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Bounded Engel elements in groups satisfying an identity
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Abstract. We prove that a residually finite group G satisfying an identity
w ≡ 1 and generated by a commutator closed set X of bounded left Engel
elements is locally nilpotent. We also extend such a result to locally graded
groups, provided that X is a normal set. As an immediate consequence,
we obtain that a locally graded group satisfying an identity, all of whose
elements are bounded left Engel, is locally nilpotent.

Mathematics Subject Classification. 20F45, 20E26, 20F40.

Keywords. Engel element, Residually finite group, Restricted Burnside
problem.

1. Introduction. Let w = w(x1, . . . , xm) be a nonempty word in the free
group generated by x1, . . . , xm. A group G is said to satisfy the identity w ≡ 1
if w(g1, . . . , gm) = 1 for all g1, . . . , gm ∈ G. In the context of the Burnside
problems, Zelmanov has recently proved that a residually finite p-group, for p
a prime, which satisfies an identity is locally finite [23]. The result was already
announced in [22] where the following conjecture was also given: “Apparently
this theorem can be generalized from p-groups to periodic groups in the spirit
of the theorem of P.Hall and G.Higman”. It is still unclear how the Hall–
Higman theorem [7] can be used to deal with the periodic case. However, as
the Burnside problems are closely related to the theory of Engel groups (see,
for instance, [19]), we formulate the above conjecture in terms of Engel groups.
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Scientific and Technological Research Council of Turkey (TUBITAK) under the programme

TUBITAK 2219-International Postdoctoral Research Fellowship and she would like to thank

the Department of Mathematics at the University of Salerno for its excellent hospitality. A.

Tortora and M. Tota are members of G.N.S.A.G.A. (INdAM).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-017-1137-x&domain=pdf
http://orcid.org/0000-0002-6400-2115


312 R. Bastos et al. Arch. Math.

Conjecture 1.1. Let G be a residually finite Engel group satisfying an identity.
Then G is locally nilpotent.

Given a group G, an element g ∈ G is called a (left) Engel element if for
any x ∈ G there exists a positive integer n = n(x, g) such that [x,n g] = 1,
where the commutator [x,n g] is defined inductively by the rules

[x,1 g] = [x, g] = x−1xg and, for n ≥ 2, [x,n g] = [[x,n−1 g], g].

If n can be chosen independently of x, then g is called a (left) n-Engel element,
or more generally a bounded (left) Engel element. The group G is an Engel
group (resp. an n-Engel group) if all its elements are Engel (resp. n-Engel).

We say that a group G is a nil group if all elements of G are bounded
Engel, i.e., for any g ∈ G there is n = n(g) ≥ 1 such that [x,n g] = 1 for all
x ∈ G. Of course, if G is n-Engel, then it satisfies the identity [x,n g] = 1 and
Conjecture 1.1 holds. In fact, by Zelmanov’s solution of the restricted Burnside
problem, it follows that a residually finite n-Engel group is locally nilpotent
[19, Theorem 3.2] (see also [20]).

A subset X of a group is commutator closed if [x, y] ∈ X for any x, y ∈ X.
In this note we deal with groups generated by a commutator closed set of
bounded Engel elements. Our main result is as follows.

Theorem A. Let G be a residually finite group satisfying an identity w ≡ 1.
Suppose that G is generated by a commutator closed set X of bounded Engel
elements. Then G is locally nilpotent.

Recall that a group is locally graded if every nontrivial finitely generated
subgroup has a proper subgroup of finite index. The class of locally graded
groups contains locally (soluble-by-finite) groups as well as residually finite
groups.

We will extend Theorem A to locally graded groups, provided that X is a
normal set. As an immediate consequence, we obtain that Conjecture 1.1 is
true for locally graded nil groups.

Corollary B. Let G be a locally graded nil group satisfying an identity. Then
G is locally nilpotent.

Notice that a nil group satisfying an identity might not be locally nilpotent,
as announced by Juhasz and Rips in the case of an n-Engel group with n ≥ 40
(see [11]). On the other hand, the following question remains open.

Question 1.2. Is any locally graded nil group necessarily locally nilpotent?

The proof of Theorem A is based on Lie-theoretic techniques and uses a
deep theorem of Zelmanov which generalizes the main result of his solution of
the restricted Burnside problem (see [22] for an account). Other results in the
same spirit were obtained in [3,4,14].

In the next section we will collect some definitions and results on Lie al-
gebras satisfying an identity. In Section 3 we will prove Theorem A and the
above mentioned version for locally graded groups. In Section 4 we will analyze
the possible use of our results in order to show that bounded Engel elements
of an arbitrary group do not form a subgroup.
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2. Lie algebras with an identity. Let L be a Lie algebra over a field. We use
the left normed convention for Lie brackets, that is,

[a1, . . . , an] = [[. . . [[a1, a2], a3], . . .], an]

for all a1, . . . , an ∈ L. An element a ∈ L is called ad-nilpotent if there exists a
positive integer n such that

[x, a, . . . , a
︸ ︷︷ ︸

n times

] = 0

for all x ∈ L. Following [23], we say that a subset X of L is a Lie set if [a, b] ∈ X
for any a, b ∈ X, and denote by S〈X〉 the Lie set generated by X, namely the
smallest Lie set containing X.

Let F be the free Lie algebra over the same field as L on the generators
x1, . . . , xm. For a nonzero element f = f(x1, . . . , xn) of F , the Lie algebra L
is said to satisfy the polynomial identity f ≡ 0 if f(a1, . . . , an) = 0 for all
a1, . . . , an ∈ L.

The main ingredient in the proof of Theorem A is the following powerful
result, due to Zelmanov (see [23, Theorem 1.1]).

Theorem 2.1. Let L be a Lie algebra satisfying a polynomial identity and gener-
ated by elements a1, . . . , am. If every element a ∈ S〈a1, . . . , am〉 is ad-nilpotent,
then L is nilpotent.

Let p be a prime and G a group. A series of subgroups

G = G1 ≥ G2 ≥ · · · (*)

is called an N -series if [Gi, Gj ] ≤ Gi+j for all i, j ≥ 1; in addition, the series is
an Np-series if Gp

i ≤ Gpi for all i. An important example of an Np-series is the
p-dimension central series G = D1 ≥ D2 ≥ · · · , also known as Zassenhaus–
Jennings–Lazard series, where

Di = Di(G) =
∏

jpk≥i

γj(G)p
k

(see [13, Proposition 2.10]).
Given an N -series (*), let L∗(G) be the direct sum of the abelian groups

Gi/Gi+1, written additively. Thus L∗(G) has a Lie ring structure given by

[xGi+1, yGj+1] = [x, y]Gi+j+1,

where x ∈ Gi, y ∈ Gj and [x, y] is the commutator in G. If all quotients
Gi/Gi+1 have prime exponent p, then L∗(G) can be viewed as a Lie algebra
over the field with p elements. This is always the case if the series is an Np-
series. We write Lp(G) for the Lie algebra associated with the Zassenhaus–
Jennings–Lazard series, and denote by L(G) the subalgebra of Lp(G) generated
by G1/G2.

An important criterion for Lp(G) to satisfy a polynomial identity follows
from [21, Theorem 1].

Theorem 2.2. Let G be a group satisfying an identity. Then, for any prime p,
the Lie algebra Lp(G) satisfies a polynomial identity.
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The following lemma is a well-known consequence of some remarkable re-
sults on pro-p groups (see [6] for relevant definitions and background).

Lemma 2.3. Let G be a finitely generated pro-p group such that L(G) is nilpo-
tent. Then G has a faithful linear representation over the field of p-adic num-
bers.

Proof. By a theorem of Lazard [8, 3.7, p. 206] the group G is p-adic analytic.
Then, by [9, Theorem A], G is of finite rank and the claim follows from [6,
Theorem 7.19]. �

For short we call a group G residually-p if it is residually a finite p-group,
that is, if for every nontrivial element x ∈ G, there exists a normal subgroup
N of G such that x /∈ N and G/N is a finite p-group.

Lemma 2.4. Let G be a residually-p group such that the Lie algebra Lp(G)
satisfies a polynomial identity. Let X be a commutator closed subset of G
consisting of bounded Engel elements, and assume that G = 〈x1, . . . , xm〉 for
some x1, . . . , xm ∈ X. Then G is linear.

Proof. Of course L(G) satisfies the same polynomial identity as Lp(G). For
any xi, denote by ai the element xiG2 ∈ L(G). Then L(G) is generated by
a1, . . . , am. Take any a ∈ S〈a1, . . . , am〉 and let x be the group-commutator
in xi having the same system of brackets as a. We have x ∈ X and so x
is a bounded Engel element. This implies that a is ad-nilpotent. Thus, by
Theorem 2.1, L(G) is nilpotent.

Let Ĝ be the pro-p completion of G, that is, the inverse limit of all quo-
tients of G which are finite p-groups. Notice that Ĝ is finitely generated,
as G is finitely generated. Furthermore, L(Ĝ) can be identified with L(G)
(see [10, Proposition 3.2.2] for more details). Hence L(Ĝ) is nilpotent and
so, by Lemma 2.3, the pro-p group Ĝ is linear. On the other hand, since G
is residually-p, G embeds in Ĝ (see [6, pp. 18–19]) and therefore G is also
linear. �

The next result is the analogous of [23, Theorem 2.1] for nil groups. It
follows from Lemma 2.4, together with the fact that linear Engel groups are
locally nilpotent (see, for instance, [19, Theorem 2.6]).

Theorem 2.5. Let G be a residually-p nil group such that the Lie algebra Lp(G)
satisfies a polynomial identity. Then G is locally nilpotent.

3. The main results. Before proving Theorem A, we quote a straightforward
corollary of [20, Lemma 2.1] (see [13, Lemma 3.5] for the proof).

Lemma 3.1. Let G be a finitely generated residually finite-nilpotent group. For
p a prime, denote by Rp the intersection of all normal subgroups of G of finite
p-power index. If G/Rp is nilpotent for all p, then G is nilpotent.

We restate Theorem A for the reader’s convenience: let G be a residually
finite group satisfying an identity w ≡ 1. Suppose that G is generated by a com-
mutator closed set X of bounded Engel elements. Then G is locally nilpotent.
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Proof of Theorem A. Let H be a finitely generated subgroup of G. Consider a
subgroup K of G containing H which is generated by finitely many elements
of X. Clearly, K is also a residually finite group satisfying the same identity as
G. Set XK = X ∩ K. Then XK is a commutator closed set of bounded Engel
elements of K. Since soluble-by-finite groups generated by Engel elements are
nilpotent (see [12, 12.3.7, 12.3.3]), K is residually finite-nilpotent. Therefore,
by Lemma 3.1, we may assume that K is residually-p for some prime p.

Let Lp(K) be the Lie algebra associated with the Zassenhaus–Jennings–
Lazard series of K. Thus, by Theorem 2.2, Lp(K) satisfies a polynomial iden-
tity. It follows from Lemma 2.4 that K is linear. Notice that K cannot contain
a nonabelian free subgroup, because it satisfies an identity. Hence, by Tits’
alternative [18], K is soluble-by-finite and therefore nilpotent, as already ex-
plained above. In particular, H is nilpotent. This proves that G is locally
nilpotent. �

Remark 3.2. In the case when G is a periodic residually finite Engel group
satisfying an identity, Conjecture 1.1 can be easily derived from Zelmanov’s
results. In fact, arguing as in the first part of the above proof, the subgroup
H is residually-p and therefore finite by [23, Theorem 2.1]. Consequently, H
is nilpotent (see [12, 12.3.4]) and G is locally nilpotent.

The following lemma is a particular case of [4, Corollary 5].

Lemma 3.3. Let X be a normal commutator closed subset of a group G. Suppose
that G is generated by finitely many elements of X. If x is Engel for all x ∈ X,
then each term of the derived series of G is finitely generated.

Next we extend Theorem A to locally graded groups, assuming that the set
of bounded Engel elements is normal. Related results were obtained in [4,16]
(see also [15,17]).

In what follows, as usual, the finite residual of a group G is the intersection
of all (normal) subgroups of finite index of G. This is a characteristic subgroup
of G.

Theorem 3.4. Let G be a locally graded group satisfying an identity w ≡ 1.
Suppose that G is generated by a normal commutator closed set X of bounded
Engel elements. Then G is locally nilpotent.

Proof. Let H be a finitely generated subgroup of G, and take x1, . . . , xm ∈ X
such that H ≤ K = 〈x1, . . . , xm〉. Obviously, every subgroup and quotient of
K satisfies the identity w ≡ 1. Let R be the finite residual of K.

First suppose R 	= 1. Since K/R is a residually finite group, and the set
{xR |x ∈ X ∩K} is a commutator closed subset of K/R consisting of bounded
Engel elements, Theorem A implies that K/R is nilpotent. Then, for some
d ≥ 1, the dth term K(d) of the derived series of K is a subgroup of R. On
the other hand, K/K(d) is nilpotent, because it is a soluble group generated
by Engel elements [12, 12.3.3]. Hence, R/K(d) is a subgroup of the finitely
generated nilpotent group K/K(d), so that R/K(d) is also finitely generated.
Moreover, by Lemma 3.3, K(d) is finitely generated and therefore R is finitely
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generated, as well. By hypothesis G is a locally graded group, so there exists
a proper subgroup of R with finite index. This implies that the finite residual
S of R is a proper subgroup of R. Now R/S is a residually finite group, and
the set {xS |x ∈ X ∩ R} is a commutator closed subset of R/S of bounded
Engel elements. Then, by Theorem A, R/S is nilpotent. It follows that K/S
is soluble group. Applying again Theorem A, we obtain that K/S is a finitely
generated nilpotent group, whence K/S is residually finite. This gives R = S,
which is a contradiction.

Finally, if R = 1, then K is residually finite and as above, by Theorem A, we
conclude that K is nilpotent. Thus, H is nilpotent and G is locally nilpotent.

�

Notice that Theorem 3.4 applies in particular to nil groups, proving Corol-
lary B. Also, if G is a periodic locally graded group satisfying an identity,
then, using Remark 3.2 instead of Theorem A in the proof of Theorem 3.4, G
is locally nilpotent under the weaker hypothesis that it is an Engel group.

4. Concluding remarks. Given a group G, let E(G) be the set of all bounded
Engel elements of G. It is clear that E(G) is invariant under automorphisms
of G, but it is still unknown whether it is a subgroup (see, for instance, [1]).
Assume that the group G is locally graded and satisfies an identity. Denote
by HP (G) its Hirsch–Plotkin radical, i.e., the unique maximal normal locally
nilpotent subgroup containing all normal locally nilpotent subgroups of G
(see [12, 12.1.3]). Then, according to Theorem 3.4, if E(G) were a subgroup,
then E(G) would be locally nilpotent and therefore contained in HP (G). This
means that, in order to show that E(G) is not a subgroup, one could try to
solve the following problem.

Problem 4.1. Find a locally graded group G satisfying an identity such that
E(G) 	= 1 and HP (G) = 1.

In [5] the authors give some examples of residually finite groups satisfying
an identity. One of these is the group G = Z � B(Z, 4), where B(Z, 4) is the
free group of exponent 4 on the generators xm, with m ∈ Z. By [5, Theorem 8],
G is a residually finite group such that [x, y]4 = 1, for all x, y ∈ G. Moreover,
any involution of G is a 3-Engel element. In fact, for any involution g of an
arbitrary group, we have

[x,n g] = [x, g](−2)n−1

for any n ≥ 1 and all elements x of the group [1, Proposition 3.3]. However, in
our case, HP (G) = B(Z, 4).

For completeness, we point out that there exists a group, based on the (first)
Grigorchuk group, in which the set of Engel elements is not a subgroup. This
is an (unpublished) example of Bludov which has been refined by Bartholdi,
who showed that the Grigorchuk group is not Engel even if it is generated by
Engel elements [2, Theorem 1].
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