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Abstract. In this paper, the large time decay of the magneto-micropolar
fluid equations on R

n (n = 2, 3) is studied. We show, for Leray global
solutions, that ‖(u ,w , b)(·, t)‖L2(Rn) → 0 as t → ∞ with arbitrary ini-

tial data in L2(Rn). When the vortex viscosity is present, we obtain a

(faster) decay for the micro-rotational field: ‖w (·, t)‖L2(Rn) = o(t−1/2).
Some related results are also included.
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1. Introduction. In this work, we derive a large time asymptotic decay esti-
mate (see (1.3)) for global Leray solutions of the magneto-micropolar equations
in L2(Rn), where n = 2, 3. The 3D micropolar fluid model, firstly introduced
by Eringen in [3], is a substantial generalization of the classical Navier–Stokes
equations in the sense that the microstructure of the fluid particles is taken
into account. When one considers also the effect of an induced magnetic field
on the motion, one gets the more complete magnetic-micropolar fluids. The
magneto-micropolar fluid flow in the whole 3D space is governed by the fol-
lowing equations,

ut + u · ∇u + ∇p = (μ + χ)Δu + χ∇ × w + b · ∇b, (1.1a)
wt + u · ∇w = γ Δw + ∇(∇ · w) + χ∇ × u − 2χw, (1.1b)
bt + u · ∇b = νΔb + b · ∇u, (1.1c)
∇ · u(·, t) = ∇ · b(·, t) = 0, (1.1d)

with initial data (u0,w0, b0) ∈ L2
σ(R3)×L2(R3) × L2

σ(R3) and

‖(u,w, b)(·, t) − (u0,w0, b0)‖L2(R3) → 0, as t → 0.
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The two-dimensional magneto-micropolar fluid motion is a special case of
the corresponding 3D motion (1.1), u(x, t) = (u1(x1, x2, t), u2(x1, x2, t), 0),
w(x, t) = (0, 0, w3(x1, x2, t)), and b(x, t) = (b1(x1, x2, t), b2(x1, x2, t), 0). Sub-
stituting u, w, and b of the above form into the system (1.1), one gets the
following 2D governing equations (see [7]),

ut + u · ∇u + ∇p = (μ + χ)Δu + χ∇ × w + b · ∇b, (1.2a)
wt + u · ∇w = γ Δw + χ∇ × u − 2χw, (1.2b)
bt + u · ∇b = νΔb + b · ∇u, (1.2c)

∇ · u(·, t) = ∇ · b(·, t) = 0, (1.2d)

with initial data (u0,w0, b0) ∈ L2
σ(R2)×L2(R2) × L2

σ(R2) and

‖(u,w, b)(·, t) − (u0,w0, b0)‖L2(R2) → 0,

as t → 0.
In (1.1) and (1.2), μ, γ > 0 are the kinematic and spin viscosities, ν−1 is

the magnetic Reynolds number, and χ ≥ 0 is the vortex viscosity and u =
u(x, t), w = w(x, t), b = b(x, t), and p = p(x, t) are the flow velocity, micro-
rotational velocity, the magnetic field, and the total pressure, respectively,
for t > 0 and x ∈ R

n. Here, L2
σ(Rn) denotes the space of solenoidal fields

v = (v1, v2, . . . , vn) ∈ L2(R3) ≡ L2(Rn)n with ∇· v = 0 in the distributional
sense. Our main result can be described as follows.

Theorem 1.1 (Main Theorem). For a Leray solution (u,w, b)(·, t) of (1.1) and
(1.2), one has

lim
t→∞ ‖(u,w, b)(·, t)‖L2(Rn) = 0. (1.3a)

Moreover, if χ > 0, then

lim
t→∞ t1/2‖w(·, t)‖L2(Rn) = 0, for n = 2, 3. (1.3b)

For this purpose, it was necessary to establish some auxiliary results (Sec-
tion 2), including the following gradient estimate

lim
t→∞ t1/2‖(Du,Dw,Db)(·, t)‖L2(Rn) = 0,

n = 2, 3. In the last section, we prove the main theorem.
A.C. Eringen proposed in his paper entitled Theory of micropolar fluids

(see [3]) a study about the system (1.1) for the case of null magnetic field,
i.e., b = 0. In the literature, such fluids are called micropolar. Physically,
micropolar fluids represent fluids consisting of rigid, randomly oriented (or
spherical) particles suspended in a viscous medium, where the deformation
of fluid particles is ignored. The non-Newtonian models of micropolar and
magnetic-micropolar fluids have been used in modeling a variety of physical
phenomena involving suspensions of rigid particles in fluids, such as human
blood, polymeric suspensions, and so on, and therefore have found many ap-
plications in physiological and engineering problems. For more information on
these type of fluids, see [8] and the references therein.

There are many results on the existence and uniqueness of solutions for
problems related. The two-dimensional problem has been extensively studied
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and many interesting results involving the existence of solutions and asymp-
totic behavior have been established considering zero and partial viscosities,
see, e.g., [1,2,7,10,11].

Notation. As usual, Ḣ
1
(Rn) = Ḣ1(Rn)n where Ḣ1(Rn) denotes the ho-

mogeneous Sobolev space of order 1, eνΔt denotes the heat semigroup and
Cw(I, L2(Rn)) denotes the set of mappings from a given interval I ⊆ R to
L2(Rn) that are L2-weakly continuous at each t ∈ I, for n = 2, 3. As shown
above, boldface letters are used for vector quantities, as in u(x, t) =(u1(x, t),
u2(x, t), u3(x, t)). Also, ∇p ≡ ∇p(·, t) denotes the spatial gradient of p(·, t),
Dj = ∂/∂xj , ∇· u = D1u1 + D2u2 + D3u3 is the (spatial) divergence of u(·, t).
| · |2 denotes the Euclidean norm in R

3, and ‖ · ‖Lq(R3), 1 ≤ q ≤ ∞, are the
standard norms of the Lebesgue spaces Lq(R3), with the vector counterparts

‖u(·, t) ‖Lq(Rn) =
{ n∑

i = 1

∫

Rn

| ui(x, t) |q dx
}1/q

(1.4a)

‖Du(·, t) ‖Lq(Rn) =
{ n∑

i, j = 1

∫

Rn

|Dj ui(x, t) |q dx
}1/q

(1.4b)

and, in general,

‖Dmu(·, t) ‖Lq(Rn) =
{ n∑

i, j1,..., jm= 1

∫

Rn

|Dj1···Djmui(x, t) |q dx
}1/q

(1.4c)

if 1 ≤ q < ∞.
When, q = ∞,

‖u(·, t)‖L∞(Rn) = max{‖ui(·, t)‖L∞(Rn) : 1 ≤ i ≤ n} (1.4d)

and, for general m ≥ 1:

‖Dmu(·, t) ‖L∞(Rn) = max
{

‖Dj1···Djmui(·, t) ‖L∞(Rn): 1 ≤ i, j1,. . . , jm ≤ n
}

.

(1.4e)
Definitions (1.4) are convenient, but not essential. However, some choice

for the vector norms has to be made to fix the values of constants. We also
defined for simplicity the following norms for (u,w, b) as usually made in the
literature:

‖(u,w, b)‖q
Lq(Rn) := ‖u‖q

Lq(Rn) + ‖w‖q
Lq(Rn) + ‖b‖q

Lq(Rn) (1.4f)

and more generally, for all integers m ≥ 1

‖(Dmu,Dmw,Dmb)‖q
Lq(Rn) := ‖Dmu‖q

Lq(Rn) + ‖Dmw‖q
Lq(Rn) + ‖Dmb‖q

Lq(Rn)

(1.4g)
for all 1 ≤ q < ∞ and when q = ∞,

‖(u,w, b)‖L∞(Rn) = max{‖u‖L∞(Rn), ‖w‖L∞(Rn), ‖b‖L∞(Rn)}. (1.4h)

The constants will be represented by the letters C, c, or K. For economy, we
will use typically the same symbol to denote constants with different numerical
values.
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2. Preliminaries. First, we will focus in the 3D case. Although it is not known
that Leray solutions to the problem (1.1) are smooth for all t > 0, it is known
that they do behave nicely for all t > 0 sufficiently large [8,9], say t > t∗, with

(u,w, b)(·, t) ∈ C∞(R3 × (t∗,∞)) (2.1a)

and, for each m ∈ Z+:

(u,w, b)(·, t) ∈ C0([t∗,∞),Hm(R3)) (2.1b)

and such that the strong energy inequality

‖(u,w, b)(·, t)‖2
L2(R3) + 2μ

t∫

t0

‖Du(·, τ)‖2
L2(R3)dτ

+ 2γ

t∫

t0

‖Dw(·, τ)‖2
L2(R3)dτ + 2ν

t∫

t0

‖Db(·, τ)‖2
L2(R3)dτ

+ 2

t∫

t0

‖∇ · w(·, τ)‖2
L2(R3)dτ + 2χ

t∫

t0

‖w(·, τ)‖2
L2(R3)dτ

≤ ‖(u,w, b)(·, t0)‖2
L2(R3), ∀t > t0 (2.2)

for a.e t0 ≥ 0, including t0 = 0. Similarly, for the 2D case, one has

‖(u,w, b)(·, t)‖2
L2(R2) + 2μ

t∫

t0

‖Du(·, τ)‖2
L2(R2)dτ

+ 2γ

t∫

t0

‖Dw(·, τ)‖2
L2(R2)dτ + 2ν

t∫

t0

‖Db(·, τ)‖2
L2(R2)dτ

+ 2χ

t∫

t0

‖w(·, τ)‖2
L2(R2)dτ ≤ ‖(u,w, b)(·, t0)‖2

L2(R2), ∀t > t0 (2.3)

and we actually have t∗ = 0 in this case [8].
We will now establish some lemmas that are necessary to our analysis in

the next section.

Lemma 2.1. For (u,w, b) Leray soltions of (1.1) and (1.2), one has

lim
t→∞ t1/2‖(Du,Dw,Db)(·, t)‖L2(Rn) = 0, n = 2, 3. (2.4)

Proof. This next argument is adapted from [4]. Define, for simplicity, z(·, t) :=
(u,w, b)(·, t) and Dmz = (Dmu,Dmw,Dmw), for each m ≥ 0 integer. In
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order to show (2.4), we use (1.1) and (2.1) to get, after a few computations,

‖Dz(·, t)‖2
L2(R3) + 2min{μ, γ, ν}

t∫

t0

‖D2z(·, τ)‖2
L2(R3)dτ

+ 2

t∫

t0

‖D∇ · w(·, τ)‖2
L2(R3)dτ + 2χ

t∫

t0

‖Dw(·, τ)‖2
L2(R3)dτ

≤ ‖Dz(·, t0)‖2
L2(R3)

+C

t∫

t0

‖z(·, τ)‖1/2
L2(R3)‖Dz(·, τ)‖1/2

L2(R3)‖D2z(·, τ)‖2
L2(R3)dτ, (2.5)

where we have used a Sobolev–Nirenberg–Gagliardo (SNG) inequality (see
(2.7)). By (2.2), we can choose t0 ≥ t∗ large enough such that

C2‖(u0,w0, b0)‖L2(R3)‖(Du,Dw,Db)(·, t0)‖L2(R3) < (min{μ, γ, ν})2,

so that (2.5) gives ‖(Du,Dw,Db)(·, t)‖L2(R3) ≤ ‖(Du,Dw,Db)(·, t0)‖L2(R3)

for all t near t0 by continuity. Actually, with this choice, it follows from [(2.5)
again] that

C2‖(u0,w0, b0)‖L2(R3)‖(Du,Dw,Db)(·, s)‖L2(R3) < (min{μ, γ, ν})2, ∀s ≥ t0.

Recalling (2.5), this implies that

‖(Du,Dw,Db)(·, t)‖L2(R3) ≤ ‖(Du,Dw,Db)(·, t0)‖L2(R3),

for all t ≥ t0. For n = 2, using the same argument, one has

‖(Du,Dw,Db)(·, t)‖L2(Rn) ≤ ‖(Du,Dw,Db)(·, t0)‖L2(Rn), t > t0, (2.6)

for n = 2, 3.
Because a monotonic function f ∈ C0((a,∞)) ∩ L1((a,∞)) has to satisfy

f(t) = o(1/t) as t → ∞ (see, e.g., [4, p. 236]), we have

lim
t→∞ t‖(Du,Dw,Db)(·, t)‖2

L2(Rn) = 0, n = 2, 3.

�
In R

n, for n = 2, 3, we observe that pointwise values of functions can be
estimated in terms of H2 norms.

Lemma 2.2.

‖ (u,w, b) ‖L∞(R3)‖ (Du,Dw,Db) ‖L2(R3)

≤ C‖ (u,w, b) ‖1/2

L2(R3)
‖ (Du,Dw,Db) ‖1/2

L2(R3)
‖ (D2u,D2w,D2b) ‖L2(R3).

(2.7)

For R
2 one has,

Lemma 2.3.

‖ (u,w, b) ‖L∞(R2)‖ (Du,Dw,Db) ‖L2(R2)

≤ C‖ (u,w, b) ‖L2(R2)‖ (D2u,D2w,D2b) ‖L2(R2),
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Finally, a well known heat kernel estimate is used,

Lemma 2.4. Let u ∈ Lr(Rn) and eνΔτ the heat kernel, then

‖Dα [ eνΔτu ] ‖L2(Rn) ≤ K(n, m) ‖ u ‖Lr(Rn)(ν τ )−
n
2 ( 1

r − 1
2 )− |α|

2 (2.8)

for all τ > 0 and α (multi-index), 1 ≤ r ≤ 2, n ≥ 1, and m = | α |. (For a
proof of (2.8), see, e.g., [5,6])

3. Proof of the main theorem. We start with n = 3. First, we will prove the
result for the field w(·, t). By (2.1), given ε > 0, there exists t0 > 0 such that

‖(Du,Dw,Db)(·, t)‖L2(R3) < εt−
1
2 , ∀t > t0. (3.1)

We begin with the inviscid vortex case, i.e., χ = 0. By Duhamel’s principle,
we get

‖w (·, t)‖L2(R3) ≤ ‖eγΔ(t−t0)w (·, t0)‖L2(R3)︸ ︷︷ ︸
I

+

t∫

t0

‖eγΔ(t−s)(u · ∇w )(·, s)‖L2(R3)ds

︸ ︷︷ ︸
II

+

t∫

t0

‖eγΔ(t−s)∇(∇ · w )(·, s)‖L2(R3)ds

︸ ︷︷ ︸
III

.

(3.2)
I is the solution of heat equation with initial condition w(·, t0) ∈ L2(R3),

and so,

lim
t→∞ ‖eγΔ(t−t0)w(·, t0)‖L2(R3) = 0. (3.3)

To estimate the other terms, we use Lemma 2.4.

II =

t∫

t0

‖eγΔ(t−s)u · ∇w‖L2(R3)ds ≤ Kγ−3/4

t∫

t0

(t − s)−3/4‖u · ∇w‖L1(R3)ds

≤ Kγ−3/4

t∫

t0

(t − s)−3/4‖u‖L2(R3)‖Dw‖L2(R3)ds

≤ Kεγ−3/4‖(u,w, b)(·, t0)‖L2(R3)

t∫

t0

(t − s)−3/4s−1/2ds

≤
t∫

t0

(t − s)−3/4s−1/2ds ≤ Ct−1/4.

Therefore,

lim
t→∞

t∫

t0

‖eγΔ(t−s)(u · ∇w)(·, s)‖L2(R3)ds = 0. (3.4)
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Similarly,

lim
t→∞

t∫

t0

‖eγΔ(t−s)∇(∇ · w)(·, s)‖L2(R3)ds = 0. (3.5)

That is, if χ = 0, then

lim
t→∞ ‖w(·, t)‖L2(R3) = 0. (3.6)

Now, suppose that χ > 0. Defining z = e2χtw and applying Duhamel’s
principle, we obtain that

w(·, t) = e−2χ(t−t0)eγΔ(t−t0)w(·, t0) −
t∫

t0

e−2χ(t−s)eγΔ(t−s)(u · ∇w)(·, s)ds

+

t∫

t0

e−2χ(t−s)eγΔ(t−s)∇(∇ · w)(·, s)ds

+ χ

t∫

t0

e−2χ(t−s)eγΔ(t−s)(∇ × u)(·, s)ds.

Hence,

t
1
2 ‖w(·, t)‖L2(R3) ≤ t

1
2 e−2χ(t−t0)‖eγΔ(t−t0)w(·, t0)‖L2(R3)︸ ︷︷ ︸

I

+ t
1
2

t∫

t0

e−2χ(t−s)‖eγΔ(t−s)u · ∇w‖L2(R3)ds

︸ ︷︷ ︸
II

+ t
1
2

t∫

t0

e−2χ(t−s)‖eγΔ(t−s)∇(∇ · w)‖L2(R3)ds

︸ ︷︷ ︸
III

+ χt
1
2

t∫

t0

e−2χ(t−s)‖eγΔ(t−s)∇ × u‖L2(R3)ds

︸ ︷︷ ︸
IV

.

By (3.3), we have that

lim
t→∞ t

1
2 e−2χ(t−t0)‖eγΔ(t−t0)w(·, t0)‖L2(R3) = 0.
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To estimate the other terms, we use again Lemma 2.4.

II = t1/2

t∫

t0

e−2χ(t−s)‖eγΔ(t−s)u · ∇w‖L2(R3)ds

≤ Kγ−3/4t1/2

t∫

t0

e−2χ(t−s)(t − s)−3/4‖u · ∇w‖L1(R3)ds

≤ Kγ−3/4t1/2

t∫

t0

e−2χ(t−s)(t − s)−3/4‖u‖L2(R3)‖Dw‖L2(R3)ds

≤ Kγ−3/4‖(u,w, b)(·, t0)‖L2(R3)t
1/2

t∫

t0

e−2χ(t−s)(t − s)−3/4‖Dw‖L2(R3)ds

≤ Kεγ−3/4‖(u,w, b)(·, t0)‖L2(R3)t
1/2

t∫

t0

e−2χ(t−s)(t − s)−3/4s−1/2ds

≤ Kεγ−3/4‖(u,w, b)(·, t0)‖L2(R3)

(
e−χtt1/4 + (2χ)−1/4Γ

(
1
4

))
,

where Γ is the so-called gamma function. Therefore

lim
t→∞ t1/2

t∫

t0

e−2χ(t−s)‖eγΔ(t−s)u · ∇w‖L2(R3)ds = 0.

Similarly,

lim
t→∞ t

1
2

t∫

t0

e−2χ(t−s)‖eγΔ(t−s)∇(∇ · w)‖L2(R3)ds = 0.

And, using again the same idea

lim
t→∞ χt1/2

t∫

t0

e−2χ(t−s)‖eγΔ(t−s)(∇ × u)(·, s)‖L2(R3)ds = 0. (3.7)

That is, if χ > 0, then

lim
t→∞ t1/2‖w(·, t)‖L2(R3) = 0. (3.8)

Now, we show that ‖u(·, t)‖L2(R3) → 0 whether χ = 0 or χ > 0. Rewrite the
equation (1.1a) as

ut = (μ + χ)Δu + F(·, τ),

where F(·, τ) = χ∇ × w − u · ∇u − ∇p + b · ∇b. We can write F(·, τ) as

F(·, τ) = Ph[χ∇ × w − u · ∇u + b · ∇b],
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where Ph denotes the Helmholtz–Leray projector [6,8,9]. By Duhamel’s prin-
ciple (again)

u(·, t) = e(μ+χ)Δ(t−t0)u(·, t0) +

t∫

t0

e(μ+χ)Δ(t−s)F(·, τ)(·, s)ds.

Since the heat kernel commutes with the Helmholtz projector, we get the
following inequality,

‖u(·, t)‖L2(R3) ≤ ‖e(μ+χ)Δ(t−t0)u(·, t0)‖L2(R3)︸ ︷︷ ︸
I

+

t∫

t0

‖e(μ+χ)Δ(t−s)(u · ∇u)(·, s)‖L2(R3)ds

︸ ︷︷ ︸
II

+ χ

t∫

t0

‖e(μ+χ)Δ(t−s)(∇ × w)(·, s)‖L2(R3)ds

︸ ︷︷ ︸
III

.

+

t∫

t0

‖e(μ+χ)Δ(t−s)(b · ∇b)(·, s)‖L2(R3)ds

︸ ︷︷ ︸
IV

.

As in (3.3), I is the solution of the heat equation with initial condition u(·, t0).
Hence,

lim
t→∞ ‖eγΔ(t−t0)u(·, t0)‖L2(R3) = 0.

To estimate the other terms, we use again Lemma 2.4.

t∫

t0

‖e(μ+χ)Δ(t−s)u · ∇u‖L2(R3)ds ≤ K(μ + χ)− 3
4

t∫

t0

(t − s)− 3
4 ‖u · ∇u‖L1(R3)ds

≤ K(μ + χ)− 3
4

t∫

t0

(t − s)− 3
4 ‖u(·, s)‖L2(R3)‖Du(·, s)‖L2(R3)ds

≤ K(μ + χ)− 3
4 ‖(u,w, b)(·, t0)‖L2(R3)

t∫

t0

(t − s)− 3
4 ‖Du(·, s)‖L2(R3)ds

< Kε

t∫

t0

(t − s)− 3
4 s− 1

2 ds ≤ Kεt−
1
4 . (3.9)
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Therefore

lim
t→∞

t∫

t0

‖e(μ+χ)Δ(t−s)(u · ∇u)(·, s)‖L2(R3)ds = 0.

We only need to worry about III when χ > 0, but in this case we may assume
that t0 is large enough [see (3.8)] such that

‖w(·, t)‖L2(R3) < εt−
1
2 , ∀t > t0

and so, we have

χ

t∫

t0

‖e(μ+χ)Δ(t−s)∇ × w‖L2(R3)ds

≤ Kχ(μ + χ)−1/2

t∫

t0

(t − s)−1/2‖w‖L2(R3)ds

≤ Kχε(μ + χ)−1/2

t∫

t0

(t − s)−1/2s−1/2ds ≤ Kχε(μ + χ)−1/2.

Therefore

lim
t→∞ χ

t∫

t0

‖e(μ+χ)Δ(t−s)(∇ × w)(·, s)‖L2(R3)ds = 0 (3.10)

and the last term (IV) can be estimated following (3.9). That is,

lim
t→∞ ‖u(·, t)‖L2(R3) = 0. (3.11)

Similarly, in order to show that ‖b(·, t)‖L2(R3) → 0 as t → ∞, we can apply
the same previous idea to prove (3.11). More specifically,

‖b(·, t)‖L2(R3) ≤ ‖e(μ+χ)Δ(t−t0)b(·, t0)‖L2(R3)︸ ︷︷ ︸
I

+

t∫

t0

‖e(ν)Δ(t−s)(b · ∇u)(·, s)‖L2(R3)ds

︸ ︷︷ ︸
II

+

t∫

t0

‖e(ν)Δ(t−s)(u · ∇b)(·, s)‖L2(R3)ds

︸ ︷︷ ︸
III

and, as before, (I), (II), and (III) above can be estimated without problems
[see (3.9)]. That is,

lim
t→0

‖b(·, t)‖L2(R3) = 0. (3.12)
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For n = 2, we can apply the previous argument for the system (1.2) and use
the Lemma (2.3) to show (3.6), (3.8), (3.11), and (3.12) in the two-dimensional
case. Hence the proof of the main theorem is complete.

Acknowledgements. We would like to express our gratitude to Prof. P. Zingano
for his interest in this work and various helpful suggestions. We also thank the
Brazilian agencies CAPES and CNPq for their financial support to this work
(Under CNPq Grant 140445/2017-9 and CAPES Grants 1510610, 1442127.)

References

[1] B. Dong, J. Li, and J. Wu, Global well-posedness and large-time decay for

the 2D micropolar equations, J. Differ. Equ. 262 (2017), 3488–3523.

[2] B. Dong and Z. Chen, Asymptotic profiles of solutions to the 2D viscous

incompressible micropolar fluid flows, Discrete Contin. Dyn. Syst. 23 (2009),

765–784.

[3] A. C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966), 1–18.

[4] H.-O. Kreiss, T. Hagstrom, J. Lorenz, and P. R. Zingano, Decay in time

of incompressible flows, J. Math. Fluid Mech. 5 (2003), 231–244.

[5] H.-O. Kreiss and J. Lorenz, Initial–boundary value problems and the Navier–

Stokes equations, Academic Press, New York, 1989. (Reprinted in the series

SIAM Classics in Applied Mathematics, Vol. 47, 2004).

[6] J. Lorenz and P.R. Zingano, Properties at potential blow-up times for the

incompressible Navier-Stokes equations, Bol. Soc. Parana. Mat. 35 (2017), 127–

158.

[7] G. Lukaszewicz, Long time behavior of 2D Micropolar fluid flows, Math. Com-

put. Model. 34 (2001), 487–509.

[8] G. Lukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and

Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc.,
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