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Abstract. In this paper we study the family of finite groups with the
property that every maximal abelian normal subgroup is self-centralizing.
It is well known that this family contains all finite supersolvable groups,
but it also contains many other groups. In fact, every finite group G is
a subgroup of some member Γ of this family, and we show that if G is
solvable, then Γ can be chosen so that every abelian normal subgroup of
G is contained in some self-centralizing abelian normal subgroup of Γ.
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1. Introduction. Recall that a normal subgroup N of a group G is sometimes
referred to as a large subgroup of G if N contains its centralizer CG(N). In par-
ticular, an abelian normal subgroup A of G is large precisely when A = CG(A),
or in other words, A is self-centralizing in G. A large abelian normal subgroup
of G, therefore, is necessarily maximal among abelian normal subgroups of G.
Conversely, it is well known that if G is nilpotent, then every maximal abelian
normal subgroup of G is large. (See, for instance [4, Lemma 4.16]). In fact,
an essentially identical proof shows that the same conclusion holds under the
weaker assumption that G is supersolvable.

The purpose of this note is to study the family of groups that share with su-
persolvable groups the property that every maximal abelian normal subgroup
is large. For notational convenience, we refer to the members of this family as
MANL groups.

Supersolvable groups are MANL groups, but as the alternating group A4

shows, not every MANL group is supersolvable. The fact that A4 is MANL is
a special case of something more general than supersolvability, however: if the
supersolvable residual of a group G is abelian, then G is MANL. (Recall that
by definition, the supersolvable residual of a group G is the unique smallest
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normal subgroup S = Gss such that G/S is supersolvable). Still more general
is the following.

Theorem A. Let S be the supersolvable residual of a solvable group G, and
suppose that the Fitting subgroup F(S) is abelian. Then G is an MANL group.

The smallest group G such that Gss is not abelian is SL(2, 3) of order 24,
and it is easy to see that SL(2, 3) is not MANL. (The unique maximal abelian
normal subgroup of SL(2, 3) is its center, which is not self-centralizing.) It
follows that SL(2, 3) is the smallest non-MANL group.

Suppose that G is solvable and that every Sylow subgroup of the super-
solvable residual S = Gss is abelian. Then F(S) is abelian, and hence G
is MANL by Theorem A. Also, if H ⊆ G is an arbitrary subgroup, then
H/(H ∩ S) ∼= HS/S is supersolvable, and thus Hss ⊆ S, so all Sylow sub-
groups of Hss are abelian. It follows that every subgroup of G is MANL. In
general, however, subgroups of solvable MANL groups need not be MANL,
and in fact, there is nothing at all that can be said about such subgroups
other than that they are solvable. In particular, there is no upper bound on
the derived length, the Fitting length, or any similar measure of complexity of
MANL groups. This is a consequence of the following.

Theorem B. Given an arbitrary finite group G, there exists a finite MANL
group W such that G is isomorphic to a subgroup of W and also to a factor
group of W . In fact, we can take W to be the semidirect product of an elemen-
tary abelian p-group B acted on by G, where p is any prime not dividing the
order of the Fitting subgroup F(G).

In our proof of Theorem B, we shall see that the subgroup B of W is the
unique maximal abelian normal subgroup of W , and that B is self-centralizing
in W . It follows that W is an MANL group, as required. This argument seems
somewhat unsatisfactory, however, because the maximal abelian normal sub-
groups of G play no role. If G is solvable, however, we can overcome this defect
with a different embedding of G into an MANL group.

Theorem C. Let G be a finite solvable group. Then G is a subgroup of some
solvable MANL group Γ with the property that every maximal abelian normal
subgroup of G has the form A ∩ G, where A is a maximal abelian normal
subgroup of Γ. In particular, Γ has at least as many maximal abelian normal
subgroups as G.

We observed previously that if G is solvable and all Sylow subgroups of
S = Gss are abelian, then every subgroup H ⊆ G is MANL. It is also true in
this situation that every homomorphic image of G is MANL. (To see this, let
θ : G → H be a surjective homomorphism, and observe that Hss = θ(S). Then
each Sylow subgroup of Hss is the image under θ of some Sylow subgroup of
S, and hence it is abelian.)

It follows that if G is solvable and all Sylow subgroups of Gss are abelian,
then every section of G is MANL. (Recall that a section of a group G is any
group of the form H/K, where K � H ⊆ G.) The converse of this statement is
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false, however. For example, the normalizer of a Sylow 2-subgroup of PSL(3, 4)
is solvable and all of its sections are MANL, but the supersolvable residual of
this group is a nonabelian 2-group.

We close this introduction with a brief discussion of a connection between
M-groups and MANL groups. First, recall that by definition, a group G is an
M-group if every irreducible character χ of G is induced from a linear character
of some (not necessarily proper) subgroup of G. Recall also that M-groups are
necessarily solvable. Although not every solvable group is an M-group, it is a
standard result that if G is solvable and all Sylow subgroups of Gss are abelian,
then G is an M-group. (See, for example, [3, Theorems 6.22 and 6.23]). In fact,
something more general is true: if G is solvable and all sections of G are MANL,
then G is an M-group.

To see this, suppose that all sections of G are MANL, and let χ ∈ Irr(G). Let
H ⊆ G be minimal with the property that there exists a character ψ ∈ Irr(H)
such that ψG = χ, and observe that guarantees that ψ is primitive. Now let
K = ker H, and let A/K be a maximal abelian normal subgroup of H/K. Since
ψ is a faithful primitive character of H/K, it follows that A/K is central in
H/K. Also, H/K is MANL, so A/K is large in H/K, and thus A/K = H/K.
We deduce that H/K is abelian, and hence ψ is linear. It follows that χ is
monomial, as required.

Finally, we mention that it is not true that every solvable MANL group is
an M-group, nor is it true that every M-group is MANL. The first of these
two assertions holds since by Theorem B, every solvable group is a homo-
morphic image of a solvable MANL group, but only M-groups can occur as
homomorphic images of M-groups. An example that demonstrates the second
assertion is the normalizer of a Sylow 2-subgroup of the Suzuki group Sz(8).
This normalizer is an M-group but it is not MANL.

2. Theorem A. In this section, we prove Theorem A.

Proof of Theorem A. To prove that G is MANL, we consider an arbitrary
maximal abelian normal subgroup A of G, and we show that A = CG(A).
Otherwise, A < CG(A), and we work to obtain a contradiction.

Let K/A be a chief factor of G, where K ⊆ CG(A), and note that K is not
abelian by the maximality of A. The chief factor K/A is abelian because G
is solvable, and since A ⊆ Z(K), we see that K is nilpotent, and thus S ∩ K
is a normal nilpotent subgroup of S. Then S ∩ K ⊆ F(S), and since we are
assuming that F(S) is abelian, we deduce that S ∩ K is abelian.

Suppose S ∩ K �⊆ A. Then A < A(S ∩ K) ⊆ K, and since K/A is a chief
factor of G and A(S ∩ K) is normal in G, we see that A(S ∩ K) = K. Now
A ⊆ Z(K) and S ∩ K is abelian, so K = A(S ∩ K) is abelian. This is a
contradiction, and we conclude that S ∩ K ⊆ A.

Now K/(S ∩ K) is isomorphic to KS/S, and under this isomorphism, the
subgroup A/(S∩K) corresponds to AS/S. There is thus a natural isomorphism
from K/A to KS/AS, and this isomorphism is compatible with the conjugation
actions of G on these two groups. (In other words, K/A and KS/AS are
isomorphic as G-operator groups.) Since K/A is a chief factor of G, it follows
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that KS/AS is also a chief factor of G, and hence it is a chief factor of the
supersolvable group G/S. Then KS/AS is cyclic, so K/A is also cyclic, and we
conclude that K is abelian because A ⊆ Z(G). This is our final contradiction.

�

3. Wreath products. We begin with a brief review of the definition and some
basic properties of wreath products. Let H be a permutation group acting
faithfully on some finite set Ω, and let U be an arbitrary group. We write Ũ
to denote the set of all functions from Ω into U , and we observe that Ũ is a
group with respect to pointwise multiplication.

Given α ∈ Ω, let Uα be the subgroup of Ũ consisting of the functions f
such that f(β) = 1 whenever β �= α for β ∈ Ω. It is easy to see that Uα

∼= U

and that Ũ is the direct product of the subgroups Uα.
Observe that H acts on Ũ according to the formula

fh(α) = f(α·h−1)

for all α ∈ Ω, where h ∈ H, and f ∈ Ũ . If U is nontrivial, the semidirect
product W = Ũ�H is, by definition, the wreath product of U by H, and we
write W = U � H. We view Ũ and H as subgroups of W , so W = ŨH, where
Ũ � W and Ũ ∩ H = 1. The normal subgroup Ũ of W is often referred to as
the base group of the wreath product W .

It is easy to check that (Uα)h = Uα·h, so H acts to permute the direct
factors Uα of Ũ . Since by assumption, the action of H on Ω is faithful and U
is nontrivial, we see that no nonidentity element of H can act trivially on Ũ ,
and thus CH(Ũ) = 1.

We mention for later use that if R ⊆ U is an arbitrary subgroup, then
R̃ ⊆ Ũ , and we observe that H normalizes R̃. If R � U , it is easy to see that
R̃ � Ũ , and thus R̃ � U � H.

Proof of Theorem B. We are given an arbitrary finite group G, and we view
G as a faithful permutation group on some set Ω. (For example, we can take
Ω = G, where G acts by right multiplication.) Choose a prime p not dividing
|F(G)|, and let U be a cyclic group of order p. Write B = Ũ , so B is the
group of all functions from Ω into U , and B is the base group of the wreath
product W = U � G. Now W is the semidirect product of the elementary
abelian p-group B acted on by G. In particular, G is both a subgroup and a
homomorphic image of W , and it suffices to show that W is an MANL group.

We have W = BG and CG(B) = 1. Writing C = CW (B), we have C ⊇ B,
and thus C = B(G∩C) = B, so B is self-centralizing in W , and in particular,
B is a maximal abelian normal subgroup of W . To prove that W is MANL,
therefore, it suffices to show that B is the unique maximal abelian normal
subgroup of W . Equivalently, we show that if A� W , where A is abelian, then
A ⊆ B.

Observe that A/(A ∩ B) ∼= BA/B, and this is an abelian normal subgroup
of W/B ∼= G. Then |A : A∩B| divides |F(G)|, so p does not divide |A : A∩B|,
and thus A ∩ B is a Sylow p-subgroup of A. Since A is abelian, we can write
A = (A ∩ B) × Q, where Q is the Hall p′-group of A. Now Q � W because
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by assumption, A � W . Since B is a p-group, we have Q ∩ B = 1, and thus
Q ⊆ CW (B) = B. It follows that Q = 1, and we conclude that A = A∩B ⊆ B,
as required. �

4. Direct products and more wreath products. We begin work toward a proof
of Theorem C with the following result.

Lemma 4.1. Suppose G is the direct product of subgroups Hi for 1 ≤ i ≤ m.
Then the maximal abelian normal subgroups of G are exactly the subgroups of
the form

∏
Xi, where Xi is a maximal abelian normal subgroup of Hi for each

subscript i. Furthermore, if all of the Hi are MANL groups, then G is also
MANL.

Proof. Working by induction on m, we see that it suffices to prove the result
for m = 2. For notational simplicity, therefore, we suppose that G = H × K,
and we show that the maximal abelian normal subgroups of G are exactly
the subgroups of the form XY , where X and Y are maximal abelian normal
subgroups of H and K, respectively. Furthermore, we show that if H and K
are MANL groups, then G is also MANL.

Given a maximal abelian normal subgroup A of G, let X and Y be the
projections of A into H and K, respectively. Then A ⊆ XY , and since the
projection maps from G to H and to K are surjective homomorphisms, it
follows that X and Y are abelian normal subgroups of H and K.

We argue next that X and Y are maximal among the abelian normal sub-
groups of H and K. To see this, suppose X ⊆ S � H and Y ⊆ T � K,
where S and T are abelian. Then ST is an abelian normal subgroup of G and
A ⊆ XY ⊆ ST . The maximality of A now guarantees that A = ST . It follows
easily that S = X and T = Y , and thus X and Y are maximal abelian normal
subgroups of H and K, as wanted. Also, we have A = XY .

Conversely, suppose that X and Y are maximal abelian normal subgroups
of H and K, respectively. Then XY is certainly an abelian normal subgroup
of G, and we must show that XY is maximal with this property. To see this,
suppose that A is a maximal abelian normal subgroup of G containing XY .

By the first part of the proof, A = UV , where U and V are the projections
of A into H and K. Since XY ⊆ A, it follows that X ⊆ U and Y ⊆ V ,
and thus X = U and Y = V by the assumed maximality of X and Y . Then
A = UV = XY , and thus XY is a maximal abelian normal subgroup of G, as
required.

Finally, suppose that H and K are MANL groups, and let A be a maximal
abelian normal subgroup of G. By the first part of the proof, A = XY , where
X and Y are maximal abelian normal subgroups of the MANL groups H and
K, and thus X and Y are large in H and K, respectively. Now let C = CG(A),
and let U and V be the projections of C into H and K. Since the projection
maps are homomorphisms, we see that U centralizes the projection of A into
H, so U ⊆ CH(X) ⊆ X, and similarly, V ⊆ Y . Then C ⊆ UV ⊆ XY = A,
and thus A is large in G, as required. �
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Theorem 4.2. Let U be a nontrivial MANL group, and let H be cyclic of prime
order p, where H is viewed as a transitive permutation group via its regular
representation. Then the wreath product W = U � H is an MANL group.

Proof. Let A be a maximal abelian normal subgroup of W , and let C =
CW (A), so our goal is to show that C = A.

Suppose first that A is contained in the base group B of W . We have seen
that

B = U1 × U2 × · · · × Up,

where Ui
∼= U for all i, and H acts by conjugation on the set {Ui | 1 ≤

i ≤ p}. The projection maps from B to the factors Ui are surjective group
homomorphisms, so the projection Ai of A into Ui is abelian and normal in
Ui. It follows that

∏
Ai is an abelian normal subgroup of B that contains A.

Also, since A is normalized by H and H permutes the subgroups Ui, we see
that H permutes the projections Ai, and thus

∏
Ai is normalized by H. We

have A ⊆ ∏
Ai � W , and so the maximality of A guarantees that A =

∏
Ai.

Next, we claim that for each subscript i, the subgroup Ai is maximal among
the abelian normal subgroups of Ui. It suffices by symmetry to show that A1

is a maximal abelian normal subgroup of U1, so suppose that A1 ⊆ T1 � U1,
where T1 is abelian. Let Ti be the unique conjugate of T1 contained in Ui,
and observe that T =

∏
Ti is an abelian normal subgroup of W that contains∏

Ai = A. By assumption, A is a maximal abelian normal subgroup of W , so
T = A, and hence T1 = A1. It follows that A1 is a maximal abelian subgroup
of U1, and thus for each subscript i, the subgroup Ai is a maximal abelian
normal subgroup of Ui, as claimed.

Since A =
∏

Ai, it follows by Lemma 4.1 that A is a maximal abelian nor-
mal subgroup of B. Also, since each of the direct factors Ui of B is isomorphic
to the MANL group U , Lemma 4.1 guarantees that B is an MANL group,
so CB(A) = A. Then C ∩ B = A, and to complete the proof in this case, it
suffices to show that C ⊆ B.

Given a subscript i, we have seen that Ai is a maximal abelian normal
subgroup of the MANL group Ui, and thus Ai is nontrivial. It follows that Ui

is the only one of the direct factors Uj that contains Ai, and since C normalizes
Ai, it follows that C normalizes Ui. Thus C acts trivially on the set of direct
factors Ui of B, and since B is the kernel of the conjugation action on this set,
we deduce that C ⊆ B, as wanted.

We can now assume that A �⊆ B, and we show that B is abelian in this
case. Since |W : B| is prime, it follows that BA = W , and thus C = (C ∩B)A.
Now let D = B ∩ A, so D is abelian and it is normal in W . Also, [B,A] ⊆ D,
so A acts trivially on B/D, and thus A normalizes each of the subgroups UiD.

Since BA = W , it follows that A acts transitively on the set of subgroups
Ui, and thus A acts transitively on the set of subgroups UiD. However A
stabilizes each of these subgroups, so it follows that the UiD are all equal.
Then U1D contains Ui for all i, and thus U1D = B. Now B/U1 = U1D/U1

∼=
D/(D ∩U1), and since D is abelian, we deduce that B/U1 is abelian, and thus
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B′ ⊆ U1. Similarly, B′ ⊆ U2, so B′ ⊆ U1 ∩ U2 = 1, and thus B is abelian, as
claimed.

Now BA = W and A ⊆ C, and thus C = (C ∩ B)A. Since B is abelian, we
see that C ∩ B and A are abelian subgroups that centralize each other, and it
follows that C is abelian. The maximality of A thus guarantees that C = A,
as required. �

Now let G be an arbitrary finite group, and suppose that 1 < N � G. It is
fairly well known that G can be isomorphically embedded in N � (G/N), where
to construct the wreath product, G/N is viewed as a regular permutation
group (acting by right multiplication on itself). This result appears as [2, Satz
I.15.9], and also as [1, Theorem A.18.9]. For our proof of Theorem C, we need
the following slightly more precise version of this embedding theorem.

To state our result, we recall that the left-regular action of a group H is the
action of H on itself given by x·h = h−1x, where h, x ∈ H. (It is easy to see
that the left-regular action of H is permutation-isomorphic to the right-regular
action given by x·h = xh, but we shall not need this fact).

Theorem 4.3. Let 1 < N � G, and let W = N � (G/N), where we view G/N
as a permutation group acting on itself via the left-regular action. Then there
exists an injective homomorphism θ : G → W . Also, if R � G, where R ⊆ N ,
then θ(R) is contained in the subgroup R̃ of the base group Ñ of W .

Proof. Fix a set of representatives for the cosets of N in G. For an arbitrary
element t ∈ G, write [t] to denote the chosen representative for the coset tN ,
so for arbitrary elements t, x ∈ G, we have [t] ∈ tN , and x[t] ∈ x(tN) = [xt]N .
We see, therefore, that [xt]−1x[t] lies in N .

Write G = G/N and use the standard “bar convention”, so the coset tN is
denoted by t. Now for x ∈ G, we define the function fx : G → N , by writing
fx(t) = [xt]−1x[t], and observe that fx is an element of the base group Ñ of the
wreath product W = N � G. (Note that in this situation, the set Ω permuted
by G is G itself, so Ñ is the group of functions from G into N).

Given a function f ∈ Ñ , we have

fy(t) = f(t·y−1) = f(yt) ,

and in particular

(fx)y(t) = fx(yt) = [xyt]−1x[yt] .

We argue that the map θ : G → W defined by θ(x) = xfx is a homomor-
phism. We have

θ(x)θ(y) = xfxyfy = xy(fx)yfy ,

so to prove that θ is a homomorphism, it suffices to show for all t ∈ G that

(fx)y(t)fy(t) = fxy(t) .

We have

(fx)y(t)fy(t) = ([xyt]−1x[yt])([yt]−1y[t]) = [xyt]−1xy[t] = fxy(t) ,

as wanted, and thus θ is a homomorphism.
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To show that θ is injective, suppose θ(x) = 1, so fxx = 1, and in particular,
x = 1, and thus x ∈ N . Also, fx is the constant function with value 1, so
[xt]−1x[t] = 1 for all t. Since x ∈ N , we see that [xt] = [t], and it follows that
x = 1, and thus θ is injective, as required.

Now suppose that R � G, with R ⊆ N . If x ∈ R, then x ∈ N , and thus
x = 1, so θ(x) = fx. Now fx(t) = [xt]−1x[t] = [t]−1x[t] ∈ R, because by
assumption, R � G. Then fx lies in R̃, as required. �

Proof of Theorem C. Given a solvable group G, we work to embed G as a
subgroup of a solvable MANL group Γ, and we want to do this so that each
maximal abelian normal subgroup R of G is contained in some maximal abelian
normal subgroup A of Γ. Once we accomplish this, we shall have R ⊆ A ∩ G,
and since A∩G is abelian and normal in G, the maximality of R will guarantee
that R = A ∩ G, as required.

If G is an MANL group, we can take Γ = G, and there is nothing further
to prove. We assume, therefore, that G is not MANL, and in particular, G is
not nilpotent, and we proceed by induction on |G|.

Since G is solvable but not nilpotent, there exists a normal subgroup N of
G such that F(G) ⊆ N and |G : N | is prime. By the inductive hypothesis, we
can assume that N is a subgroup of some solvable MANL subgroup Δ, and in
addition, we can assume that each abelian normal subgroup of N is contained
in some abelian normal subgroup of Δ.

Now let C be a cyclic group of order p, where p = |G : N |. View C as a
regular permutation group, and note that G/N ∼= C, so by Theorem 4.3, there
is an isomorphism θ from G into N � C.

Since N ⊆ Δ, we see that Ñ ⊆ Δ̃, where Ñ and Δ̃ are the groups of
functions from C into N and Δ, respectively. It follows that there is a natural
embedding of N � C = ÑC into Δ � C = Δ̃C. Also, since Δ is solvable, we
see that Δ � C is solvable, and furthermore, Δ � C is an MANL group by
Theorem 4.2.

Identifying G with θ(G) in Theorem 4.3, we can view G as a subgroup of
N � C, so G is also a subgroup of Δ � C. To complete the proof, therefore, it
suffices to show that each abelian normal subgroup of G is contained in some
abelian normal subgroup of Δ � C.

Let R � G, where R is abelian. Then R ⊆ F(G) ⊆ N , and we observe that
by Theorem 4.3, the image θ(R) of R in N � C is contained in the subgroup R̃

of Ñ . Since we are identifying G with θ(G), therefore, we can write R ⊆ R̃.
By the inductive hypothesis, there is an abelian normal subgroup S of Δ

such that R ⊆ S. Then R̃ ⊆ S̃, and we have R ⊆ R̃ ⊆ S̃.
Since S is abelian, we see that S̃ is abelian. Also S � Δ, and it follows that

S̃ � Δ̃. Since C normalizes S̃, we see that S̃ is a normal abelian subgroup of
Δ̃C = Δ � C. Now R is contained in the abelian normal subgroup S̃ of Δ,
and thus S̃ is contained in some maximal abelian subgroup A of Δ � C, as
required. �

5. Further remarks. Suppose we relax the MANL condition and instead we fix
a positive integer r, and we ask if it is true in a group G that every nilpotent
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normal subgroup maximal with the property that its nilpotence class is at
most r is large. (Of course, if r = 1, we are asking if G is MANL.) If r > 1,
the following result shows that the answer is “yes” for all solvable groups G.

Theorem 5.1. Let N � G, where G is solvable, and fix an integer r > 1. Let N
be maximal among nilpotent normal subgroups of G having nilpotence class at
most r. Then N is large in G.

Proof. Let C = CG(N), and write Z = Z(N). Then C ∩ N = Z, and we
must show that Z = C. Otherwise, Z < C, and we can choose a chief factor
K/Z of G with K ⊆ C. Then N ∩ K = Z, so NK/Z ∼= (N/Z) × (K/Z). Now
N/Z is nilpotent with class at most r − 1, and K/Z is abelian because it is a
chief factor of the solvable group G. It follows that NK/Z is nilpotent with
class at most r − 1. Also, Z is central in NK, and hence that NK is nilpotent
with class at most r. The maximality of N thus yields N = NK ⊇ K, so
K ⊆ N ∩ C = Z. This is a contradiction because K/Z > 1. �

Finally, we mention a consequence of the fact that nilpotent groups are
MANL. This pretty result is not new, but perhaps it is not as well known as it
should be, and so we have decided to include it here. (See [4, Problem 1D.11].)

Theorem 5.2. Let G be an arbitrary finite group, and let m be a positive integer.
If |A| ≤ m for every abelian subgroup A of G, then |G| divides m!.

Proof. It suffices to show for every prime p that the order of a Sylow p-subgroup
P of G divides m!. To see this, let A be a maximal abelian normal subgroup
of P . Since P is nilpotent, it is MANL, and thus A = CP (A). It follows that
P/A is isomorphic to a subgroup of Aut(A).

Now Aut(A) acts faithfully on the set of nonidentity elements of A, so
Aut(A) is isomorphic to a subgroup of the symmetric group of degree |A| − 1,
and thus |P/A| divides (|A|−1)!. We see, therefore, that |P | = |A||P/A| divides
|A|(|A| − 1)! = |A|!. By hypothesis, |A| ≤ m, so |A|! divides m!, and thus |P |
divides m!, as required. �

The requirement that G is finite is essential in Theorem 5.2 because there
exist infinite groups for which the orders of the abelian subgroups are bounded.
For example, a “Tarski monster” has this property. (See [5].)
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