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Eigenvalue bounds of the Robin Laplacian with magnetic field

Georges Habib and Ayman Kachmar

Abstract. On a compact Riemannian manifold M with boundary, we give
an estimate for the eigenvalues (λk(τ, α))k of the magnetic Laplacian
with Robin boundary conditions. Here, τ is a positive number that de-
fines the Robin condition and α is a real differential 1-form on M that
represents the magnetic field. We express these estimates in terms of the
mean curvature of the boundary, the parameter τ , and a lower bound of
the Ricci curvature of M (see Theorem 1.3 and Corollary 1.5). The main
technique is to use the Bochner formula established in Egidi et al. (Ricci
curvature and eigenvalue estimates for the magentic Laplacian on mani-
folds, arXiv:1608.01955v1) for the magnetic Laplacian and to integrate it
over M (see Theorem 1.2). In the last part, we compare the eigenvalues
λk(τ, α) with the first eigenvalue λ1(τ) = λ1(τ, 0) (i.e. without magnetic
field) and the Neumann eigenvalues λk(0, α) (see Theorem 1.6) using the
min-max principle.
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1. Introduction and results. Let (M, g) be a Riemannian manifold of di-
mension n and let α be a smooth real differential 1-form on M. Given two
vector fields X,Y in the complexified tangent bundle TM ⊗ C, the magnetic
covariant derivative is defined as ∇α

Y X = ∇M
Y X + iα(Y )X, where ∇M de-

notes the Levi-Civita connection on M. It is shown in [2, Lemma 3.2] that
∇α satisfies the Leibniz rule and the compatibility property with respect to
the Riemannian metric g, and is also used to define the magnetic Hessian by
Hessαf(X,Y ) = 〈∇α

Xdαf, Y 〉. Here and in the rest of the paper, the product
〈·, ·〉 will denote the Hermitian inner product extended from the metric g to
the tangent bundle TM ⊗ C or to the cotangent bundle T ∗M ⊗ C. We will
also use the natural one-to-one isomorphism between T ∗M ⊗ C and TM ⊗ C

by w(X) = 〈X,w#〉 for any X ∈ TM ⊗ C and w ∈ T ∗M ⊗ C.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-018-1154-4&domain=pdf
http://arxiv.org/abs/1608.01955v1
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Given any complex-valued function f on M, the magnetic Laplacian is
defined as the trace of the magnetic Hessian

Δαf := −trace(Hessαf) = −divα(dαf)#,

where dαf := dMf + ifα and divα is the magnetic divergence given for any
vector field X ∈ TM ⊗ C by divαX := divMX + i〈X,α#〉.

The study of the spectrum of the magnetic Laplacian has interested many
researchers [1,3,4,6–8] during the last years. For example, the authors in [2]
gave an estimate à la Lichnerowicz for the first eigenvalue in terms of a lower
bound of the Ricci curvature (assumed to be positive) and the infinity norm
of the magnetic field dMα. In particular, they deduce a spectral gap between
the first eigenvalue (which is not necessarily zero) and the second one. The
main technique used in the paper is a Bochner type formula for the magnetic
Laplacian Δα, which they integrate over the manifold M and they control all
the integral terms involving dMα. Indeed, they prove

Theorem 1.1. [2, Thm. 4.1] Let (M, g) be a complete Riemannian manifold of
dimension n. Then for all f ∈ C∞(M,C), we have

− 1
2
ΔM (|dαf |2) = |Hessαf |2 − �〈dαf, dα(Δαf)〉 + RicM (dαf, dαf)

+ i(dMα(dαf, dαf) − dMα(dαf, dαf))

+
i

2
(〈f̄dαf, δMdMα〉 − 〈fdαf, δMdMα〉), (1.1)

where δM denotes the formal adjoint of dM on (M, g).

In this paper, we are interested in estimating the eigenvalues of the mag-
netic Laplacian with Robin boundary conditions. That is, we assume on a given
compact manifold M with boundary N that there exists a complex-valued
function f on M satisfying the equation Δαf = λf on M and the boundary
condition (dαf)(ν) = τf for some positive real number τ. Here ν denotes the
inward unit normal vector field of N, which will be identified with its dual
one form. It a standard fact that the spectrum of such boundary problem is
purely discrete and consists of a sequence of eigenvalues (λk(τ, α))k arranged
in increasing order counting multiplicities. In order to get the estimates for
the eigenvalues, we shall first integrate the Bochner formula in Theorem 1.1
as in [2] by taking into account the boundary terms. First, we get

Theorem 1.2. Let (Mn, g) be a compact Riemannian manifold with boundary
N , and let α be a differential real 1-form on M. Then, we have∫

M

|Hessαf +
1
n

(Δαf)g|2dvg

=
n − 1

n

∫

M

|Δαf |2dvg −
∫

M

RicM (dαf, dαf)dvg

+
∫

M

�m
(
(dMα)(dαf, dαf)

)
dvg +

∫

M

|f |2|dMα|2dvg
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−(n − 1)
∫

N

H|〈dαf, ν〉|2dvg − 2
∫

N

�(〈ν, dαf〉Δα
Nf)dvg

−
∫

N

〈II(dα
Nf), dα

Nf〉dvg. (1.2)

for all complex valued function f ∈ C∞(M,C).

Here II denotes the second fundamental form of the boundary and H is
the mean curvature. Also Δα

N is a Laplacian defined on functions on N which
is associated to some exterior derivative dα

N (see Section 2 for the definition).
The formula (1.2) can be useful for different applications in spectral theory.

One of these applications is to use Theorem 1.2 for a particular solution of the
magnetic Robin boundary problem. Therefore, we get the universal bound on
the eigenvalues of the magnetic Robin Laplacian under some assumptions on
the magnetic field dMα, the Ricci curvature RicM and the second fundamental
form II. Indeed,

Theorem 1.3. Let (Mn, g) be a compact Riemannian manifold with boundary
∂M = N , and let α be a differential 1-form on M and τ > 0. Assume that
RicM ≥ k (k > 0) and that II + τ ≥ 0. If α satisfies

k − (n − 1)τHmin ≤ ||dMα||∞ ≤
(

1 + 2

√
n − 1

n

)−1

k, (1.3)

then any eigenvalue λ(τ, α) of the Laplacian Δα satisfies

λ(τ, α) ≤ a−(k, ||dMα||∞, n) or λ(τ, α) ≥ a+(k, ||dMα||∞, n),

where

a±(k, ||dMα||∞, n)=n
(k−||dMα||∞) ±

√
(k−||dMα||∞)2 − 4(n−1

n )||dMα||2∞
2(n − 1)

,

and Hmin := minM H.

Remark 1.4. • The assumption in (1.3) on the mean curvature is valid

when Hmin > 0, since
(
1 + 2

√
n−1

n

)−1

k < k. Also, when τ is very large,

(1.3) becomes an upper bound on ||dMα||∞, which is a growth condition
on the magnetic field with respect to the Ricci curvature.

• It follows from Inequality (1.3) that (k−||dMα||∞)2−4(n−1
n )||dMα||2∞ > 0

and a−(k, ‖dMα‖∞, n) > 0. This is more transparent in the proof of
Theorem 1.3.

As a direct consequence of Theorem 1.3 and a standard continuity argument
as in [2], one gets

Corollary 1.5. Let (Mn, g) be a compact Riemannian manifold with boundary
∂M = N , and let α be a differential 1-form on M and τ > 0. Assume that
RicM ≥ k (k > 0) and that II + τ ≥ 0. If k ≤ (n − 1)τHmin and α satisfies
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||dMα||∞ ≤
(

1 + 2

√
n − 1

n

)−1

k,

then any eigenvalue λ(τ, α) of the Laplacian Δα satisfies

λ(τ, α) ≥ a+(k, ||dMα||∞, n),

where

a+(k, ||dMα||∞, n)=n
(k−||dMα||∞)+

√
(k − ||dMα||∞)2 − 4(n−1

n )||dMα||2∞
2(n − 1)

.

Proof of Corollary 1.5. It is enough to prove the lower bound on the first eigen-
value λ1(τ, α). We apply Theorem 1.3 to the 1-form α′ = εα, for ε ∈]0, 1[. The
inequality (1.3) is clearly satisfied for α′. Hence λ1(τ, εα) is either less than
a−(k, ε||dMα||∞, n) or bigger than a+(k, ε||dMα||∞, n). Note that λ1(τ, εα)
and a−(k, ε||dMα||∞, n) depend continuously on ε. Since λ1(τ, 0) > 0 and
a−(k, ε||dMα||∞, n)−→

ε→0
0, we get that the inequality λ1(τ, εα) ≥ a+(k, ε||dM

α||∞, n) is true in a neighborhood of ε = 0. Define ε∗ = sup{ε ∈ (0, 1) | λ1(τ, ε
α) ≥ a+(k, ε||dMα||∞, n)}. If ε∗ < 1, then we get λ1(τ, ε∗α) ≥ a+(k, ε∗||dM

α||∞, n) and limδ→0+ λ1(τ, (ε∗ + δ)α) ≤ a−(k, ε∗||dMα||∞, n), which violates
the continuity of λ1(τ, εα) with respect to ε. Therefore, ε∗ = 1. �

As a direct application of Corollary 1.5, we find the lower bound for the
eigenvalues of the Dirichlet Laplacian proved by Reilly in [5]. Indeed, on a
manifold M with boundary N such that RicM ≥ k with nonnegative mean
curvature H, consider any closed 1-form α on M. Take a number τ big enough
so that τ ≥ k

(n−1)Hmin
and II + τ ≥ 0. Then one deduces that λ(τ, α) ≥ n

n−1k.

As the spectrum of the Robin Laplacian tends to the Dirichlet one when τ →
∞, the result then follows.

In the last part of this paper, we present two-sided estimates of all the
eigenvalues λk(τ, α) in terms of λ1(τ) = λ1(τ, 0) and the Neumann eigenvalues
λN

k (α) := λk(0, α), using a variational argument (see Theorem 1.6 below).
These estimates yield a quantitative measurement of the diamagnetism (i.e.
the quantity λ(τ, α)−λ1(α)). To state this theorem, we define for a normalized
eigenfunction of the Robin Laplacian (without magnetic field) fτ : M → R

the following constant

C(τ) =
min
x∈M

f2
τ (x)

max
x∈M

f2
τ (x)

> 0 . (1.4)

Note that C(0) = 1, lim
τ→+∞ C(τ) = 0, and the function fτ can be selected in a

unique manner so that fτ > 0. We have

Theorem 1.6. For all τ > 0 and k ≥ 1,

λ1(τ) + C(τ)λN
k (α) ≤ λk(τ, α) ≤ λ1(τ) +

1
C(τ)

λN
k (α) .
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Remark 1.7.

1. Using the existing estimates on the Neumann eigenvalues λN
k (α) (see, e.g.,

[1]), we deduce immediately estimates on the Robin eigenvalues λk(τ, α).
2. (Zero magnetic field) Assume that α is closed and not exact. Combin-

ing the result in [6] and the estimates in Theorem 1.6, we deduce that
λ1(τ, α) = λ1(τ) if and only if the flux of α satsifies

Φα
c :=

∮

c

α ∈ Z

for every closed curve c ⊂ M .

The rest of the paper is organized as follows. Section 2 is devoted to the
lengthy proof of Theorem 1.2. In Section 3, we prove Theorem 1.3. Finally, we
present the proof of Theorem 1.6 in Section 4.

2. Proof of Theorem 1.2. In this section, we will prove Theorem 1.2. We will
integrate all the terms in the Bochner formula. First, with the help of the
Stokes formula the integral of the l.h.s. of Eq. (1.1) is equal to

−1
2

∫

M

ΔM (|dαf |2)dvg = −1
2

∫

N

g(dM (|dαf |2), ν))dvg

= −
∫

N

�〈∇M
ν dαf, dαf〉dvg.

Now, we will compute the term �〈∇M
ν dαf, dαf〉 pointwise by decomposing the

vectors into the tangential and normal parts over a local orthonormal frame
{ei}i=1,··· ,n−1 of TxN at some point x ∈ N. Indeed, using the definition of the
operator dα, we write

〈∇M
ν dαf, dαf〉 =

n−1∑
i=1

(∇M
ν dαf)(ei)〈ei, d

αf〉 + (∇M
ν dαf)(ν)〈ν, dαf〉

=
n−1∑
i=1

(∇M
ν dMf)(ei)〈ei, d

αf〉 + iν(f)
n−1∑
i=1

α(ei)〈ei, d
αf〉

+ if

n−1∑
i=1

(∇M
ν α)(ei)〈ei, d

αf〉 + (∇M
ν dαf)(ν)〈ν, dαf〉

=
n−1∑
i=1

(∇M
ei

dMf)(ν)〈ei, d
αf〉 + iν(f)

n−1∑
i=1

α(ei)〈ei, d
αf〉

+ if

n−1∑
i=1

(dMα)(ν, ei)〈ei, d
αf〉 + if

n−1∑
i=1

(∇M
ei

α)(ν)〈ei, d
αf〉

+ (∇M
ν dαf)(ν)〈ν, dαf〉.
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In the last equality, we just use the fact that the Hessian of the function f is
a symmetric 2-tensor. We then proceed

〈∇M
ν dαf, dαf〉 =

n−1∑
i=1

ei(ν(f))〈ei, d
αf〉 −

n−1∑
i=1

(dMf)(∇M
ei

ν)〈ei, d
αf〉

+ iν(f)
n−1∑
i=1

α(ei)〈ei, d
αf〉

+ if

n−1∑
i=1

(dMα)(ν, ei)〈ei, d
αf〉 + if

n−1∑
i=1

ei(α(ν))〈ei, d
αf〉

− if

n−1∑
i=1

α(∇M
ei

ν)〈ei, d
αf〉 + (∇M

ν dαf)(ν)〈ν, dαf〉

= 〈dN (ν(f)), dαf〉 +
n−1∑
i=1

(dMf)(II(ei))〈ei, d
αf〉

+ iν(f)
n−1∑
i=1

α(ei)〈ei, d
αf〉

+ if

n−1∑
i=1

(dMα)(ν, ei)〈ei, d
αf〉 + if〈dN (α(ν)), dαf〉

+ if

n−1∑
i=1

α(II(ei))〈ei, d
αf〉 + (∇M

ν dαf)(ν)〈ν, dαf〉.

As α is a 1-form on M, we can write it at any point of the boundary as
α = αT + α(ν)ν. We then define the operator dα

N by dα
Nh := dNh + ihαT

for any complex-valued function h ∈ C∞(N,C). Hence, the above equality
becomes

〈∇M
ν dαf, dαf〉 =〈dα

N (ν(f)), dαf〉 + 〈II(dα
Nf), dαf〉 + if〈ν�dMα, dαf〉

+ if〈dN (α(ν)), dαf〉 + (∇M
ν dαf)(ν)〈ν, dαf〉.

Therefore after integrating, we deduce that

−1
2

∫

M

ΔM (|dαf |2)dvg

= −
∫

N

�(〈dα
N (ν(f)), dαf〉 + 〈II(dα

Nf), dαf〉 + if〈ν�dMα, dαf〉

+if〈dN (α(ν)), dαf〉 + (∇M
ν dαf)(ν)〈ν, dαf〉)dvg. (2.1)

In the second step, we want to integrate the term �〈dαf, dα(Δαf)〉 in the r.h.s.
of Theorem 1.1. First, recall the Stokes formula on complex functions: for all
h ∈ C∞(M,C) and smooth complex valued 1-form β, one has
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∫

M

〈dMh, β〉dvg =
∫

M

hδMβdvg −
∫

N

h〈ν, β〉dvg.

Therefore according to this formula, one can easily get that∫

M

〈dαh, β〉dvg =
∫

M

hδαβdvg −
∫

N

h〈ν, β〉dvg,

where the adjoint δα of dα is given by δα = δM − i〈·, α〉 [2, Def. 2.1]. Here
we mention that δαX = −trace(∇αX), where ∇α is the magnetic covariant
derivative defined previously. Hence, by taking h = Δαf and β = dαf, we
deduce ∫

M

〈dα(Δαf), dαf〉dvg =
∫

M

|Δαf |2dvg −
∫

N

(Δαf)〈ν, dαf〉dvg. (2.2)

Now we want to evaluate the term Δαf in the second integral of the r.h.s.
of the equality above. Using the compatibility equations in [2, Lem. 3.2] and
taking an orthonormal frame {ei}i=1,··· ,n−1 of TN with ∇N

ei
ei = 0 at some

point, we compute

Δαf = −
n−1∑
i=1

〈∇α
ei

(dαf), ei〉 − 〈∇α
ν (dαf), ν〉

= −
n−1∑
i=1

ei(〈dαf, ei〉) +
n−1∑
i=1

〈dαf,∇α
ei

ei〉 − 〈∇α
ν (dαf), ν〉

= −
n−1∑
i=1

ei(〈dαf, ei〉) +
n−1∑
i=1

〈dαf,∇M
ei

ei + iα(ei)ei〉 − 〈∇α
ν (dαf), ν〉

= −
n−1∑
i=1

ei(〈dαf, ei〉) +
n−1∑
i=1

〈dαf, II(ei, ei)ν + iα(ei)ei〉 − 〈∇α
ν (dαf), ν〉

= −
n−1∑
i=1

ei(〈dα
Nf, ei〉) + (n − 1)H〈dαf, ν〉 +

n−1∑
i=1

〈dα
Nf, iα(ei)ei〉

− 〈∇α
ν (dαf), ν〉

= Δα
Nf + (n − 1)H〈dαf, ν〉 − 〈∇α

ν (dαf), ν〉,
where Δα

N := δα
Ndα

N , with δα
N = δN − i(·, αT ). We notice that δα

N is the L2-
adjoint of dα

N on N. Plugging the expression of Δαf above into Eq. (2.2), we
find∫

M

〈dα(Δαf), dαf〉dvg =

∫

M

|Δαf |2dvg −
∫

N

(Δα
Nf)〈ν, dαf〉dvg

− (n − 1)

∫

N

H|〈dαf, ν〉|2dvg +

∫

N

〈∇α
ν (dαf), ν〉〈ν, dαf〉dvg.

=

∫

M

|Δαf |2dvg −
∫

N

(Δα
Nf)〈ν, dαf〉dvg
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−(n − 1)

∫

N

H|〈dαf, ν〉|2dvg

+

∫

N

〈∇M
ν (dαf), ν〉〈ν, dαf〉dvg +

∫

N

iα(ν)|〈ν, dαf〉|2dvg.

(2.3)

The last step is to compute the term i
2

∫

M

〈f̄dαf, δMdMα〉dvg and its conjugate

in Theorem 1.1. For this, we proceed as in [2, p.17] to get

i

2

∫

M

〈f̄dαf, δMdMα〉dvg =
i

2

∫

M

〈dM (f̄dαf), dMα〉dvg +
i

2

∫

N

〈f̄dαf, ν�dMα〉dvg

=
i

2

∫

M

(dMα)(dαf, dαf)dvg − 1
2

∫

M

|f |2|dMα|2dvg

+
i

2

∫

N

〈f̄dαf, ν�dMα〉dvg. (2.4)

Now, we have all the ingredients to integrate Eq. (1.1) over M. In fact, using
Eqs. (2.1), (2.3), and (2.4), we find that

−
∫

N

�(〈dα
N (ν(f)), dαf〉 + 〈II(dα

Nf), dαf〉 + if〈ν�dMα, dαf〉

+ if〈dN (α(ν)), dαf〉
+(∇M

ν dαf)(ν)〈ν, dαf〉)dvg =
∫

M

|Hessαf |2dvg −
∫

M

|Δαf |2dvg

+
∫

N

�((Δα
Nf)〈ν, dαf〉)dvg

+(n − 1)
∫

N

H|〈dαf, ν〉|2dvg −
∫

N

�(〈∇M
ν (dαf), ν〉〈ν, dαf〉)dvg

+
∫

M

RicM (dαf, dαf)dvg

+
i

2

∫

M

⎛
⎜⎝(dMα)(dαf, dαf) − (dMα)(dαf, dαf)︸ ︷︷ ︸

2i�m((dM α)(dαf,dαf))

⎞
⎟⎠ dvg −

∫

M

|f |2|dMα|2dvg

+
i

2

∫

N

⎛
⎜⎝〈f̄dαf, ν�dMα〉 − 〈fdαf, ν�dMα︸ ︷︷ ︸

=−2i�mf〈ν�dM α,dαf〉

〉

⎞
⎟⎠ dvg.
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By writing dαf = dα
Nf + (ν(f) + ifα(ν))ν at any point of the boundary, the

first integral in the l.h.s. reduces to∫

N

�〈dα
N (ν(f)), dαf〉dvg =

∫

N

�〈dα
N (ν(f)), dα

Nf〉dvg

=
∫

N

�(ν(f)δα
Ndα

Nf)dvg =
∫

N

�(ν(f)Δα
Nf)dvg

=
∫

N

�(〈dαf − iαf, ν〉Δα
Nf)dvg

=
∫

N

�(〈ν, dαf〉Δα
Nf)dvg −

∫

N

�(iα(ν)f Δα
Nf)dvg.

Using the fact that δα
N is the L2-adjoint of dα

N and that dα
N (f1f2) = f2d

Nf1 +
f1d

α
Nf2 for any complex valued functions f1 and f2 on N, the above equality

becomes
∫

N

�〈dα
N (ν(f)), dαf〉dvg =

∫

N

�(〈ν, dαf〉Δα
Nf)dvg −

∫

N

�〈dα
Nf, dα

N (iα(ν)f)〉dvg

=

∫

N

�(〈ν, dαf〉Δα
Nf)dvg +

∫

N

�(i〈dα
Nf, fdN (α(ν))

+ α(ν)dα
Nf〉)dvg

=

∫

N

�(〈ν, dαf〉Δα
Nf)dvg +

∫

N

�(if̄〈dα
Nf, dN (α(ν))〉)dvg

+

∫

N

α(ν) �(i〈dα
Nf, dα

Nf〉)︸ ︷︷ ︸
=0

dvg

=

∫

N

�(〈ν, dαf〉Δα
Nf)dvg −

∫

N

�(if〈dN (α(ν)), dαf〉)dvg.

Therefore, we deduce

−2
∫

N

�(〈ν, dαf〉Δα
Nf)dvg −

∫

N

〈II(dα
Nf), dα

Nf〉dvg

=
∫

M

|Hessαf |2dvg −
∫

M

|Δαf |2dvg + (n − 1)
∫

N

H|〈dαf, ν〉|2dvg

+
∫

M

RicM (dαf, dαf)dvg

−
∫

M

�m
(
(dMα)(dαf, dαf)

)
dvg −

∫

M

|f |2|dMα|2dvg.

The proof of the proposition then follows. �
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3. Proof of Theorem 1.3. In the following, we will give a proof of Theorem 1.3.
For this, we consider an eigenfunction f of the Robin Laplacian associated to
the eigenvalue λ(τ, α), that is, Δαf = λ(τ, α)f with ν(f) + ifα(ν) = τf for
some positive τ. We then apply Equality (1.2) to the eigenfunction f . First,
we have∫

N

�(〈ν, dαf〉Δα
Nf)dvg = τ

∫

N

�(f̄Δα
Nf)dvg = τ

∫

N

�(fΔα
Nf)dvg

= τ

∫

N

|dα
Nf |2dvg.

Also, the following inequality∫

M

�m
(
(dMα)(dαf, dαf)

)
dvg ≤ ||dMα||∞

∫

M

|dαf |2dvg,

holds. Therefore, as the r.h.s. of Equality (1.2) is nonnegative, we get after
using the conditions RicM ≥ k and II + τ ≥ 0 that

0 ≤ n − 1
n

λ(τ, α)2
∫

M

|f |2dvg − (k − ||dMα||∞)
∫

M

|dαf |2dvg

+||dMα||2∞
∫

M

|f |2dvg − (n − 1)τ2

∫

N

H|f |2dvg − τ

∫

N

|dα
Nf |2dvg.

Since f is an eigenfunction of the Laplacian, one has∫

M

|dαf |2dvg = λ(τ, α)
∫

M

|f |2dvg − τ

∫

N

|f |2dvg.

Hence, the above inequality reduces to

0 ≤ n − 1
n

λ(τ, α)2
∫

M

|f |2dvg − (k − ||dMα||∞)λ(τ, α)
∫

M

|f |2dvg

+ (k − ||dMα||∞)τ
∫

N

|f |2dvg

+ ||dMα||2∞
∫

M

|f |2dvg − (n − 1)τ2Hmin

∫

N

|f |2dvg − τ

∫

N

|dα
Nf |2dvg.

By grouping the terms and using the fact that the last term is nonpositive, we
find at the end

0 ≤
(

n − 1
n

λ(τ, α)2 − (k − ||dMα||∞)λ(τ, α) + ||dMα||2∞
)∫

M

|f |2dvg

+ τ
(
k − ||dMα||∞ − (n − 1)τHmin

) ∫

N

|f |2dvg.
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Since now the sign of the term (k − ||dMα||∞) − (n − 1)τHmin is nonpositive,
we deduce as in [2, Eq. 62] the inequality

0 ≤ n − 1
n

λ(τ, α)2 − (k − ||dMα||∞)λ(τ, α) + ||dMα||2∞.

Therefore, as the discriminant of this polynomial is nonnegative, we finish the
proof. �

4. Proof of Theorem 1.6. Let f be the function defined by f = ufτ , where
u : M → C is a complex valued function on M and fτ is a normalized eigen-
function of the Robin Laplacian associated to the first eigenvalue λ1(τ). Then,
we compute
∫

M

|(dM + iα)f |2dvg =
∫

M

|udMfτ + fτ (dMu + iαu)|2dvg

=
∫

M

|u|2|dMfτ |2dvg +
∫

M

f2
τ |(dM + iα)u|2dvg

+ 2
∫

M

fτ�〈udMfτ , dMu + iαu〉dvg

=
∫

M

fτδM (|u|2dMfτ )dvg − τ

∫

N

|u|2f2
τ dvg

+
∫

M

f2
τ |(dM + iα)u|2dvg

+
∫

M

�〈dM (f2
τ ), ūdMu〉dvg

=
∫

M

fτ |u|2δM (dMfτ )dvg −
∫

M

fτg(dM (|u|2), dM (fτ ))dvg

− τ

∫

N

|u|2f2
τ dvg

+
∫

M

f2
τ |(dM + iα)u|2 +

∫

M

�〈dM (f2
τ ), ūdMu〉dvg

= λ1(τ)
∫

M

f2
τ |u|2dvg −

∫

M

fτg(dM (|u|2), dM (fτ ))dvg

− τ

∫

N

|u|2f2
τ dvg

+
∫

M

f2
τ |(dM + iα)u|2dvg +

∫

M

�〈dM (f2
τ ), ūdMu〉dvg.
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Now, it is easy to see that one has pointwise

fτg(dM (|u|2), dM (fτ )) = fτ 〈ūdMu + udMu, dM (fτ )〉 = �〈dM (f2
τ ), ūdMu〉.

Consequently, we deduce that∫
M

|dαf |2dvg + τ
∫

N
f2dvg

||f ||2 = λ1(τ) +

∫
M

f2
τ |dαu|2 dvg∫

M
|u|2f2

τ dvg
.

Now the proof follows from the variational min-max principle. Indeed, the
definition of C(τ) in (1.4) yields

C(τ)

∫
M

|dαu|2 dvg∫
M

|u|2 dvg
≤

∫
M

f2
τ |dαu|2 dvg∫

M
|u|2f2

τ dvg
≤ 1

C(τ)

∫
M

|dαu|2 dvg∫
M

|u|2 dvg
,

which finishes the proof. �
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