ v̇ � ∂v

∂t
≤ max

Ω̄
Fθ(D2v0) � Ψ1. (2.10)

In fact, we use a method known from [10, Lemma 2.1]. Differentiating the first
equation of (1.2) with respect to t yields

∂(v̇)
∂t

− F ij
θ ∂ij(v̇) = 0,

where F ij
θ (D2v) = ∂Fθ

∂vij
. Using the maximum principle, we see that

min
Ω̄T

(v̇) = min
∂Ω̄T

(v̇)

if v̇ �= constant and ∃x0 ∈ ∂Ω, t0 > 0, such that v̇(x0, t0) = minΩ̄T
(v̇). On

the one hand, hpk
νk � 〈β, ν〉 > 0 by (2.9), hence β = (hp1 , . . . , hpn

) is not
tangential to the parabolic boundary. Then we can use the Hopf lemma (cf.
[7] or [8]) for parabolic equations to deduce that

v̇β(x0, t0) �= 0.

On the other hand, by differentiating the reformulated boundary condition
(2.8) with respect to t, we obtain

v̇β = hpk
(Dv)

∂v̇

∂xk
=

∂h(Dv)
∂t

= 0.

This is a contradiction. So we deduce that

v̇ ≥ min
Ω̄T

(v̇) = min
∂Ω̄T |t=0

(v̇) = min
Ω̄

Fθ(D2v0) � Ψ0.

For the same reason, we obtain
∂v

∂t
≤ max

Ω̄
Fθ(D2v0) � Ψ1.

Putting these facts together, the claim (2.10) follows.
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Step 3 Let (x, t) be an arbitrary point of ΩT , and λ1 ≤ λ2 ≤ · · · ≤ λn be
the eigenvalues of D2v at (x, t). As long as the convex solution to (1.2) exists,
using v̇-estimates from Step 2 and condition (2.6), we obtain:

Case 1, θ ∈ (0, π
4 ).

Ψ0 ≤ ∂v

∂t
= Fθ(D2v) =

∑

i

ln
(

λi + a − b

λi + a + b

)
≤ n ln

(
λn + a − b

λn + a + b

)
. (2.11)

By uniform convexity of the initial value v0 and the definition of Ψ0 in Step
2, we know

0 > Ψ0 � min
Ω̄

Fθ(D2v0) > n ln
a − b

a + b
. (2.12)

Combining (2.11) and (2.12) and using the intermediate value theorem for the
monotonically increasing and continuous function g1(t) = n ln t+a−b

t+a+b on the
interval [0, λn], we know that there exists a unique μ2 ∈ (0, λn), such that

n ln μ2+a−b
μ2+a+b = Ψ0 < 0 or equivalently μ2 = e

Ψ0
n (a+b)−a+b

1−e
Ψ0
n

> 0 . Since g1(t) is

monotonically increasing, we obtain

λn ≥ e
Ψ0
n (a + b) − a + b

1 − e
Ψ0
n

= μ2 > 0.

Similarly, we know that there exists μ1 = e
Ψ1
n (a+b)−a+b

1−e
Ψ1
n

> 0, such that

0 < λ1 ≤ μ1.
Case 2, θ ∈ (π

4 , π
2 ).

Ψ0 ≤ ∂v

∂t
= Fθ(D2v) =

∑

i

arctan
(

λi + a − b

λi + a + b

)
≤ n arctan

(
λn + a − b

λn + a + b

)
.

(2.13)
By uniform convexity of the initial value v0 and the definition of Ψ0 in Step

2, we know

Ψ0 � min
Ω̄

Fθ(D2v0) > n arctan
a − b

a + b
. (2.14)

Then similarly to case 1, by combining (2.13) and (2.14) and using
the intermediate value theorem for the monotonically increasing function
g2(t) = n arctan t+a−b

t+a+b on the interval [0, λn] again, we know that there
exists a unique μ2 ∈ (0, λn), such that n arctan μ2+a−b

μ2+a+b = Ψ0 or equivalently

μ2 = (tan
Ψ0
n )(a+b)−a+b

1−tan
Ψ0
n

> 0. Since g2(t) is monotonically increasing, we obtain

λn ≥ (tan Ψ0
n )(a + b) − a + b

1 − tan Ψ0
n

= μ2 > 0.

Similarly, we know that there exists μ1 = (tan
Ψ1
n )(a+b)−a+b

1−tan
Ψ1
n

> 0, such that

0 < λ1 ≤ μ1.
Hence the points (λ1, λ2, . . . , λn) are always in Γ+

]μ1,μ2[
along the geometric

evolution equation (1.2). �
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The following proposition concerns the asymptotic convergence of general
fully-nonlinear flows (2.1) with second boundary condition under certain con-
ditions. This proposition plays a fundamental role in the proof of Theorem
1.2.

Proposition 2.2. (Huang and Ye, see [6, Theorem 1.1]) Assume that Ω and
Ω̃ are two bounded and uniformly convex domains with smooth boundary in
R

n. We also assume 0 < α0 < 1 and that the map F satisfies the conditions
(2.2), (2.3), (2.4), (2.5), (2.6), (2.7). Then for any given initial function v0 ∈
C2+α0(Ω̄) which is uniformly convex and satisfies the gradient map Dv0(Ω) =
Ω̃, the strictly convex solution of (2.1) exists for all t ≥ 0 and the solution
v(x, t) converges to a function v∞(x, t) = ṽ∞(x)+C∞ ·t in C1+ζ(Ω̄)∩C4+α(Ω̄′)
as t → ∞ for any Ω′ ⊂⊂ Ω, ζ < 1 and 0 < α < α0, that is, we have the
following estimates

lim
t→+∞ ‖v(·, t) − v∞(·, t)‖C1+ζ(Ω̄) = 0

and lim
t→+∞ ‖v(·, t) − v∞(·, t)‖C4+α(Ω̄′) = 0,

and the function ṽ∞(x) ∈ C1+1(Ω̄) ∩ C4+α(Ω) is a solution of
{

F (D2v) = C∞, x ∈ Ω,

Dv(Ω) = Ω̃,
(2.15)

where the constant C∞ depends only on the geometries of Ω, Ω̃ and F . The
solution to (2.15) is unique up to addition of constants.

Proposition 2.2 naturally yields the convergence of solutions to equation
(1.2) as t → ∞ by verifying that the structure conditions are satisfied. In [6],
Huang and Ye used the inverse function theorem to establish the short time
existence of the flow (2.1). Then the authors used the conditions (2.2)–(2.7)
to construct suitable auxiliary functions as barriers and finally established the
a priori estimates needed to prove the convergence of the flow.

3. Proof of Thoerem 1.2. In this section, we verify that the hypotheses in
(2.2)–(2.7) are valid for the geometric evolution equation (1.2) via elemen-
tary methods. To that end, we require an elementary result for monotonically
increasing functions.

Lemma 3.1. Let f(t) be a monotonically increasing continuous function on
(0,+∞). Then for any 0 < λ1 ≤ λ2 ≤ · · · ≤ λn, there exists a unique λ ∈
[λ1, λn] such that

f(λ) =
∑n

i=1 f(λi)
n

.

Proof. Since f(t) is monotonically increasing,

f(λ1) ≤
∑n

i=1 f(λi)
n

≤ f(λn).

By making use of the intermediate value theorem for continuous functions,
we obtain the conclusion. �
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We put

Fθ(λ1, λ2, . . . , λn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

i

ln(
λi + a − b

λi + a + b
), for 0 < θ <

π

4
,

∑

i

arctan(
λi + a − b

λi + a + b
), for

π

4
< θ <

π

2
.

Without loss of generality, we always assume that 0 < λ1 ≤ λ2 ≤ · · · ≤ λn.

Lemma 3.2. For any θ ∈ (0, π
4 )∪(π

4 , π
2 ), the operator Fθ satisfies the hypotheses

in (2.2)–(2.7).

Proof. Case 1, θ ∈ (0, π
4 ).

It is obvious that a = cot θ > b =
√

| cot2 θ − 1|. We observe

∂Fθ

∂λi
=

1
λi + a − b

− 1
λi + a + b

=
2b

(λi + a − b)(λi + a + b)
> 0.

Then the equation (2.1) is parabolic and Fθ satisfies (2.2). For any μ1 >
0, μ2 > 0, if λ1 ≤ μ1, λn ≥ μ2, we obtain

2nb

(a − b)(a + b)
≥

n∑

i=1

∂Fθ

∂λi
=

n∑

i=1

2b

(λi + a − b)(λi + a + b)

≥ 2b

(λ1 + a − b)(λ1 + a + b)

≥ 2b

(μ1 + a − b)(μ1 + a + b)

(3.1)

and

2nb ≥
n∑

i=1

∂Fθ

∂λi
λ2

i =
n∑

i=1

2bλ2
i

(λi + a − b)(λi + a + b)

≥ 2bλ2
n

(λn + a − b)(λn + a + b)

≥ 2bμ2
2

(μ2 + a − b)(μ2 + a + b)
.

(3.2)

By (3.1) and (3.2) we deduce that Fθ satisfies (2.3) and (2.4). We calculate
directly to obtain:

n∑

i,j=1

∂2Fθ

∂λiλj
ξiξj =

n∑

i=1

(
ξ2
i

(λi + a + b)2
− ξ2

i

(λi + a − b)2

)
≤ 0

and
n∑

i,j=1

∂2F ∗
θ

∂λiλj
ξiξj =

n∑

i=1

(
ξ2
i

(λi + (a − b)−1)2
− ξ2

i

(λi + (a + b)−1)2

)
≤ 0.

Consequently, Fθ satisfies (2.5). Let

g1(t) = g2(t) � n ln
(

t + a − b

t + a + b

)
.
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It is elementary to check that

g1(λ1) ≤ Fθ(λ1, λ2, . . . , λn) ≤ g2(λn).

Given 0 < λ1 ≤ λ2 ≤ · · · ≤ λn, if

g1(t) ≤ Fθ(λ1, λ2, . . . , λn),

then we have

ln
(

t + a − b

t + a + b

)
≤

∑n
i=1 ln

(
λi+a−b
λi+a+b

)

n
. (3.3)

It is easy to see that

ln
(

t + a − b

t + a + b

)

is a monotonically increasing continuous function on (0,+∞). By Lemma 3.1,
there exists a unique t1 ∈ [λ1, λn] such that

∑n
i=1 ln

(
λi+a−b
λi+a+b

)

n
= ln

(
t1 + a − b

t1 + a + b

)
.

Combining with (3.3), we obtain

ln
(

t + a − b

t + a + b

)
≤ ln

(
t1 + a − b

t1 + a + b

)
.

This implies t ≤ t1. Using the same methods, if

g2(t) ≥ Fθ(λ1, λ2, . . . , λn),

then there exists a unique t2 ∈ [λ1, λn] such that t ≥ t2. Putting these facts
together, we see that Fθ satisfies all the hypotheses in(2.2)–(2.7) for θ ∈ (0, π

4 ).
Case 2, θ ∈ (π

4 , π
2 ).

A direct calculation as in Case 1 gives

∂Fθ

∂λi
=

2b

(λi + a − b)2 + (λi + a + b)2
> 0.

Then the equation (2.1) is parabolic and Fθ also satisfies (2.2). For any
μ1 > 0 and μ2 > 0, if λ1 ≤ μ1, λn ≥ μ2, we deduce that

2nb

(a − b)2 + (a + b)2
≥

n∑

i=1

∂Fθ

∂λi
=

n∑

i=1

2b

(λi + a − b)2 + (λi + a + b)2

≥ 2b

(λ1 + a − b)2 + (λ1 + a + b)2

≥ 2b

(μ1 + a − b)2 + (μ1 + a + b)2

(3.4)
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and

nb ≥
n∑

i=1

∂Fθ

∂λi
λ2

i =
n∑

i=1

2bλ2
i

(λi + a − b)2 + (λi + a + b)2

≥ 2bλ2
n

(λn + a − b)2 + (λn + a + b)2

≥ 2bμ2
2

(μ2 + a − b)2 + (μ2 + a + b)2
.

(3.5)

By (3.4) and (3.5), we see that Fθ satisfies (2.3) and(2.4). Clearly, we cal-
culate directly to obtain:

n∑

i,j=1

∂2Fθ

∂λiλj
ξiξj =

n∑

i=1

− 8(λi + a)bξ2
i

((λi + a − b)2 + (λi + a + b)2)2
≤ 0

and
n∑

i,j=1

∂2F ∗
θ

∂λiλj
ξiξj =

n∑

i=1

− 8b(a + λi(a2 + b2))ξ2
i

((1 + λi(a − b))2 + (1 + λi(a + b))2)2
≤ 0.

Therefore, Fθ satisfies (2.5). We define

g1(t) = g2(t) � n arctan
(

t + a − b

t + a + b

)
.

Note that the above functions are monotonically increasing and continuous
in t. We have the pointwise inequalities

g1(λ1) ≤ Fθ(λ1, λ2, . . . , λn) ≤ g2(λn).

Given 0 < λ1 ≤ λ2 ≤ · · · ≤ λn, if

g1(t) ≤ Fθ(λ1, λ2, . . . , λn),

then we obtain

arctan
(

t + a − b

t + a + b

)
≤

∑n
i=1 arctan

(
λi+a−b
λi+a+b

)

n
. (3.6)

By Lemma 3.1, there exists a unique t1 ∈ [λ1, λn] such that
∑n

i=1 arctan
(

λi+a−b
λi+a+b

)

n
= arctan

(
t1 + a − b

t1 + a + b

)
.

Combining with (3.6), we conclude that

arctan
(

t + a − b

t + a + b

)
≤ arctan

(
t1 + a − b

t1 + a + b

)
.

This implies t ≤ t1. Using the same methods, if

g2(t) ≥ Fθ(λ1, λ2, . . . , λn),

then there exists a unique t2 ∈ [λ1, λn] such that t ≥ t2. To summarize, we
have also shown that Fθ satisfies (2.2)–(2.7) for θ ∈ (π

4 , π
2 ). Finally, combining

Case 1 with Case 2, we obtain the desired results. �
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Finally, we can give the proof of the main theorem.

Proof of Theorem 1.2. Using Lemma 3.2, we obtain that the operator Fθ sat-
isfies all the hypotheses in (2.2)–(2.7). By Proposition 2.2, the assertion fol-
lows. �
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