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A new inductive approach for counting dimension in large scale
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Abstract. We introduce the notion of large scale dimensiongrad as a large
scale invariant of asymptotic resemblance spaces. Consequently it can be
considered as a large scale invariant of metric spaces. The large scale
dimensiongrad is a way of counting dimension in large scale but it is
different from asymptotic dimension in general, as we show in the paper,
too.
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1. Introduction. Large scale geometry as a tool for investigating properties
of metric spaces is now well known and greatly in use. Simply, as a counter-
part of small scale viewpoint, it tries to investigate metric spaces from afar.
Coarse equivalences fill the place of homeomorphisms in large scale geometry.
Large scale properties are those properties which are invariant under coarse
equivalences. If one tries to make a list of already established properties, it
will be relatively long. One of the most important large scale properties is
asymptotic dimension which has been introduced by Gromov in [4]. There are
also some inductive approaches for finding dimension in large scale, like asymp-
totic inductive dimension, asymptotic dimensiongrad, and large scale inductive
dimension ([1,2,6]). In this paper we want to introduce a new large scale prop-
erty which will be called the large scale dimensiongrad. It can be considered
as a large scale way for counting dimension but we show it is not always equal
to the asymptotic dimension. We present an example of a metric space with
infinite asymptotic dimension but with the large scale dimensiongrad equal to
zero (Example 3.15). We discuss the relation of the large scale dimensiongrad
with the other inductive approaches for asymptotic dimension in Section 3. In
Section 4 we prove that the class of all countable discrete groups with zero
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large scale dimensiongrad is equal to the class of all countable groups with
zero asymptotic dimension. We introduce our notion of large scale dimension-
grad not only for metric spaces but also for all sets that are equipped with an
asymptotic resemblance relation. Asymptotic resemblance relations have been
introduced in [5]. We discuss asymptotic resemblance relations and inductive
approaches for asymptotic dimension in Section 2 briefly.

2. Preliminaries.

2.1. Asymptotic resemblance. We introduce the notion of asymptotic resem-
blance relation (AS.R) as an equivalence relation λ on the family of all subsets
of a set X with these two additional properties:

(i) If A1λB1 and A2λB2, then (A1

⋃
A2)λ(B1

⋃
B2).

(ii) If A1, A2 �= ∅ and (A1

⋃
A2)λB, then there are nonempty subsets B1 and

B2 of B such that A1λB1 and A2λB2. Let A1, A2, B1, B2 ⊆ X.

One can see [5] for the relation between this large scale structure on a set
and the famous coarse structures introduced by Roe ([8]). We simply call the
pair (X,λ) an asymptotic resemblance space (AS.R space). We call two subsets
A and B of an AS.R space (X,λ) asymptotically alike if AλB. A subset B of
an AS.R space X is called bounded if for some point x ∈ X we have Bλx. An
AS.R space (X,λ) is said to be asymptotically connected if for each a, b ∈ X
we have aλb. From now to the end of this paper all AS.R spaces are assumed
to be connected. Let Y be a subset of an AS.R space (X,λ). For two subsets
A,B ⊂ Y , define AλY B if AλB. We call the AS.R space (Y, λY ) a subspace
AS.R of X and λY the induced AS.R on Y . On a topological space X the
asymptotic resemblance λ is called to be compatible with the topology of X if
for any subset A of X, AλĀ and there exists an open subset U ⊆ X such that
AλU . We call the open subset U the asymptotic neighbourhood of A.

Example 2.1. Suppose that (X, d) is a metric space. For two subsets A and B
of X define AλdB if dH(A,B) < ∞, where dH denotes the Hausdorff distance
between A and B. It can be shown that λd is an AS.R on X and it is compatible
with the topology of X ([5]). We call this AS.R the AS.R associated with the
metric d.

Let (X,λ) and (Y, λ′) be two AS.R spaces. We call a map f : X → Y
proper if the inverse image of any bounded subset of Y is a bounded subset of
X. A proper map f : X → Y is said to be an AS.R mapping if AλB implies
f(A)λ′f(B), where A,B ⊆ X. An AS.R mapping f : X → Y is said to be an
asymptotic equivalence if there exists an AS.R mapping g : Y → X such that
for each A ⊆ X and B ⊆ Y we have g ◦ f(A)λA and f ◦ g(B)λ′B. It can be
shown that if the AS.R relations λ and λ′ are associated with some metrics on
X and Y , then this definition of AS.R mappings is equivalent to the definition
of coarse maps and the definition of asymptotic equivalences is equivalent to
the definition of coarse equivalences between metric spaces ([5]).
Let (X, d) be a proper metric space. A continuous and bounded map f : X →
Y is called a Higson function if for each R, ε > 0, there exists a compact
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subset K of X such that if (x, y) ∈ ((X × X) \ (K × K)) and d(x, y) < R,
then | f(x)− f(y) |< ε. The family of all Higson function on a metric space X
is denoted by Ch(X). There exists a compactification hX of a proper metric
space X such that Ch(X) and the family of all continuous functions on hX
are isomorphic C∗-algebras. The compactification hX is called the Higson
compactification and the boundary hX \ X is called the Higson corona. Let
(X,λ) be an AS.R space. Two subsets of an AS.R space (X,λ) are called
asymptotically disjoint if they do not have any asymptotically alike unbounded
subsets. Clearly bounded subsets of X are asymptotically disjoint from all
subsets of X. The AS.R space (X,λ) is said to be asymptotically normal if
for each two asymptotically disjoint subsets A and B of X, we have X =
X1

⋃
X2 such that X1 and X2 are asymptotically disjoint from A and B,

respectively. It can be shown that if (X, d) is a metric space, then (X,λd) is
asymptotically normal ([5]). We say that an AS.R relation compatible with
the topology of a topological space X is proper if every bounded subset of X
has compact closure. Let X be a normal topological space and λ be a proper
and asymptotically normal AS.R on X. (For example λ can be the AS.R
associated to a proper metric on X.) In [5] we introduced a compactification
for X called the asymptotic compactification. We denote this compactification
here by X . We call the boundary νX = X \ X the asymptotic corona. We are
going to explain this compactification briefly, for more details see [5, Section
4]. Assume that A,B ⊆ X. We say AδB if Ā and B̄ are not disjoint subsets
of X or are not asymptotically disjoint subsets of X (Notice that Ā and B̄
denote the closures of A and B in the topological space X). The relation δ
is a Hausdorff proximity on X. The Smirnov compactification associated to
this proximity is the asymptotic compactification X . For details on proximity
spaces and their Smirnov compactification see [7]. We showed if λ is the AS.R
associated to a proper metric d on X, then X is homeomorphic to the Higson
compactification of X. From now on we will denote the closure of a subset A
of X in the asymptotic compactification X by A′ and the boundary A′ ⋂ νX
by νA.
We need the following two propositions below.

Proposition 2.2. Let (X, d) be a proper metric space. Then two subsets A and
B of X are asymptotically disjoint if and only if νA

⋂
νB = ∅.

Proof. It is an immediate consequence of [5, Corollary 4.23]. �
Proposition 2.3. Let f : X → Y be an AS.R mapping between two AS.R spaces
(X,λ) and (Y, λ′).

(i) If f is an asymptotic equivalence, then the images of two asymptotically
disjoint subsets of X are two asymptotically disjoint subsets of Y .

(ii) The inverse images of two asymptotically disjoint subsets of Y are two
asymptotically disjoint subsets of X.

Proof. See [6, Lemma 3.5]. �
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2.2. Inductive approaches for asymptotic dimension. To keep abbreviated
we do not mention the definition of asymptotic dimension here and refer the
reader to [4]. We begin by recalling that in a topological space X a closed
subset C of X is called a separator between two disjoint closed subsets A and
B of X if X \ C = U

⋃
V such that U and V are two disjoint open subsets of

X and they contain A and B, respectively.

Definition 2.4. Let (X, d) be a proper metric space. A subset C of X is called
an asymptotic separator between asymptotically disjoint subsets A and B of
X if νC is a separator between νA and νB in νX. We say that the asymptotic
inductive dimension of X is equal to −1 if and only if X is bounded. For a
nonnegative integer n, we say that the asymptotic inductive dimension of X
is less than or equal to n if each two asymptotically disjoint subsets of X have
an asymptotic separator with the asymptotic inductive dimension less than or
equal to n− 1. The asymptotic inductive dimension of the metric space (X, d)
is denoted by asInd X. For n ∈ N

⋃{0} we say that asInd X = n if asIndX ≤ n
and asIndX ≤ n − 1 is not true.

It has been shown that for a proper metric space X with finite asymptotic
dimension, the asymptotic inductive dimension and the asymptotic dimension
are equal ([2]).

Definition 2.5. Let (X,λ) be an AS.R space. A subset C of X is called a large
scale separator between asymptotically disjoint subsets A and B of X if it is
asymptotically disjoint from both A and B and we have X = X1

⋃
X2 such

that X1 and X2 are asymptotically disjoint from A and B, respectively, and if
L1λL2 for two unbounded subsets L1 ⊆ X1 and L2 ⊆ X2, then there exists a
subset L of C such that LλL1.

If in the Definition 2.4 we use the word large scale separator instead of the
word asymptotic separator and instead of a proper metric space we assume
to have an AS.R space (X,λ), then we have the definition of the large scale
inductive dimension. We denote the large scale inductive dimension of an AS.R
space (X,λ) by lsIndλ X. We showed that in a proper metric space (X, d) each
large scale separator in X is an asymptotic separator ([6, Proposition 3.2]).
Therefore an easy induction will lead to asIndX ≤ lsIndλd

X, for every proper
metric space (X, d). We showed in [6] that the large scale inductive dimension
is a large scale property.

Definition 2.6. Let (X, d) be a metric space. For r > 0 an r-chain between two
subsets A and B of X is a finite sequence x0, . . . , xn in X such that x0 ∈ A
xn ∈ B, and d(xi−1, xi) ≤ r for i = 1, . . . , n. An asymptotic cut between two
asymptotically disjoint subsets A and B of X is a subset C of X such that it
is asymptotically disjoint from both A and B and for each r > 0 there exists
some positive real number s such that each r-chain between A and B intersects
the s neighbourhood of C.

It can be shown that in a metric space (X, d) each large scale separator
(asymptotic separator) between asymptotically disjoint subsets of X is an
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asymptotic cut between them. If we replace the word asymptotic separator
by asymptotic cut in the Definition 2.4, we have the definition of asymptotic
dimensiongrad. We showed in [6] for a relatively big class of metric spaces
that the asymptotic inductive dimension and asymptotic dimensiongrad are
equal. Fortunately this class contains all geodesic metric spaces and all finitely
generated groups.

3. Large scale dimensiongrad.

Definition 3.1. Let (X,λ) be an AS.R space. We call a subset D ⊆ X a large
scale continuum if D = D1

⋃
D2 for two asymptotically disjoint subsets D1

and D2 of X implies that D1 or D2 is bounded.

Let us mention that a continuum in a topological space X is a compact
connected subset of X.

Proposition 3.2. Assume that (X, d) is a proper metric space. Then a subset
D ⊆ X is a large scale continuum in (X,λd) if and only if νD is a continuum
in νX.

Proof. Suppose that νD is a continuum in νX. Let D = D1

⋃
D2 for two

asymptotically disjoint subsets D1 and D2 of X. So by Proposition 2.2,
νD1

⋂
νD2 = ∅. Since νD is a continuum, νD1 = ∅ or νD2 = ∅ and it leads

to D1 is bounded or D2 is bounded.
To prove the converse, assume that D is a large scale continuum and νD =
O1

⋃
O2 for two disjoint closed subsets O1 and O2 of νX. Since D′ is a Hauss-

dorff and compact topological space, it is a normal topological space and we
can use Urysohn’s lemma. Let f : D′ → [0, 1] be a continuous function such
that f(O1) = {0} and f(O2) = {1}. Let D1 = f−1([0, 1

2 ])
⋂

D and D2 =
f−1([12 , 1])

⋂
D. Clearly D = D1

⋃
D2. It is immediate that f(νD1) = {0}

and f(νD2) = {1}. So νD1

⋂
νD2 = ∅. Thus by the Proposition 2.2 D1 and

D2 are asymptotically disjoint and unbounded, a contradiction. �
Definition 3.3. Let (X,λ) be an AS.R space. We call C ⊆ X a large scale cut
between asymptotically disjoint subsets A and B of X if

(i) C is asymptotically disjoint from both A and B.

(ii) Each large scale continuum D ⊆ X which is not asymptotically disjoint
from A and B is not asymptotically disjoint from C too.

Proposition 3.4. Let A and B be two asymptotically disjoint subsets of an
AS.R. space (X,λ). Then each large scale separator between A and B is a
large scale cut between them.

Proof. Assume that C is a large scale separator between A and B. Let X =
X1

⋃
X2 such that X1 and X2 satisfy the properties of the Definition 2.5.

Suppose that D is a large scale continuum in X and it is not asymptotically
disjoint from A and B. Let D1 = D

⋂
X1 and D2 = D

⋂
X2. Since D is not

asymptotically disjoint from A and B, D1 and D2 are unbounded. Since D is a
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large scale continuum and D = D1

⋃
D2, so D1 and D2 are not asymptotically

disjoint. Thus there are L1 ⊆ D1 and L2 ⊆ D2 such that L1λL2. By the
Definition 2.5, L1 and C are not asymptotically disjoint. Thus C and D are
not asymptotically disjoint. It shows that C is a large scale cut. �

The inverse of the above proposition is not true in general. Besides there is
no any good relation between the notions asymptotic cut and large scale cut.

Example 3.5. Let X =
⋃

n∈N
(2n × [0, n]). Assume that X has the subspace

metric induced from R
2. Let A = {(2n, 0) | n ∈ N} and B = {(2n, n) | n ∈ N}.

Clearly A and B are asymptotically disjoint subsets of X. Since there is no
large scale continuum in X such that it is not asymptotically disjoint from
both A and B, every bounded subset of X, like the set C = {(2, 0)}, can be a
large scale cut between A and B. It is easy to see that C is not an asymptotic
cut between A and B and therefore it is not an asymptotic separator (large
scale separator) between them.

Even in finitely generated groups one can find a large scale cut which is
not an asymptotic cut (asymptotic separator).

Example 3.6. Let X = Z
2 and suppose that A and B are as the previous

example. Let C = {{2n−1+2n}×Z | n ∈ N}. It can be shown that each subset
of Z2 which is asymptotically disjoint from C is not a large scale continuum,
thus C is a large scale cut between A and B. Clearly C is not an asymptotic
cut between A and B.

Example 3.7. Let X =
⋃

n∈N
(2n × R). Consider X with the induced metric

from R
2. Let A = {(2n, 0) | n ∈ N} and B = {2} × R. Clearly A and B

are asymptotically disjoint subsets of X. It is straightforward to show that
C = {(2n, 0)} is an asymptotic cut between A and B. Since X is a large
scale continuum that is not asymptotically disjoint from A and B and X is
asymptotically disjoint from the bounded subset C ⊂ X, C is not a large scale
cut between A and B.

Definition 3.8. Let (X,λ) be an AS.R space. If we use the word large scale
cut instead of the word large scale separator in the definition of the large scale
inductive dimension, we have the definition of the large scale dimensiongrad of
the AS.R space (X,λ). We denote the large scale dimensiongrad of the AS.R
space (X,λ) by lsDgλ X.

The following proposition can be proved by using Proposition 3.4 and ap-
plying an easy induction.

Proposition 3.9. Let (X,λ) be an AS.R space. Then lsDgλ X ≤ lsIndλ X.

Let us recall that a closed subset D of a topological space X is called a cut
between two closed disjoint subsets A and B of X if it is disjoint from both
of them and each continuum that intersects both A and B intersects D too.
It is easy to verify that in all topological spaces every separator between two
disjoint subsets is a cut between them.
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Proposition 3.10. Assume that (X, d) is a proper metric space. Let A and B
be two asymptotically disjoint subsets of X. If C ⊆ X and νC is a cut between
νA and νB in νX, then C is a large scale cut between A and B.

Proof. Let D ⊆ X be a large scale continuum such that it is not asymptotically
disjoint from A and B. By Proposition 3.2 νD is a continuum in νX. Since D is
not asymptotically disjoint from A and B, Proposition 2.2 leads to νD

⋂
νA �=

∅ and νD
⋂

νB �= ∅. Therefore νD
⋂

νC �= ∅. It shows C and D are not
asymptotically disjoint. �

Corollary 3.11. Let (X, d) be a proper metric space. Then each asymptotic sep-
arator between asymptotically disjoint subsets of X is a large scale cut between
them.

Proof. Since each separator is also a cut, it is a straightforward consequence
of Proposition 3.10. �

Corollary 3.12. Let (X, d) be a proper metric space. Then lsDgλd
X ≤ asInd X.

Proof. By using Corollary 3.11 this can be proved inductively. �

Lemma 3.13. Let f : X → Y be an asymptotic equivalence between AS.R
spaces (X,λ) and (Y, λ′). If D ⊆ X is a large scale continuum, then so is
f(D).

Proof. Let g : Y → X be an AS.R mapping such that g ◦ f(A)λA and
f ◦ g(B)λ′B for all A ⊆ X and B ⊆ Y . Contrary to our claim, suppose
that f(D) = L1

⋃
L2 such that L1 and L2 are asymptotically disjoint and

unbounded subsets of Y . So g(L1) and g(L2) are asymptotically disjoint by
part (i) of the Proposition 2.3. We have g(f(D)) = g(L1)

⋃
g(L2). Since

g(f(D))λD, the property (ii) of AS.R relations shows that there are two sub-
sets D1 and D2 of D such that D = D1

⋃
D2 and they are asymptotically

alike to g(L1) and g(L2), respectively. Thus D1 and D2 are unbounded and
asymptotically disjoint, a contradiction. �

Theorem 3.14. Assume that (X,λ) and (Y, λ′) are two asymptotically equiva-
lent AS.R spaces. Then asDgλ X = asDgλ′ Y .

Proof. Let f : X → Y and g : Y → X be two AS.R mappings such that
g ◦ f(A)λA for all A ⊆ X and f ◦ g(B)λ′B for all B ⊆ Y . We proceed
by induction on asDgλ′ Y . If asDgλ′ Y = −1 then Y is bounded, so X is
bounded and the theorem holds. Assume that the theorem is true for n − 1.
Let asDgλ′ Y = n. Let A and B be two asymptotically disjoint subsets of
X. Thus f(A) and f(B) are asymptotically disjoint subsets of Y by part (i)
of Proposition 2.3. There exists a large scale cut C ⊆ Y between f(A) and
f(B) such that asDgλ′

C
C ≤ n − 1. Assume that O ⊆ X is an asymptotic

continuum such that it is not asymptotically disjoint from A and B. Thus f(O)
is an asymptotic continuum in Y by Lemma 3.13 and it is not asymptotically
disjoint from f(A) and f(B) by Proposition 2.3 part (ii). So f(O) and C are not
asymptotically disjoint and it shows that g(C) is not asymptotically disjoint
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from g ◦ f(O). Since g(f(O))λO an λ is an equivalence relation so g(C) and O
are not asymptotically disjoint. It shows that g(C) is a large scale cut between
A and B. By [5, Lemma 2.20] g(C) and C are asymptotic equivalent and the
assumption of our induction shows that lsDgλg(C)

g(C) = n − 1. Therefore
lsDgλ X ≤ n = lsDgλ′ Y . Similarly one shows that lsDgλ′ Y ≤ lsDgλ X, and it
will prove this theorem. �

The previous theorem showed that the large scale dimensiongrad is a large
scale invariant. In the following example we show that the notions asymptotic
dimension and large scale dimensiongrad are different large scale properties.

Example 3.15. Let Y =
⊕

N
R, i.e. the set of all finitely supported functions

form N to R. For f, g ∈ Y , define d(f, g) =
√

Σi∈N(f(i) − g(i))2 and assume
Y with this metric. For each n ∈ N suppose that An denotes the set of all
f ∈ Y such that f(1) ∈ [3n − n, 3n + n] and f(i) ∈ [−n,+n] for all 1 < i ≤ n
and f(i) = 0 for all i > n. Let X =

⋃
n∈N

An. Assume that D ⊆ X is an
unbounded subset. Let J = {n ∈ N | An

⋂
D �= ∅}. Since for each n ∈ N, An

is bounded and D is unbounded, J is an infinite countable set. Consider J as
a sequence like n1, n2, . . .. Let D1 =

⋃
i is even Ani

and D2 =
⋃

i is odd Ani
. We

have

dist(An, Am) ≥ | 3m − 3n − m − n |
for each m,n ∈ N. So clearly D1 and D2 are two asymptotically disjoint
subset of X. It shows that X does not contain any unbounded large scale
continuum. Thus each bounded subset of X can be a large scale cut between
two asymptotically disjoint subsets of X. Therefore asDgλd

X = 0. Now we are
going to show that X has infinite asymptotic dimension. For n ∈ N suppose
that Xn denotes the set of all f ∈ X such that for i > n, f(i) = 0. So Xn

can be considered as a subset of Rn. Let σ ∈ Xn be such that σ(1) = 3n and
for all i > 1, σ(i) = 0. Suppose that r > 0 is given. Choose m ∈ N such that
m > n and m > r. One can easily see that Xn contains a ball of radius r
around σ. Thus Xn is a subset of Rn which contains arbitrarily big balls. So
the asymptotic dimension of Xn equals n ([3, Proposition 3.5]). Since Xn is
a subspace of X, the asymptotic dimension of X should be bigger than n. It
shows that the asymptotic dimension of X is infinite.

4. Groups with zero large scale dimensiongrad. Let us recall that every dis-
crete countable group can be equipped with a proper left invariant metric which
is unique up to coarse equivalences. So speaking of the large scale properties
of countable groups is relevant.

Lemma 4.1. Let G be a countable group and g ∈ G. If the set X = {gn | n ∈ N}
is unbounded, then it is an asymptotic continuum.

Proof. Let d be a left invariant proper metric on G. Suppose that for two
unbounded subsets A and B of X, we have X = A

⋃
B. Let O = {n ∈ N |

gn ∈ A, gn+1 ∈ B}. We claim that O is infinite. Assume that, contrary to our
claim, O is finite. So there exists N ∈ N such that for each n ≥ N if gn ∈ A,
then so is gn+1. Suppose that there exists some m ≥ N such that gm ∈ A.
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An easy induction shows that for each n ≥ m, gn ∈ A. Thus B is finite and
it contradicts our assumption of unboundedness of B. So we should suppose
that for each n ≥ N , gn /∈ A. Clearly this leads to the finiteness of A, and this
is a contradiction. Now let L1 = {gn | n ∈ O} and L2 = {gn+1 | n ∈ O}. So
L1 ⊆ A and L2 ⊆ B, and they are infinite (finiteness of L1 and L2 will show
g has finite order and it will lead to finiteness of X, a contradiction). Since
d is proper, L1 and L2 are unbounded. Choose r > 0 such that d(g, e) < r,
where e denotes the neutral element of G. Since d is left invariant, we have
d(gn, gn+1) = d(g, e) < r, for each n ∈ N. Thus dH(L1, L2) ≤ r, and it shows
that A and B are not asymptotically disjoint. �
Lemma 4.2. Let X be an unbounded metric space. Then there exist two un-
bounded subsets A and B of X such that they are asymptotically disjoint.

Proof. Let x1 ∈ X. Choose y1 ∈ X such that d(x1, y1) > 1. Suppose that xn

and yn have been chosen. Choose xn+1 and yn+1 such that d(xn+1, yi) > n+1
and d(yn+1, xi) > n + 1, for i ∈ {1, . . . , n}. Let A = {xn | n ∈ N} and
B = {yn | n ∈ N}. It is straightforward to show that A and B are two
asymptotically disjoint and unbounded subsets of X. �

It is known that a countable discrete group G has asymptotic dimension
zero if and only if each element of G has finite order [9, Corollary 2].

Proposition 4.3. Let G be an infinite countable group. Then the large scale
dimensiongrad of G is zero if and only if the asymptotic dimension of G is
zero.

Proof. Let d be a proper left invariant metric on G. Assume that the as-
ymptotic dimension of G is zero. Since the asymptotic dimension and asymp-
totic inductive dimension of proper metric spaces are equal, asInd X = 0.
By Proposition 3.9, lsDgλd

X ≤ 0. Since G is unbounded, lsDgλd
X = 0. To

prove the converse, assume that lsDgλd
X = 0. Suppose that g ∈ G. Let

X = {gn | n ∈ N}. We want to show that X is finite. Assume that, contrary to
our claim, X is infinite. Since d is proper, X is unbounded. Let A and B be two
unbounded asymptotically disjoint subsets of X (Lemma 4.2). By Lemma 4.1,
X is a large scale continuum. In addition X is not asymptotically disjoint from
both A and B. Since X is asymptotically disjoint from each bounded subset of
G, no bounded subset of G can be a large scale cut between A and B. Thus the
large scale dimensiongrad of G is bigger than zero, a contradiction. Therefore
g has finite order. �
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