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1. Introduction. Let G be a group. The center and the commutator subgroup
of G are denoted by Z(G) and γ2(G), respectively. By d(G) we denote the min-
imal number of generators of G. We write γi(G) for the i-th term in the lower
central series of G. Finally, the abelianization of the group G, i.e. G/γ2(G), is
denoted by Gab.

Let G be a non-abelian p-group of order pn with |γ2(G)| = pk and M(G)
be its Schur multiplier. Niroomand [4] proved that

|M(G)| ≤ p
1
2 (n−k−1)(n+k−2)+1. (1.1)

He also classified p-groups such that k = 1 and bound (1.1) is attained. Note
that if k = 1, then the group is of nilpotency class 2. The author ([6]) further
classified the groups of nilpotency class 2 such that this bound is attained.
Recently Hatui ([2]) proved that there are no p-groups, for p �= 3, of nilpotency
class 3 or more attaining the bound. She also gave an example of a 3-group of
nilpotency class 3 such that the bound is attained.

In the following theorem we give a shorter proof of Hatui’s result and
classify 3-groups such that bound (1.1) is attained completing the classification
of such groups.

Theorem 1.1. Let G be a non-abelian finite p-group of order pn with |γ2(G)| =
pk. Then |M(G)| = p

1
2 (n−k−1)(n+k−2)+1 if and only if G is one of the following

groups.
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1. G1 = Ep × C
(n−3)
p , where Ep is the extraspecial p-group of order p3 and

exponent p for an odd prime p,
2. G2 = C

(4)
p � Cp for an odd prime p,

3 . G3 =
〈
α1, β1, α2, β2, α3, β3 | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] = β2,

[αi, βj ] = 1, αp
i = βp

i = 1 (p an odd prime) (i, j = 1, 2, 3)
〉
.

4 . G4 =
〈
α1, β1, α2, β2, α3, β3, γ | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] = β2,

[βi, αi] = γ, [αi, βj ] = 1(i �= j), α3
i = β3

i = 1 (i = 1, 2, 3, j = 1, 2, 3)
〉
.

2. Prerequisites. Let G be a finite p-group of nilpotency class c and G be the
factor group G/Z(G). Define the homomorphism

Ψ2 : G
ab ⊗ G

ab ⊗ G
ab �→ γ2(G)

γ3(G)
⊗ G

ab

by Ψ(x1 ⊗ x2 ⊗ x3) = [x1, x2] ⊗ x3 + [x2, x3] ⊗ x1 + [x3, x1] ⊗ x2.

For 3 ≤ i ≤ c define homomorphisms

Ψi : G
ab ⊗ G

ab · · · ⊗ G
ab

︸ ︷︷ ︸
i+1 times

�→ γi(G)
γi+1(G)

⊗ G
ab

by

Ψi(x1 ⊗ x2 ⊗ · · · ⊗ xi+1) = [x1, x2, · · · , xi]l ⊗ xi+1 + [xi+1, [x1, x2, · · ·xi−1]l] ⊗ xi

+ [[xi, xi+1]r, [x1, · · · , xi−2]l] ⊗ xi−1

+ [[xi−1, xi, xi+1]r, [x1, x2, · · · , xi−3]l] ⊗ xi−2

+ · · · + [x2, · · · , xi+1]r ⊗ x1

where

[x1, x2, · · · xi]r = [x1, [· · · [xi−2, [xi−1, xi]] . . .]

and

[x1, x2, · · · xi]l = [. . . [[x1, x2], x3], · · · , xi].

The following proposition was given by Ellis and Wiegold [1, see Proposition
1 and the comments on page 192 following the proof of Theorem 2].

Proposition 2.1. Let G be a finite p-group and G be the factor group G/Z(G).
Then

∣∣∣M(G)
∣∣∣
∣∣∣γ2(G)

∣∣∣
c∏

i=2

∣∣∣ Im Ψi

∣∣∣ ≤
∣∣∣M(Gab)

∣∣∣
c∏

i=2

∣∣∣ γi(G)
γi+1(G)

⊗ G
ab

∣∣∣.

The following Lemma is from [5].
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Lemma 2.2. [5, Lemma 2.1] Let G be an abelian p-group of order pn such
that G = Cpα1 × Cpα2 × · · · × Cpαd (α1 ≥ α2 ≥ · · · ≥ αd), then |M(G)| ≤
p

1
2 (d(G)−1)(n−(α1−αd)).

3. Proof of Theorem 1.1. Let |M(G)| = p
1
2 (n−k−1)(n+k−2)+1. In view of [6,

Theorem 1.1] suppose that the nilpotency class c of G is at least 3. Let
|γc(G)| = pr. From the exact sequence [3, Corollary 3.2.4 (ii)]

1 �→ X �→ G/γ2(G) ⊗ γc(G) �→ M(G) �→ M(G/γc(G)) �→ γc(G) �→ 1,

it follows that
|M(G)|

|G/γ2(G) ⊗ γc(G)| ≤ |M(G/γc(G))|
|γc(G)| .

Since |G/γ2(G) ⊗ γc(G)| ≤ p(n−k)r, we get that

|M(G/γc(G))| ≥ p
1
2 (n−k−1)(n+k−2r−2)+1.

This shows that the bound (1.1) is also attained for the group G/γc(G). Ap-
plying induction, the bound (1.1) is attained for G/γ3(G). But G/γ3(G) is of
nilpotency class 2, therefore by [6, Theorem 1.1], p �= 2.

Let Ψi be as defined in Section 2, d(G) = d and d(G/Z(G)) = δ. No-

tice that
∣∣∣ γi(G)
γi+1(G) ⊗ G

ab
∣∣∣ ≤

∣∣∣ γi(G)
γi+1(G)

∣∣∣
d(G

ab
)

. Therefore
∏c

i=2

∣∣∣ γi(G)
γi+1(G) ⊗ G

ab
∣∣∣ ≤

|γ2(G)|d(Gab
) = pkδ. From Proposition 2.1 we have

|M(G)||γ2(G)|
c∏

i=2

| Im Ψi| ≤ |M(Gab)|pkδ.

Applying Lemma 2.2 for Gab, we get that

|M(G)|
c∏

i=2

| Im Ψi| ≤ p
1
2 (d−1)(n−k)+k(δ−1),

so that

|M(G)|
c∏

i=2

| Im Ψi| ≤ p
1
2 (d−1)(n+k)−k(d−δ). (3.1)

Following the proof of [1, Proposition 1], we have | Im Ψ2| ≥ pδ−2. Therefore
from Eq. (3.1) it follows that d(G) = δ and

|M(G)|
c∏

i=3

| Im Ψi| ≤ p
1
2 (d−1)(n+k−2)+1. (3.2)

Now using [4, Theorem 2.2] we see that d(G) ≥ 3. Suppose d(G) ≥ 4 and let
Ψi be the maps as given in Section 2. By simplyfying notations

Ψ3(x1 ⊗ x2 ⊗ x3 ⊗ x4) = [[x1, x2], x3] ⊗ x4 + [x4, [x1, x2]] ⊗ x3 + [[x3, x4], x1]

⊗x2 + [x2, [x3, x4]] ⊗ x1.
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Since G is of nilpotency class at least 3 and δ ≥ 4, there exist x1, x2, x3, x4 ∈ G

such that [[x1, x2], x3] /∈ γ4(G) and x4G
ab

/∈ 〈x1G
ab

, x2G
ab

, x3G
ab〉. This shows

that Im Ψ3 �= {1}. Which is a contradiction in view of Eq. (3.2). Therefore
d(G) = 3. Let G be generated by α1, α2, α3. Then for i �= j

Ψ3(αi ⊗ αj ⊗ αi ⊗ αj) = 2([αi, αj , αi] ⊗ αj) + 2([αj , [αi, αj ]] ⊗ αi).

This shows that [αi, αj , αi] ∈ γ4(G) because p �= 2. Now for i �= j �= k �= i,
consider

Ψ3(αi ⊗ αj ⊗ αk ⊗ αi) = [αi, αj , αk] ⊗ αi + [αj , [αk, αi]] ⊗ αi.

Therefore

[αi, αj , αk]γ4(G) = [αk, αi, αj ]γ4(G).

Putting (i, j, k) = (1, 2, 3) and (2, 3, 1) gives

[α1, α2, α3]γ4(G) = [α3, α1, α2]γ4(G)

and

[α2, α3, α1]γ4(G) = [α1, α2, α3]γ4(G),

respectively.
Applying Hall-Witt identity we see that [α2, α3, α1]3 ∈ γ4(G). Since

[αi, αj , αi] ∈ γ4(G) and γ3(G)/γ4(G) is non-trivial, we have [α1, α2, α3] /∈
γ4(G). It follows that p = 3. Let G be a group of nilpotency class at least 4.
Consider the map Ψ4. By simplyfying notations

Ψ4(x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5) = [x1, x2, x3, x4] ⊗ x5 + [x5, [x1, x2, x3]] ⊗ x4

+ [[x4, x5], [x1, x2]] ⊗ x3 + [[x3, [x4, x5]], x1] ⊗ x2.

+ [x2, [x3, [x4, x5]]] ⊗ x1.

Since γ4(G)/γ5(G) is non-trivial, one of the elements [α1, α2, α3, αi], i =
1, 2, 3 does not belong to γ5(G). Suppose [α1, α2, α3, α1] /∈ γ5(G). Then Ψ4(α1⊗
α2 ⊗ α1 ⊗ α2 ⊗ α3) is non-identity so that ImΨ4 is non-trivial. Similarly sup-
posing [α1, α2, α3, α2] /∈ γ5(G), the element Ψ4(α1 ⊗ α2 ⊗ α2 ⊗ α1 ⊗ α3), while
supposing [α1, α2, α3, α3] /∈ γ5(G), the element Ψ4(α1 ⊗ α2 ⊗ α3 ⊗ α3 ⊗ α1)
give that ImΨ4 is non-trivial. This, in view of Eq. (3.2), gives a contradiction.
Therefore G is a 3-group of nilpotency class 3. Hence we have

[α1, α2, α3] = [α3, α1, α2] = [α2, α3, α1].

Since [α1, α2, α3] �= 1, we get that [αi, αj ] /∈ γ3(G) for i, j = 1, 2, 3 and i �= j.
Also, since [αi, αj , αi] = 1, it follows that [αi, αj ]γ3(G) cannot be generated
by {[αk, αl]γ3(G) | (k, l) �= (i, j) or (j, i)}. This shows that γ2(G)/γ3(G)
is generated by 3 elements. Using Eq. (3.2) G/γ2(G) is elementary abelian, so
that γ2(G)/γ3(G) is elementary abelian. Hence |γ2(G)/γ3(G)| = 33. Therefore
|G| = 37. Now it can be checked using GAP ([7]) that the bound is attained if
and only if G = G4. This completes the proof.
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