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Finite groups with three rational conjugacy classes

Dan Rossi

Abstract. We show that if a finite group G has exactly three rational con-
jugacy classes, then G also has exactly three rational-valued irreducible
complex characters. This generalizes a result of Navarro and Tiep (Trans
Amer Math Soc 360:2443–2465, 2008) and partially answers in the af-
firmative a conjecture of theirs. We also give a family of examples of
non-solvable groups with exactly three rational conjugacy classes.
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1. Introduction. Let G be a finite group. It is well known that the character
theory of G controls, to a degree, the structure of G itself. Over the last decade
a picture has begun to emerge that suggests the fields in which these character
values lie play some role in understanding the extent of this control. Several
classical results involving the irreducible characters of G have been generalized
to versions that involve only those irreducible characters taking values in some
appropriate field F—see, e.g., [1,7,9].

If F ⊆ C is any subfield of the complex numbers and if χ is any complex
character of G, then we say that χ is an F-character if χ(x) ∈ F for every
element x ∈ G. We write IrrF(G) for the set of irreducible F-characters of G.
Analogously, if x ∈ G and χ(x) ∈ F for every χ ∈ Irr(G), then we say that x is
an F-element of G. Of course, if x is an F-element, then so is every G-conjugate
of x and we may refer unambiguously to the conjugacy class xG as an F-class.
We write ClF(G) for the set of F-classes of G.

It is very natural to wonder about possible relationships between IrrF(G)
and ClF(G) for various fields F. Of particular interest is the case F = Q or
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more generally F = Qp, the p-th cyclotomic field. One reason for this is that
F-generalizations mentioned above frequently involve F = Qp, especially for
statements involving the p-local structure of G. Often, the deepest and most
difficult results involve p = 2 and, correspondingly, Q2 = Q.

One of the most fundamental relationships between the irreducible charac-
ters of G, on one side, and the conjugacy classes of G, on the other, is that they
are equal in number. In view of this, one might guess that | IrrF(G)| = |ClF(G)|.
But actually this is not true for arbitrary F. This includes the important situ-
ation F = Q, where fairly little is known. (In contrast, for example, it is always
true that | IrrR(G)| = |ClR(G)|, and it is fairly easy to show this—see Lemma
2.1 below). In [8] Navarro & Tiep proved the following result.

Theorem. Let G be a finite group.
(a) | IrrQ(G)| = 1 if and only if |ClQ(G)| = 1.
(b) | IrrQ(G)| = 2 if and only if |ClQ(G)| = 2.

In view of this they conjectured the following (private communication):

Conjecture A. Let G be a finite group. Then | IrrQ(G)| = 3 if and only if
|ClQ(G)| = 3.

In fact, this is the best possible generalization of the Navarro–Tiep theorem.
For example, the group G of order 672 with GAP SmallGroup identifier 128
has | IrrQ(G)| = 4 and |ClQ(G)| = 6.

The main result in this paper shows that one direction of the Navarro–Tiep
conjecture is true. Specifically, we show the following.

Theorem A. Let G be any finite group. If |ClQ(G)| = 3, then | IrrQ(G)| = 3.

Both the Navarro–Tiep result in [8] and our Theorem A require the classi-
fication of finite simple groups, which seems to indicate that rationality ques-
tions are of a deep nature.

Remark. The converse to Theorem A is considerably more difficult. The struc-
ture of groups G with | IrrQ(G)| = 3 can be determined. For solvable groups
they have 2-length one, by [10]. For non-solvable groups it can be shown that
G/O2′(G) contains a normal subgroup S, where S is a quasisimple group of
Lie type from an explicit list, and |G/O2′(G) : S| is odd. In particular, such
a group has a unique non-abelian composition factor, and the possibilities are
rather limited. In either the solvable or the non-solvable case, the main ob-
stacle to proving Conjecture A involves the situation where O2′(G) contains
non-trivial rational elements. Details about these results will appear elsewhere.

1.1. Notation. All groups considered are finite and G always denotes a finite
group. If n is an integer and p a prime, then np, resp. np′ , is the p-, resp. p′-part,
of n (i.e. the largest p-power dividing n, resp. n/np). Likewise, if g ∈ G, then gp

and gp′ are the p- and p′-parts of g. We define Qn to be the cyclotomic extension
of Q obtained by adjoining a primitive n-th root of unity. The subgroup Op(G),
resp. Op′(G), is the largest subgroup of G having p-power order, resp. order
coprime to p. The set of irreducible complex characters of G is Irr(G). If N �G
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and θ ∈ Irr(N), then Irr(G|θ) is the set of irreducible characters of G such
that the restriction χ|N contains θ as an irreducible constituent. If x ∈ G,
then xG = clG(x) is the G-conjugacy class of x. The set of conjugacy classes
of G is Cl(G). The order of g ∈ G is o(g).

2. Preliminaries. Here, we record some useful results about conjugacy classes,
characters, and fields of values.

The following is all well known, and elementary.

Lemma 2.1. Let G be any finite group.
(a) The element x ∈ G is real if and only if x and x−1 are G-conjugate.
(b) | IrrR(G)| = |ClR(G)|.
(c) If |G| is odd, then |ClR(G)| = 1 = | IrrR(G)|.

Proof. Part (a) is [6, Problem 2.11]; (b) is [6, Problem 6.13]; and (c) combines
(b) and [6, Problem 3.16]. �

The next two statements give a connection between rational characters and
rational elements of G, and those of subgroups or quotients of G.

Lemma 2.2. Let N � G and θ ∈ IrrR(N). If |G : N | is odd, then there is a
unique χ ∈ IrrR(G|θ). In particular, if θ is rational, then χ is rational.

Proof. This is [8, Corollary 2.2]. �

Lemma 2.3. Let G be a finite group. Then the following statements hold.
(a) If x ∈ H ≤ G is rational in H, then x is rational in G.
(b) If N � G and x ∈ G is rational, then xN ∈ G/N is rational.
(c) Let N �G. If G/N has a rational element with prime order p, then G has

a rational element of order p.

Proof. See [8, Lemmas 5.1 and 5.2]. �

Let F ⊆ C be any subfield of the complex numbers. A subgroup H ≤ G is
called F-free in G if H contains no non-trivial F-elements of G. We emphasize
that the notion of H being F-free is always relative to some overgroup G.

Theorem 2.4. Suppose that N � G is F-free in G. Then IrrF(G) = IrrF(G/N)
and the natural map G → G/N induces a bijection ClF(G) → ClF(G/N).

Proof. Combine Theorems A and B of [4]. �

Theorem 2.4 allows us to argue by induction on |G|. It says that we can
factor out Q-free normal subgroups without changing the count of rational
conjugacy classes or rational irreducible characters.

3. The main results. Now we begin proving the main results of this paper.
First, we prove Theorem A in special case, where we make some extra assump-
tion about the orders of rational elements. Then, in the next two subsections,
we consider the remaining case of Theorem A: first for non-solvable groups
and then for solvable groups. Throughout this section, we repeatedly use the
fact that an involution is always rational.
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3.1. A special case. We recall the Galois action on conjugacy classes and
characters. Fix a finite group G of order n and let ζ ∈ C be any n-th root of
unity. Let σ ∈ Gal(Qn/Q) =: G, so that ζσ = ζs for some integer s coprime to
n. Note that σ is completely determined by s, and that s does not depend on
the choice of ζ. We define an action of G on G by xσ := xs, for any x ∈ G. This
extends to an action on Cl(G) by defining (xG)σ := (xσ)G. For χ ∈ Irr(G) we
also define χσ := σ ◦χ. Clearly, an element, conjugacy class, or character of G
is rational if and only if it is G-invariant.

The following observation is trivial.

Lemma 3.1. Let n = |G| and let σ ∈ Gal(Qn/Q). Let x ∈ G and assume that
σ fixes every root of unity with order o(x). Then xσ = x.

Proof. Let ζ be an n-th root of unity and assume ζσ = ζs. Let μ be an o(x)-th
root of unity. As o(x) divides n, μ is a power of ζ, and thus μ = μσ = μs. We
conclude that s ≡ 1 (mod o(x)), so xσ = xs = x. �

Next, let us establish some notation. Let n be any positive integer and let
G := Gal(Qn/Q). Let p be any prime dividing n. Then restriction gives an
isomorphism

Θ : G → Gal(Qnp
/Q) × Gal(Qnp′ /Q);Θ(σ) := (σ|Qnp

, σ|Qn
p′ ).

Let Gp := Θ−1(Gal(Qnp
/Q) × 1) and let Gp′ := Θ−1(1 × Gal(Qnp′ /Q)), so

G = Gp ×Gp′ . By construction, Gp � Gal(Qnp
/Q) and Gp fixes p′-roots of unity

in Qn. Working by induction on n, we obtain a direct product factorization

Gp′ =
∏

r|np′ ,r prime

Gr,

where Gr � Gal(Qnr
/Q) and Gr fixes r′-roots of unity in Qnp′ . Of course, each

Gr also fixes p-power roots of unity in Qn (since Gp′ does) and thus Gr actually
fixes r′-roots of unity in Qn. Putting everything together, we have a direct
product factorization

G =
∏

p|n,p prime

Gp,

where Gp � Gal(Qnp
/Q) and fixes p′-roots of unity in Qn.

When p is odd, Gp is cyclic and we choose a generator σp. When p = 2,
then we write G2 = 〈σ2〉 × 〈σ0〉, where σ2 is inverting 2-power roots of unity
and σ0 has order n2/4 (or σ0 = 1 if n2 ≤ 4).

We will keep all of this notation in the proof of the following theorem.

Theorem 3.2. Let G be a finite group and suppose that |ClQ(G)| = 3. More-
over, assume that G has no rational element of order 4. Then | IrrQ(G)| = 3.

Proof. The hypothesis implies that the non-conjugate rational elements of G
have orders 1, 2, and p for some prime p (possibly p = 2). Let uG and xG denote
the non-trivial rational classes of G, where u is an involution and o(x) = p.
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Aiming for a contradiction, assume that | IrrQ(G)| ≥ 4. Let n = |G| and
G = Gal(Qn/Q). Using the notation above, define

σ =
∏

r|n,r prime

σr.

By Brauer’s lemma [6, Lemma 6.32], σ fixes the same number of G-conjugacy
classes as it does irreducible characters of G. Certainly, every element of ClQ(G)
and IrrQ(G) is σ-fixed, and so we conclude that there is some class yG �∈ ClQ(G)
but with (yG)σ = yG. Obviously, if z is any power of y, then (zG)σ = zG as
well. We will find some power z of y, such that zG �∈ {1G, uG, xG} but such
that z is rational. This is the desired contradiction.

If 4 | o(y), then we choose z = yo(y)/4, having order 4. Now assume 4 � o(y).
Since y is not rational, o(y) �= 2 and so there is some odd prime r dividing
o(y). If r � o(x), we choose z = yr. In the remaining case, y is a {2, p}-element
and o(y2) ≤ 2. In this case we choose z = y. In every case, zG �∈ {1G, uG, xG}.

If o(z) = 4, then Lemma 3.1 implies that for every odd prime r | n, z is
fixed by σr ∈ G. Thus

zG = (zG)σ = (zσ2)G = (z−1)G,

and we conclude that z is rational. Otherwise, write z = z2zr where z2 is
either trivial or an involution and r is the unique odd prime dividing o(z).
Using Lemma 3.1 as above, we deduce that z2 is G-fixed and zr is fixed by σ0

and by σ� for every prime � �= r. Thus zG = (zG)σ = (zG)σr and we conclude
that zG is G-invariant, i.e. rational. The proof is complete. �

3.2. Non-solvable groups. By Theorem 3.2, to complete the proof of Theorem
A, we may assume that the rational elements of G have orders 1, 2, and 4. We
now consider this case when G is non-solvable.

In what follows, if φ ∈ Irr(S) and x ∈ S, we shall use the notation Q(φ) for
the field extension of Q obtained by adjoining all of the values φ(y) for y ∈ S
and Q(xS) for the extension obtained by adjoining all of the values ψ(x) for
ψ ∈ Irr(S).

Lemma 3.3. Suppose that S � G with |G : S| odd. Let θ ∈ IrrR(S), and let
{θ = θ1, . . . , θn} be the set of G-conjugates of θ. If

∑n
i=1 θi is rational-valued

then there is a unique rational character ψ ∈ Irr(G|θ).
Proof. By Lemma 2.2, there is a unique character ψ ∈ IrrR(G|θ). By hypoth-
esis, ψ|S = e

∑n
i=1 θi is rational. Let K := Q(ψ) and τ ∈ Gal(K/Q). Since ψ|S

is rational, τ permutes the constituents θi. If θτ = θi, then

ψτ ∈ IrrR(G|θτ ) = IrrR(G|θi) = IrrR(G|θ).
It follows from the uniqueness of ψ that ψτ = ψ, and so ψ is rational. �

Let q = 32f+1 for some integer f ≥ 1. For the next lemma, we need a
detailed description of the conjugacy classes and characters of SL2(q) and
PSL2(q), and the automorphism action on these classes and characters. We
use the notation of [2, Chapter 38], with one change: the (Steinberg) character
called φ in [2], we will call St. Abusing notation somewhat, we will denote by
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the same symbol both an element of SL2(q) and its image in PSL2(q). It is
easy to check that the set

{
1, u = b(q+1)/4, c, d, ai, bj : 1 ≤ i, j ≤ q − 3

4

}

is a complete set of class representatives for PSL2(q), and that

Irr(PSL2(q)) =
{

1, St, ξ1, ξ2, χ2i, θ2j : 1 ≤ i, j ≤ q − 3
4

}
.

Note that in either SL2(q) or PSL2(q), the characters ξi, ηi can be distin-
guished by their degree and their value on c; conversely, the classes cS , dS ,
(zc)S , and (zd)S are distinguished by their value at ξ1. Similarly, the charac-
ters χi (resp. θj) are distinguished by their degree and values at a (resp. b)
and likewise the classes (ai)S (resp. (bj)S) are distinguished by their values at
χ1 (resp. θ1; also, for PSL2(q), the classes are distinguished by their values at
χ2, resp. θ2, instead).

Finally, recall that Aut(S) = 〈δ〉 × 〈σ〉 � C2 × C2f+1, where the diagonal
automorphism δ exchanges the members of each pair {cS , dS}, {(zc)S , (dc)S},
{ξ1, ξ2}, and {η1, η2} and fixes the remaining classes and characters; and the
field automorphism σ fixes all members of the above pairs and permutes the
sets {(ai)S}, {(bj)S}, {χi}, and {θj}.

Lemma 3.4. Let q = 32f+1 and let S = PSL2(q) or S = SL2(q). Then there
is a bijection φ 
→ Cφ from Irr(S) to Cl(S). If x ∈ Cφ, g ∈ Aut(S), and
τ ∈ Gal(Q|S|/Q), then we can choose the bijection to satisfy the following
properties:
(a) Q(φ) = Q(Cφ)
(b) (Cφ)τ = (xτ )S

(c) (Cφ)g = (xg)S

(d) (Cφ)g = (Cφ)τ if and only if φg = φτ .

Proof. Consider the bijections
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1S ↔ 1S

zS ↔ St

cS ↔ ξ1

dS ↔ ξ2

(zc)S ↔ η1

(zd)S ↔ η2

(ai)S ↔ χi

(bj)S ↔ θj

for S = SL2(q), and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1S ↔ 1S

u ↔ St

c ↔ ξ1

d ↔ ξ2

(ai)S ↔ χ2i

(bj)S ↔ θ2j

for S = PSL2(q).

Now (a) and (b) follow by inspecting the character tables in [2, Chap-
ter 38]; (c) from the discussion preceding the lemma; and (d) from (b) and
(c). �
Lemma 3.5. Suppose that S�G where S = PSL2(q) or S = SL2(q) and assume
that |G : S| is odd. Then | IrrQ(G)| = |ClQ(G)|.
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Proof. The group G/S contains no non-trivial rational elements by Lemma 2.1.
Thus, every rational element of G is actually contained in S, by Lemma 2.3. If
χ ∈ IrrQ(G|θ) for some θ ∈ Irr(S), then there is some element g ∈ G such that
θg = θ. As |G/S| is odd we have g2 ∈ S and therefore it is no loss to assume
that g has odd order. But because θ = θg2

, we conclude that θ = θ is real. This
observation, combined with Lemma 3.3, implies that | IrrQ(G)| is equal to the
number of G-orbits on Irr(S) having rational orbit-sum. By Lemma 3.4, this
is equal to the number of rational G-conjugacy classes contained in S. �

Recall that the layer of a group G is the subgroup E(G) generated by all
subnormal, quasisimple subgroups of G (called components). In fact, E(G) is
a central product of those subgroups. The generalized Fitting subgroup of G
is F ∗(G) := E(G)F (G), where F (G) is the Fitting subgroup.

Lemma 3.6. Suppose that G is non-solvable, that F ∗(G) = O2(G), and that
O2(G) contains only one G-conjugacy class of involutions. Then G contains a
rational element of order 3.

Proof. This is shown in steps (2)–(4) in the proof of [8, Theorem 11.2]. �
Part of the proof of the next theorem is also adapted from [8, Proof of

Theorem 11.2].

Theorem 3.7. Suppose that G is non-solvable, |ClQ(G)| = 3, and the rational
elements of G have orders 1, 2, and 4. Then | IrrQ(G)| = 3.

Proof. First, note that O2′(G) is Q-free in G. Arguing by induction on |G|
and applying Theorem 2.4, we may therefore assume that O2′(G) = 1. If, in
addition, E(G) = 1, then F = F ∗(G) = O2(G). Using Lemma 3.6, we deduce
that E(G) > 1. Write E(G) =

∏n
j=1 Kj , where each Kj is a component of

G and the product is central. We claim that each Kj/Z(Kj) has the form
PSL2(32f+1) for some (possibly distinct) integers f ≥ 1; if not, then some
Kj/Z(Kj) contains a rational element of order 3 or order 5, by [8, Lemma 11.1],
and therefore G does too, by Lemma 2.3. In particular each Kj is isomorphic
to either SL2(32nj+1) or to PSL2(32nj + 1).

Next, we claim that n = 1. Assume not, and choose involutions z1 ∈ K1

and z2 ∈ K2. If K1 ∩ K2 = 1, then z1 and z1z2 are non-conjugate involutions
of G (as G permutes the Kj). But the hypotheses of the theorem imply that
G has a unique class of involutions. Therefore, 1 < K1 ∩K2 ≤ Z(K1)∩Z(K2).
In particular, both Ki � SL2(32ni+1) for i = 1, 2, z1 = z2 is the unique central
involution in Ki, and K1K2 � K1×K2

〈z1z2〉 . Choose elements yi ∈ Ki of order 4.
Now, (y1y2)2 = y2

1y
2
2 = z1z2 = 1 and y1 �= y−1

2 (as y1 �∈ K2), so o(y1y2) = 2.
As above z1 and y1y2 are non-conjugate involutions in G. This contradiction
shows that n = 1, as claimed.

Let E(G) = K1 =: K and let C = CG(K) � G. If K � PSL2(32f+1), then
C ∩ K = Z(K) = 1. Since G has a unique class of involutions, we conclude
that |C| is odd. So C ≤ O2′(G) = 1. If instead K � SL2(32f+1), then G has a
unique involution, namely 1 �= z ∈ Z(K). Let R ∈ Syl2(C). As z ∈ R, we have
1 < R∩K ≤ Z(K) = 〈z〉. Suppose that there is some element y ∈ R with order
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4 and let x ∈ K have order 4. As in the previous paragraph, y2 = z = x2 and so
(xy)2 = x2y2 = z2 = 1, and we deduce that xy is an involution of G different
from z, a contradiction. Since R has a unique involution and no element of
order 4, we conclude that R is cyclic of order 2. By Cayley’s Theorem, C has a
normal 2-complement X. But then X � G and, since O2′(G) = 1, we conclude
that C = R = Z(K).

In the previous paragraph, we showed that C = Z(K). Now, Out(K) ≥
G/CK = G/K. Any outer automorphism of K with even order fuses the
two classes of order-3 elements in K. Since G has no rational elements of
order 3, this does not occur. We deduce that |G : K| is odd. By Lemma 3.5,
| IrrQ(G)| = |ClQ(G)| = 3. �

3.3. Solvable groups. Finally, we complete the proof of Theorem A by consid-
ering solvable groups with exactly three rational classes, the elements of which
have orders 1, 2, and 4. The next lemma is well known.

Lemma 3.8. Assume that G has a normal Sylow 2-subgroup P . Then every real
element of G is a real element of P .

Proof. The group G/P , having odd order, has no non-trivial real elements.
Thus, every real element of G is contained in P . Let x ∈ G be real and let
g ∈ G satisfy gxg−1 = x−1. Then g2 ∈ CG(x) and thus x2′ ∈ CG(x). So it is
no loss to assume that g is a 2-element, refore g ∈ P . �

Lemma 3.9. Assume that G has a normal Sylow 2-subgroup P and that P has
exponent 4. Then IrrQ(G) = IrrR(G) and ClQ(G) = ClR(G). In particular,
|ClQ(G)| = | IrrQ(G)|.
Proof. Let X be a 2-complement for G. Since P has exponent 4, IrrR(P ) =
IrrQ(P ) (every character of P takes values in Q4 = Q(

√−1)). Let χ ∈ IrrR(G)
and let τ ∈ Irr(P ) be an irreducible constituent of the restriction χ|P . Then
the complex conjugate τ̄ is also a constituent of χ|P , and thus there is some
x ∈ X with τx = τ̄ . But then τx2

= τ and, since x has odd order, we conclude
that τ = τ̄ , i.e. τ is real. Hence τ is rational. By Lemma 2.2, there is some
θ ∈ IrrQ(G|τ); but also by Lemma 2.2 there is a unique real character in
Irr(G|τ), and this is χ. We conclude that χ = θ is rational. That ClQ(G) =
ClR(G) follows from Lemma 3.8 and the observation that an element of order
not exceeding 4 is real if and only if it is rational. For the final claim, apply
Lemma 2.1. �

Theorem 3.10. Suppose that G is solvable, |ClQ(G)| = 3, and the rational
elements of G have orders 1, 2, and 4. Then | IrrQ(G)| = 3.

Proof. By [5], G has 2-length one. Let P ∈ Syl2(G) and let L := O2′(G). As
L is Q-free in G, by working by induction on |G| and applying Theorem 2.4,
we may assume that L = 1. Thus P � G. Let X be a 2-complement.

If P has a unique involution then P is either cyclic or generalized quater-
nion. An abelian 2-group does not have a real element of order 4, so by Lemma
3.8 we conclude that P is not cyclic. If P is generalized quaternion then the
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rational elements of order 4 are not all conjugate in P , but they are all conju-
gate in G; in particular, X acts non-trivially on P . If P has order exceeding
8 then, as is well known, Aut(P ) is a 2-group and thus X acts trivially on P .
We conclude that P = Q8 has exponent 4, and now the result follows from
Lemma 3.9.

So we may assume that P has more than one involution, all of which are
conjugate in G. By Thompson’s theorem [3, Theorem IX.8.6], P is either ho-
mocyclic or a Suzuki 2-group. Again, an abelian group does not have a real
element of order 4, so we conclude that P is a Suzuki 2-group. In particular, P
has exponent 4 (see [3, Theorem VIII.7.9]), and thus Lemma 3.9 again implies
that | IrrQ(G)| = 3. The proof is complete. �

Theorem A now follows by combining Theorems 3.2, 3.7, and 3.10.

4. Examples. We give examples of some non-solvable groups G with
|ClQ(G)| = 3 = | IrrQ(G)|. Let S = PSL2(27) and let H = S.3 = S〈σ〉, where
σ is the field automorphism of S with order 3. We check that |ClQ(G)| = 3,
the rational elements having orders 1, 2, and 7. Since |H : S| = 3, Lemma 3.5
implies that | IrrQ(H)| = 3. Now let r be any prime larger than |H| + 1 and
let V be any Fr[H]-module. Let G be any extension V.H. An element v ∈ V
is rational in G if and only if v is conjugate to all r − 1 non-trivial powers of
itself. But since r − 1 > |H|, this is impossible. In other words, V is Q-free in
G. By Theorem 2.4, |ClQ(G)| = 3 = | IrrQ(G)|.

The same construction, but with S = SL2(32f+1), furnishes examples where
the rational elements have orders 1, 2, and 4.

References

[1] S. Dolfi, G. Navarro, and P. H. Tiep, Primes dividing the degrees of the

real characters, Math. Z. 259 (2008), 755–774.

[2] L. Dornhoff, Group Representation Theory. Part A: Ordinary Representation

Theory, Pure and Applied Mathematics, 7, Marcel Dekker, Inc., New York, 1971.

[3] B. Huppert and N. Blackburn, Finite groups. II, Grundlehren der Mathe-

matischen Wissenschaften [Fundamental Principles of Mathematical Sciences],

242, Springer-Verlag, Berlin-New York, 1982.

[4] I. M. Isaacs and G. Navarro, Group elements and fields of character values,

J. Group Theory 12 (2009), 635–650.

[5] I. M. Isaacs and G. Navarro, Solvable groups having only three rational,

classes of 2-elements, Arch. Math. 97 (2011), 199–206.

[6] I. M. Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Prov-

idence, RI, 2006. Corrected reprint of the 1976 original [Academic Press, New

York].

[7] G. Navarro, L. Sanus, and P. H. Tiep, Real characters and degrees, Israel

J. Math. 171 (2009), 157–173.

[8] G. Navarro and P. H. Tiep, Rational irreducible characters and ratio-

nal conjugacy classes in finite groups, Trans. Amer. Math. Soc. 360 (2008),

2443–2465.



108 D. Rossi Arch. Math.

[9] G. Navarro and P. H. Tiep, Degrees of rational characters of finite groups,

Adv. Math. 224 (2010), 1121–1142.

[10] J. Tent, 2-length and rational characters of odd degree, Arch. Math. 96 (2011),

201–206.

Dan Rossi
Department of Mathematics,
University of Arizona,
617 N. Santa Rita Ave,
Tucson, AZ 85721,
USA
e-mail: drossi@math.arizona.edu

Received: 26 September 2017


	Finite groups with three rational conjugacy classes
	Abstract
	1. Introduction
	1.1. Notation

	2. Preliminaries
	3. The main results
	3.1. A special case
	3.2. Non-solvable groups
	3.3. Solvable groups

	4. Examples
	References




