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A commuting-vector-field approach to some dispersive estimates

Willie Wai Yeung Wong

Abstract. We prove the pointwise decay of solutions to three linear equa-
tions: (1) the transport equation in phase space generalizing the classical
Vlasov equation, (2) the linear Schrödinger equation, (3) the Airy (linear
KdV) equation. The usual proofs use explicit representation formulae, and
either obtain L1—L∞ decay through directly estimating the fundamental
solution in physical space or by studying oscillatory integrals coming from
the representation in Fourier space. Our proof instead combines “vector
field” commutators that capture the inherent symmetries of the relevant
equations with conservation laws for mass and energy to get space–time
weighted energy estimates. Combined with a simple version of Sobolev’s
inequality this gives pointwise decay as desired. In the case of the Vlasov
and Schrödinger equations, we can recover sharp pointwise decay; in the
Schrödinger case we also show how to obtain local energy decay as well as
Strichartz-type estimates. For the Airy equation we obtain a local energy
decay that is almost sharp from the scaling point of view, but nonetheless
misses the classical estimates by a gap. This work is inspired by the work
of Klainerman on L2—L∞ decay of wave equations, as well as the recent
work of Fajman, Joudioux, and Smulevici on decay of mass distributions
for the relativistic Vlasov equation.
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1. Introduction. This paper concerns pointwise decay estimates for dispersive
partial differential equations. At the heart of the matter, we are interested in
a classical field theory where the field strength measures the number density
of the constituent “particles”. That the equations of motion are “dispersive”
indicates that individual “particles” tend to have disparate velocities, and as
a result, will travel apart over time. As physically the total number of the
particles are expected to be conserved, that the spatial support is spreading
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out in time suggests that the number density decreases in time. To realize this
intuition, the classical proofs typically are based on analysis of the explicit
representation formulae tying the field strengths at time t to the field strengths
at some initial time t0. The goal of this paper is to offer an alternative proof
of some well-known dispersive inequalities using a method that bypasses the
explicit representation formulae.

This paper will focus on three examples: the classical (non-relativistic)
Vlasov equation, the linear Schrödinger equation, and the Airy (linear Korte-
weg–de Vries) equation. The latter two will be introduced in Sections 3 and 4,
respectively. We introduce the Vlasov equation here for illustration. The clas-
sical Vlasov equation is a simple linear transport equation on classical phase
space. The field is the number density of a particle (say a gas) on the classical
phase space R

d × R
d. We use the coordinates (q1, . . . , qd, p1, . . . pd); the first

factor of R
d represents the position and the second factor the velocity. The

(time-dependent) number density is given as

ν : R × R
d × R

d → [0,∞), (1)

and we assume that the individual particles are non-interacting and hence
follow Newton’s first law

∂tν +
d∑

i=1

pi∂qi
ν

︸ ︷︷ ︸
p·∂qν

= 0. (2)

Equation (2) is sometimes called the classical Vlasov equation, and has an
explicit solution of its initial value problem by the formula

ν(t, q, p) = ν(0, q − tp, p). (3)

Using this formula, we can prove the following standard dispersive estimate.

Proposition 1. Let ν(t, q) :=
∫
Rd ν(t, q, p) dp. If ν solves (2), is smooth, and

ν(0, q, p) decays suitably as |p|, |q| → ∞, then

sup
q∈Rd

ν(t, q) � 〈t〉−d. (4)

(The notation 〈t〉 :=
√

1 + t2 will be in use throughout.)

Proof. By (3) we can write

ν(t, q) =
∫

Rd

ν(0, q − tp, p) dp.

The integral on the right is over the d-dimensional hyperplane Π(t, q) := {(q −
tp, p) : p ∈ R

d} of Rd ×R
d. In terms of the induced hyperplane measure dσ on

Π(t, q), we see that the change of variables gives

ν(t, q) = 〈t〉−d

∫

Π(t,q)

ν(0,—) dσ,
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and hence the assertion is proved with the implicit constant

sup
t,q

∫

Π(t,q)

ν(0,—) dσ

which can be bounded by ‖ν(0,—)‖W d,1(R2d) by Gagliardo’s Sobolev trace
theorem. �

The proof above captures many features of the representation-formula-
based proofs of dispersive inequalities: the object to be controlled is written
in terms of an explicit integral operator acting on the initial data, and the
decay is read off from L1—L∞ type bounds on the integral operator, with
the asymptotics read off of the homogeneity properties of the integral opera-
tor (in other words, a change of variables). The analogous proofs (using the
fundamental solution) for the Schrödinger and Airy equations can be found in
Chapter 8 of Stein and Shakarchi [15]. The properties of the solution operators
that are used in the course of proving the decay estimates can be derived from
powerful oscillatory integral estimates from modern Fourier analysis.

An alternative method for deriving dispersive decay estimates was found by
Klainerman for the wave equation [6]. Taking advantage of the Lorentz invari-
ance of the wave equation, Klainerman observed that if the vector field Ω is a
generator for the Poincaré group, and u a solution to the wave equation, then
Ωu is also a solution to the wave equation. From this the energy conservation
of the wave equation implies certain space–time weighted energy inequalities
for higher derivatives of u; and this, via a version of the Sobolev inequality,
gives space–time weighted control of the L∞ norms of the solutions which is
the pointwise decay estimate that we seek. More recently, Fajman, Joudioux,
and Smulevici observed that by properly lifting the symmetry actions to the
relativistic phase space, a similar argument can yield the dispersive decay for
the relativistic counterpart to the Vlasov equation [4]. The argument has been
modified by Smulevici to apply to the classical Vlasov equation and was used
to show small data global existence for the Vlasov–Poisson equations [13].

Both the commuting vector field method and the traditional oscillatory in-
tegral approach for deriving dispersive estimates have many successes in their
applications. Their relative merits have been explored in the literature (see,
e.g., [4,6,8]) and we shall not discuss them here. In terms of the aim of provid-
ing a robust proof of dispersive inequalities that relies primarily on physical
space methods (and avoids the use of the Fourier transform), there are also
other previous works on bilinear estimates [9,12,16]. The goal of the present
article is to firstly demonstrate the feasibility of (re)deriving the analogues of
certain classical dispersive estimates; secondly connect the commuting vector
fields systematically to the symmetries of the equations; and thirdly relate
the vector field commutators to the Fourier representation of the solutions, in
the context of the three sample equations announced above. In our context,
our equations exhibit symmetry properties that are Galilean or Galilean-like
(in the sense that “space” and “time” are not on equal footing, as is in the
case of Lorentzian symmetries). This makes decay estimates adapted to the
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standard t foliation more obviously compatible with the vector field method;
in the relativistic case one may argue that the estimates are more adapted to
hyperboloidal foliations (see, e.g., [7]; and also [10,17] for some recent devel-
opments). We fully exploit this compatibility for our relatively short proofs
given below.

2. Classical transport equations in phase space. The classical Vlasov equation
(2) is a special case of the more general class of transport equations on phase
space. Let ν again denote the time-dependent number density on classical
phase space R

d × R
d. We let w : Rd → R

d be a smooth map and consider the
following linear transport equation

∂tν + w(p) · ∂qν = 0. (5)

The classical Vlasov equation (2) is simply (5) with w being the identity func-
tion.

Before treating (5) more generally, let us focus first on the case of the
classical Vlasov equation. This case has been previously treated by Smulevici
[13], we include the discussion here to set the stage for the general case, and to
showcase how the analysis simplifies due to the Galilean (instead of Lorentzian)
symmetry of the problem. The t-weights in the weighted energy estimates that
drive both the temporal decay for the linear wave equation in the original
Klainerman–Sobolev estimate [6] and the analogue for the relativistic Vlasov
equation are derived from the Lorentz-boost vector fields. Here, for the classical
Vlasov equation, we will instead take advantage of the Galilean boosts: if ν
solves (2), then so does the function

(t, q, p) 	→ ν(t, q + tp0, p + p0)

for any p0 ∈ R
d. The corresponding infinitesimal generators of these symme-

tries are given by the vector fields Wi := t∂qi
+∂pi

, where i ∈ {1, . . . , d}. That
is to say, if ν is a solution to (2), then so is Wiν. We see that Wi has an
obvious t-weight; this is the factor that will drive the decay for large times.
The dispersive estimate of Proposition 1 then follows from the following two
Lemmas.

Lemma 2. (Conservation laws). If ν solves (5), and F : Rd × R → R, then
∫∫

Rd×Rd

F (p, ν(t, q, p)) dp dq

is constant in time when it is well-defined.

Sketch of proof. When F is differentiable in the second factor, then F (p, ν)
is a classical solution also to (5) which is a conservation law in divergence
form. Provided F (p, ν) decays suitably at infinity the spatial integral

∫
Rd w(p) ·

∂qF (p, ν) dq vanishes by the divergence theorem, and the conservation law
holds. For more general F we approximate by mollified versions. �
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Lemma 3. (“Klainerman–Sobolev” for classical Vlasov). If ν solves (2), then

|t|d‖ν(t,—)‖L∞(Rd) ≤
∫∫

Rd×Rd

|W1W2 · · · Wdν(t, q, p)| dp dq.

Proof. Writing Q(q) := (−∞, q1) × (−∞, q2) × · · · × (−∞, qd) for the orthant
below q, the fundamental theorem of calculus, applied to ν which we assume
to decay suitably at infinity, yields

ν(t, q) =
∫

Q(q)

∂q1∂q2 · · · ∂qd
ν(t, q′) dq′.

Next, observing that if ν decays suitably at infinity,
∫

Rd

∂pi
ν(t, q, p′) dp′ = 0.

This implies that

tdν(t, q) =
∫

Q(q)

∫

Rd

W1 · · · Wdν(t, q′, p′) dp′ dq′

and the lemma follows. �

Putting together the two lemmas, we have that

|t|d‖ν(t,—)‖L∞(Rd) ≤
∫∫

Rd×Rd

|W1 · · · Wdν(0, q, p)| dp dq

=
∫∫

Rd×Rd

|∂p1 · · · ∂pd
ν(0, q, p)| dp dq ≤ ‖ν(0,—)‖W d,1(R2d).

This gives Proposition 1 for |t| ≥ 1. For |t| ≤ 1 we use that spatial translations
∂qi

are also Galilean symmetries, and hence

‖ν(t,—)‖L∞(Rd) ≤
∫∫

Rd×Rd

|∂q1 · · · ∂qd
ν(t, q, p)| dp dq

with the right-hand side being a conserved quantity controlled also by the
norm ‖ν(0,—)‖W d,1(R2d).

Remark 4. This argument illustrates the basic structure of a proof using the
commuting vector field method. Using the symmetries of the equation one
gets space–time weighted integral conservation laws. This conservation law is
converted into a pointwise decay estimate by way of a Sobolev inequality.

Returning to the more general case (5), we see immediately that if the
Jacobian matrix of the mapping w is nonsingular, then we can invert the
mapping and consider ν as a function of (t, q, w). In this case (5) reduces to
the classical Vlasov equation and the above arguments go through mutatis
mutandis giving 〈t〉−d decay for the solutions. If we let w(p) = p/

√
1 + |p|2

for example, the equation (5) becomes the relativistic Vlasov equation on the
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Minkowski space. So this gives an alternative proof for its dispersive decay.
(Note that the velocity integral for ν would also have to be suitably modified;
see the much more exhaustive treatment in [4].)

The situation becomes somewhat more interesting when w has critical
points. We start with an example.

Proposition 5. Let d = 1 and w = p2, then for every C, ε > 0, there exists a
smooth solution ν of (5) and a large time T such that

ν(T, 0) ≥ C〈T 〉−ε‖ν(0,—)‖W 1,1(R2).

Proof. Fix φ to be a radial bump function on R
2 that is identically 1 in the unit

disc and vanishes outside the disc of radius 2. Denote by φλ(q, p) = λφ(λq, λp);
for all λ ≥ 1 we have, by scaling, that ‖φλ‖W 1,1(R2) is uniformly bounded by
some constant C ′. Let ν(t, q, p) = φλ(q − tp2, p); this solves (5). We have the
following lower bound

ν(t, 0) ≥ λ

∫

{p2+t2p4<λ−2}

dp = λ

√√
4λ−2t2 + 1 − 1

2t2
.

This implies, in particular, that

ν(λ, 0) ≥
√√

5 − 1
2

.

So choosing T = λ sufficiently large such that for our given C and ε the
inequality

CC ′〈T 〉−ε ≤ 1
2

holds, we obtain the desired counterexample. �

Remark 6. The equation

∂tν + p2∂qν = 0

considered in the previous proposition is the classical phase-space-transport
analogue of the Airy equation

∂tφ − ∂3
xxxφ = 0.

This latter equation has a well-known L1—L∞ decay estimate with a 〈t〉−1/3

rate [15, Chapter 8]. Here we see a difference between the classical and the
quantum pictures: in the latter a critical point of the dispersive relation w gives
a reduced rate of decay, in the former such critical points invalidate the decay
estimates entirely. This difference can be understood in part by the Heisenberg
uncertainty principle for quantum systems, which disallows initial data like φλ

which concentrates both in physical and frequency space.

Let us now return to the general equation (5) in arbitrary spatial dimensions
d. First, we notice that the spatial translation remains a symmetry of these
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equations. Therefore in the spirit of vector field method, we observe that for
any multiindex α, we have that, by Lemma 2, the integral

∫

Rd×Rd

∣∣∂α
q ν(t, q, p)

∣∣ dp dq

is conserved in time. Therefore by the Sobolev inequality, we have boundedness
of solutions to (5):

ν(t, q) ≤ ‖ν(0,—)‖W d,1(R2d). (6)

This can be upgraded to partial decay provided the singularity in the dispersion
relation is not too bad. An example is the following.

Definition 7. We say that the mapping w : R
d → R

d has rank at least k if
there exists a locally finite cover of Rd by open sets Uα such that for every α,
there exists a matrix valued function Bα : Uα → M

d×d and a k-dimensional
subspace Vα of Rd such that at every point p ∈ Uα, the matrix product Bα ·∂w
is the projection from R

d → Vα.

Theorem 8. If the mapping w has rank at least k, then solutions of (5) verify
the decay estimate

ν(t, q) ≤ 〈t〉−k‖ν(0,—)‖W d,1(R2d,�(p) dp dq),

where the right-hand side denotes the weighted Sobolev space with some weight
	(p) which depends on w but not on the solution ν.

Proof. First observe that the analogues of the Galilean symmetry vector fields
are Wi := ∂pi

+t
∑d

j=1(∂pi
wj)∂qj

. If ν solves (5), then so does Wiν. By linearity,
we see also that for any set of functions fi : Rd → R and g : Rd → R, the
function

d∑

i=1

fi(p)Wiν(t, q, p) + g(p)ν(t, q, p)

also solves (5).
By assumption there exists a preferred locally finite cover Uα of R

d. Let
χα denote a subordinate partition of unity, and let Bα be the corresponding
matrix valued functions. Now fix α. Without loss of generality, we can assume
that Vα is equal to the span of {e1, . . . , ek}, the first k standard vectors. Then
for � ∈ {1, . . . , k} we can define

W̃�να :=
d∑

i=1

Bα,�iWiνα + (∂pi
Bα,�i)να,

where

να(t, q, p) := χα(p)ν(t, q, p).

Now, since να is obtained from ν with a velocity cut-off, whenever ν solves
(5) so does να. Then the discussion at the beginning of this proof shows that
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W̃�να is a solution also. Using the properties of Bα · ∂w as a projection, we
have that in fact

W̃�να = t∂q�
να +

d∑

i=1

∂pi
(Bα,�iνα) .

This allows us to write

tkνα(t, q) =
∫

Q(q)

∫

Uα

W̃1W̃2 · · · W̃k∂qk+1 · · · ∂qd
να(t, q′, p) dp dq′

where Q(q) = (−∞, q1) × · · · × (−∞, qd) as before. This implies

tkνα(t, q) ≤
∫∫

Rd×Uα

∣∣∣W̃1W̃2 · · · W̃k∂qk+1 · · · ∂qd
να(t, q′, p)

∣∣∣ dp dq′.

The integral on the right is a conserved quantity, and so is entirely determined
by the initial data. In particular, this shows that there exists some function
	α : Uα → R+ such that

tkνα(t, q) ≤ ‖ν(0,—)‖W d,1(Rd×Uα,�α(p) dp dq).

Now, noting that

ν(t, q) =
∑

α

να(t, q)

by our partition of unity, we have that there exists some 	 : Rd → R+ such
that

tkν(t, q) ≤ ‖ν(0,—)‖W d,1(R2d,�(p) dp dq).

Interpolating with the boundeness we have the result as claimed. �

Remark 9. Theorem 8 should be compared with Fourier restriction theorems
to submanifolds with some degree of degeneracy in the curvature. A classical
example of this scenario is that corresponding to the decay estimates for the
linear wave equation [11, Section 11.3.4].

Remark 10. The velocity cut-off used in the proof above is analogous to fre-
quency cut-offs in the study of solutions to constant coefficient partial differ-
ential equations.

3. Linear Schrödinger equation. Having treated the classical Vlasov equa-
tion and its cousins, let us now move our attention to the linear Schrödinger
equation

∂tu + i�u = 0 (7)

where u : R × R
d → C. Equation (7) can be understood as the quantum

analogue of (2): indeed we can simple-mindedly obtain Schrödinger’s equation
from the classical Vlasov equation by using the quantization p 	→ i∂q relating
the classical and quantum phase spaces.



Vol. 110 (2018) A commuting-vector-field approach 281

Our lesson from Vlasov equation suggests that we should look to using the
Galilean boost in our vector field method. Our quantization procedure suggests
that the correct linear operator should be

Wj : u 	→ t∂qj
u +

i

2
qju. (8)

Indeed one can check that if u solves (7), then so does Wju. The associated
Klainerman–Sobolev estimate is

Lemma 11. (“Klainerman–Sobolev” for Schrödinger). Let u be a smooth solu-
tion of (7) such that the trace u(t,—) for every t is in Schwartz space. Then
there exists a constant C depending only on the dimension d such that

|t|d‖u(t,—)‖2
L∞(Rd) ≤ C

∑

|α|+|β|=d

‖Wαu(t,—)‖L2(Rd)‖W βu(t,—)‖L2(Rd)

where α, β are multiindices and if α = (α1, α2, · · · , αd), we have the operator
Wα = Wα1

1 Wα2
2 · · · Wαd

d .

Remark 12. Note that [Wj ,Wk] = 0, so the order in which the components of
Wα are listed does not matter.

Proof. Letting again Q(q) be the orthant below q, we note that (here ū denotes
the complex conjugate)

u(t, q)ū(t, q) =
∫

Q(q)

∂1∂2 · · · ∂d[u(t, q′)ū(t, q′)] dq′.

Next notice that we have the Leibniz-like rule

t∂j [uv̄] = tv̄∂ju + tu∂j v̄ = v̄Wju + uWjv.

So our lemma follows from Cauchy–Schwarz. �

To better capture the decay properties, we introduce the dyadic norm Xθ,q:
let φk denote a sequence of bump functions such that

• ∑
k∈Z

φk ≡ 1;
• φk is supported in the annulus of of inner radius 2k−1 and outer radius

2k+1;
• φk is smooth, real-valued, and non-negative.

We define
‖f‖Xθ,q :=

∥∥∥
(
2θk‖φkf‖L2

)
k∈Z

∥∥∥
�q

. (9)

Quite obviously, we have

‖f‖Xθ,2 ≈ ‖ |—|θf(—)‖L2 . (10)

Theorem 13. (Dispersive estimate for Schrödinger). There is a constant C
such that every solution u of (7) such that the trace u(t,—) for every t is
in Schwartz space satisfies

|t|d/2‖u(t,—)‖L∞(Rd) ≤ C ‖u(0,—)‖Xd/2,1(Rd) .
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Proof. Using that Wju solves also (7) and that the L2 mass is conserved for
solutions of Schrödinger equation, we see that Lemma 11 implies

|t|d‖u(t,—)‖2
L∞ ≤ C

∑

|α|+|β|=d

‖(—)αu(0,—)‖L2‖(—)βu(0,—)‖L2 . (11)

This implies directly that

|t|d/2‖u(t,—)‖L∞ ≤ C‖〈—〉du(0,—)‖L2

which, while does in fact give the correct temporal decay, has a spatial weight
that is too strong compared to scaling (see Remark 14 below). To tighten the
weights we use our dyadic decomposition. We write for uk the solution to (7)
with initial data uk(0, q) = φk(q)u(0, q). By linearity we have that

u =
∑

k∈Z

uk.

Equation (11) implies

|t|d/2‖u(t,—)‖L∞ ≤ td/2
∑

k∈Z

‖uk(t,—)‖L∞

�d

∑

k∈Z

⎛

⎝
∑

|α|+|β|=d

‖(—)αuk(0,—)‖L2‖(—)βuk(0,—)‖L2

⎞

⎠

1
2

.

Using the restricted spatial support, we have that

‖(—)αuk(0,—)‖L2 ≤ 2(k+1)|α|‖uk(0,—)‖L2

so

|t|d/2‖u(t,—)‖L∞ �d

∑

k∈Z

2kd/2‖uk(0,—)‖L2

as claimed. �

Remark 14. The classical dispersive inequality for Schrödinger’s equation takes
the form [15]

|t|d/2‖u(t,—)‖L∞ �d ‖u(0,—)‖L1 .

One easily checks that Xd/2,1 embeds strictly into L1, so Theorem 13 follows
from the classical dispersive inequality for Schrödinger’s equation. We shall
show later that Theorem 13 also implies the classical L1–L∞ estimate, in
spite of the fact that there exists L1 functions not in Xd/2,1.

Remark 15. The dyadic decomposition in physical space that is used to re-
cover the correct scaling of |q|d/2 from the more lossy naive estimate (11) is
reminiscent of an argument given by Klainerman in [8]. There, the aim is to re-
cover the Strichartz estimate for wave equations from the Klainerman–Sobolev
inequalities. The linear dispersive estimate for wave equations, however, has
some built-in smoothing property that appears to gain (d − 1)/2 derivatives
(on the L1 scale) compared to (Klainerman–)Sobolev. Klainerman overcame
this by a phase-space localization procedure.
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(We note in passing that the estimate in Theorem 13 also exhibits smooth-
ing. Compared to Sobolev embedding it gains d/2 derivatives in the L2 scale.)

In terms of the pointwise estimate, one should note that the dyadic decom-
position of initial data in physical space is related to a dyadic decomposition
in frequency space. The intuition from the Vlasov equation suggests that the
“wave packets” which contribute to the field at time t at q = 0 that originated
from time 0 at |q| ≈ 2k will have velocity ≈ 2k/t. That is to say, we expect
u(1, 0) ≈ ∑

Pkuk(1, 0) where Pk is the standard Littlewood-Paley projector.
So frequency space and physical space decompositions are expected to have
similar effects in the course of this proof.

With real interpolation (see [1, Chapter 5] for the results needed) we have,
as an immediate corollary, the following result.

Corollary 16. For every θ ∈ [0, 1] there exists C depending on θ such that the
estimate

|t|θd/2‖u(t,—)‖L2/(1−θ) ≤ C‖u(0,—)‖Xθd/2,2

holds for solutions u of (7).

To control the Lp norms on time slices when |t| is small, we can use the
Sobolev embedding Hθd/2(Rd) ↪→ L2/(1−θ)(Rd) for θ ∈ [0, 1). The conservation
of the Hs norms for the Schrödinger equation implies then

Corollary 17. For every θ ∈ [0, 1), there exists C depending on θ such that the
estimate

〈t〉θd/2‖u(t,—)‖L2/(1−θ) ≤ C
[
‖ |—|θd/2u(0,—)‖L2 + ‖u(0,—)‖Hθd/2

]

holds for solutions u of (7).

Remark 18. Note that Corollary 17 does not apply to the end-point L∞ case
due to the failure of the Sobolev embedding in that case, as well as the failure
of having an Xd/2,2 estimate (we only have Xd/2,1). Corollaries 16 and 17
should be compared with Theorem 8. In Theorem 8 “regularity in the p di-
rection (velocity/frequency space)” is what guarantees long-time decay, while
“regularity in the q direction (position/physical space)” is what guarantees
short-time boundedness. Analogously, in Corollary 16 it is weights in physical
space (which by the Fourier transform is equivalent to regularity in frequency
space in the quantum picture) that guarantees the long-time decay of solutions,
while regularity in physical space is again used to guarantee short-time bound-
edness in Corollary 17. That Theorem 8 can get the end-point L∞ estimate is
down to our working in L1 instead of L2 based spaces in that scenario.

Remark 19. The conservation of Hs norms for solutions to (7) is part of the
more general fact that if T is a Fourier multiplier, then ‖Tu(t,—)‖L2 is con-
served for (7). This fact is obvious using the Fourier representation of the
solutions, and should be compared to Lemma 2 for the Vlasov equation.
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We next prove Strichartz-type estimates. For convenience we use U(t) to
denote the linear propagator for the Schrödinger equation; that is, U(t)f solves
(7) with initial data f . Noting

‖φkf‖L2 ≤ C · 2kd/2‖f‖L∞ ,

we have that

‖f‖X−d/2,∞ � ‖f‖L∞ . (12)

So by Theorem 13 we get that

|t|d/2‖U(t)f‖X−d/2,∞ ≤ C‖f‖Xd/2,1 . (13)

On the other hand, mass conservation gives

‖U(t)f‖X0,2 = ‖f‖X0,2 . (14)

Interpolating between the two (see [1, Theorem 5.6.1]), we obtain the following
lemma.

Lemma 20. For every σ ∈ [0, d/2), there exists a constant C such that for
every f ∈ S(Rd)

|t|σ‖U(t)f‖X−σ,2 ≤ C‖f‖Xσ,2 .

Remark 21. This lemma, and the Strichartz-type estimate to be given below,
are really statements concerning time-decay and integrability (as a function
of time) of local mass. Letting σ = θd/2 for θ ∈ [0, 1), we see that the norm
X−σ,2 has the same scaling as L2/(1−θ) that appears in Corollary 16; the two
norms are, however, not comparable. In terms of scaling, this lemma and the
Strichartz estimate to follow are sharp.

Now, letting Φ,Ψ be functions on R × R
d, Lemma 20 implies that for

σ ∈ [0, d/2):

|t−s|σ 〈U(t)∗Φ(t,—), U(s)∗Ψ(s,—)〉 �d,σ ‖Φ(t,—)‖Xσ,2‖Ψ(s,—)‖Xσ,2 , (15)

where 〈—,—〉 denotes the L2(Rd,C) pairing. Recall now the Hardy-Little-
wood-Sobolev lemma, which states that when g = |—|−σ ∗ f are functions on
the real line, then

‖g‖Lq(R) � ‖f‖Lp(R)

when q > p > 1 and 0 < σ = 1+q−1−p−1. Applying to the case q−1+p−1 = 1
which requires p = 2/(2 − σ), we get from (15)
∫∫

R2

〈
U(t)∗Φ(t,—), U(s)∗Ψ(s,—)

〉
ds dt �d,σ ‖Φ(t,—)‖Lp

t Xσ,2‖Ψ(s,—)‖Lp
sXσ,2 .

(16)
So by the TT ∗ argument we get finally
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Theorem 22. (Xθ,q Strichartz-type inequalities for Schrödinger). The Schrödin-
ger propagator U(t) satisfies

‖U(t)φ‖
Lp′

t X−σ,2 �d,σ ‖φ‖L2(Rd),
∥∥∥∥∥∥

∫

R

U(s)∗Φ(s,—) ds

∥∥∥∥∥∥
L2(Rd)

�d,σ ‖Φ‖Lp
t Xσ,2 ,

provided (p, p′, σ) satisfies
1
p

+
1
p′ = 1, 1 < p =

2
2 − σ

< 2.

Remark 23. We can also recover the standard Lp decay estimates from Theo-
rem 13, which leads also to a proof of the standard Strichartz inequality. We
claim that optimizing Theorem 13 allows us to show that in fact

|t|d/2‖u(t,—)‖L∞(Rd) ≤ C‖u(0,—)‖L1(Rd). (17)

The main idea is to exploit the fact that the L∞ norm is translation invariant,
but not the norm Xd/2,1. Denoting by τy the translation operator

τyf(x) = f(x + y),

we can optimize Theorem 13 to read

|t|d/2‖u(t,—)‖L∞(Rd) ≤ C inf
y∈Rd

‖τyu(0,—)‖Xd/2,1 .

Applying this estimate to u(0, x) being the characteristic function of any cube
in R

d, we note that the infimum is bounded above by the case when the
translation brings the center of the cube to the origin, in which case a direct
computation yields that

inf
y∈Rd

‖τyu(0,—)‖Xd/2,1 ≤ C‖u(0,—)‖L1(Rd). (18)

Finally, by linearity of the equation we can approximate arbitrary initial data
by simple functions, and use the uniform bound (18) for cubes to conclude
that (17) holds.

4. Airy equation. We finish our exposition with a discussion of some partial
progress for the Airy equation

∂tu − ∂3
xxxu = 0 (19)

where u : R×R → R. As we have seen previously, the classical analogue of this
equation fails to exhibit any decay. On the other hand, by oscillatory integral
techniques it is known that solutions enjoy a decay estimate of the form [15,
Chapter 8]

|t| 1
3 |u(t, x)| ≤ C‖u(0,—)‖L1(R). (20)

The question is: can decay for the Airy equation be proven using commuting-
vector-field techniques? Here, we show how to recover some decay estimates
using only commuting differential operators.

Returning to the proof of Theorem 8, we see that it is possible to construct
classical commuting vector fields by using analogues of Galilean symmetry
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and the dispersion relation function w. The quantum analogue (which we have
already used in studying the Schrödinger equation) has an easy interpretation.
Let P denote some real polynomial and consider the equation

i∂tu + P (i∂x)u = 0.

Taking the formal space–time Fourier transform, we expect solutions to be
Fourier transforms of measures supported on the surface

ΣP := {τ + P (ξ) = 0}.

Now let V be any vector field in Fourier space that is tangent to ΣP , then V (ũ)
is, at least formally, another measure supported on ΣP , and hence the operator
corresponding to acting by V on the Fourier side is expected to commute with
the evolution equation.

Remark 24. The same idea has been previously used by Chen and Zhou to
derive decay estimates for hyperbolic systems via pseudodifferential commuta-
tors [2]. More recently Donninger and Krieger studied equations with potential
via a distorted Fourier transform, and proved decay estimates using operators
build also from vector fields on the distorted Fourier side [3].

In the case P (z) = z2, we have Schrödinger’s equation. The differential of
the defining function of ΣP is dτ + 2ξdξ, and hence the vector field 2ξ∂τ − ∂ξ

is tangent to ΣP . Taking the Fourier transform we have that this corresponds
to the operator 2t∂x + ix which we used to prove Theorem 13.

The Airy equation (19) corresponds to P (z) = z3. The same procedure
yields the tangent vector field 3ξ2∂τ − ∂ξ in Fourier space, which corresponds
to the differential operator

W := 3t∂2
xx + x (21)

on the physical side, which we can check to indeed commute with (19). With
this operator we can prove a space–time weighted L∞ estimate as follows.
Observe that

3
2
t[∂xu(t, x)]2 =

x∫

−∞
3∂xu(t, x′)∂2

xxu(t, x′) dx′

=

x∫

−∞
∂xu(t, x′)Wu(t, x′) dx′ −

x∫

−∞
x′u(t, x′)∂xu(t, x′) dx′

=

x∫

−∞
∂xu(t, x′)Wu(t, x′) dx′ − 1

2

x∫

−∞
x′∂x[u(t, x′)]2 dx′

=

x∫

−∞
∂xu(t, x′)Wu(t, x′) dx′ − 1

2
xu(t, x)2 +

1
2

x∫

−∞
[u(t, x′)]2 dx′.
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Reorganizing the terms we obtain

3t[∂xu(t, x)]2 + x[u(t, x)]2 = 2

x∫

−∞
∂xu(t, x′)Wu(t, x′) dx′ +

x∫

−∞
[u(t, x′)]2 dx′

≤ 2‖∂xu(t,—)‖L2‖Wu(t,—)‖L2 + ‖u(t,—)‖2
L2 .

(22)
The terms to the right of the inequality are all conserved in time, due to the
L2 conservation property of the Airy equation. In other words, we have proven

Proposition 25. If u solves (19), then

3t[∂xu(t, x)]2 + x[u(t, x)]2 ≤ 2‖∂xu(0,—)‖L2‖xu(0,—)‖L2 + ‖u(0,—)‖2
L2 .

The above proposition is a far-cry from the estimate (20). In fact, we are not
able to recover exactly the standard decay estimate (20); below we will show
how to get a similar local energy decay statement with the correct scaling. But
first, let us examine some properties of Proposition 25. Using the conservation
of L2 we can easily obtain uniform boundedness

|u(t, x)|2 � ‖∂xu(0,—)‖L2‖u(0,—)‖L2 .

And hence for any x0, Proposition 25 implies uniform decay in forward time
of |∂xu(t, x)| for x ≥ x0, with rate t1/2. This can be explained heuristically
by the fact that, since ∂2

xx is a negative operator on L2, we expect (drawing
connection to the classical picture) that the corresponding wave-packets for
the Airy equation should move to the left, and hence pointwise decay on any
right half line should be easier to prove. The decay rate of t1/2 is correct, in
terms of scaling, based on (20). By using the fundamental solution one can
obtain the following decay estimates for the Airy equation:

|∂xu(t, x)| � |t|−1/3‖∂xu(0,—)‖L1 , |∂xu(t, x)| � |t|−2/3‖u(0,—)‖L1 .

From these we obtain the interpolated estimate

|∂xu(t, x)|2 � |t|−1‖∂xu(0,—)‖L1‖u(0,—)‖L1 ,

the right-hand side of which having the same scaling as the right-hand side
which appears in Proposition 25. Multiplying this inequality by 〈x〉−1−2ε and
integrating, we obtain as a consequence the local energy decay

|t| ‖〈—〉− 1
2−ε∂xu(t,—)‖2

L2 � ‖∂xu(0,—)‖L1‖u(0,—)‖L1 .

A similar estimate (with the same scaling) can be derived as a consequence of
Proposition 25.

Corollary 26. If u solves (19), then

|t| ‖〈—〉− 1
2−ε∂xu(t,—)‖2

L2 �ε ‖∂xu(0,—)‖L2‖〈—〉u(0,—)‖L2 + ‖u(0,—)‖2
L2 .

Proof. Multiply the inequality in Proposition 25 by 〈x〉−1−2ε and integrate in
x, noting that the weight is integrable. The proof concludes by noting that
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∣∣∣∣∣∣

∫

R

x

〈x〉−1−2ε
|u(t, x)|2 dx

∣∣∣∣∣∣
≤ ‖u(t,—)‖2

L2 = ‖u(0,—)‖2
L2 .

�

Remark 27. We are able to obtain a correctly-scaled local-energy decay esti-
mate for ∂xu. It remains open whether a correctly-scaled decay estimate for
u itself is possible using a commuting vector field approach. If one takes the
point of view as above where the commuting linear operators used correspond
to tangential vector fields on the Fourier side, then the answer seems to be
in the negative. This is based on the fact that tangential vector fields on the
Fourier side whose Fourier transforms are differential operators can have only
weights in integer powers of t. Coupled with L2 based conservation laws this
suggests that only estimates with decay in the order of t−k/2 where k is an inte-
ger is possible via this technique. Hence our result for the Airy equation which
scales the same as the decay estimate that is interpolated between L1—W 1,∞

decay and W 1,1—W 1,∞ decay.
For another example, one can also consider equations of the form

i∂tu + ∂2k
xx···xu = 0.

Fourier techniques give decay rates of the form

|t|1/2k‖u(t,—)‖L∞ � ‖u(0,—)‖L1 .

Running the same argument essentially as in the case of Section 3 with the
linear operator

W = 2kt∂2k−1
xx···x ± ix,

we obtain a (correctly scaled) estimate of the form

t|∂2k−2
xx···xu(t, x)|2 � ‖∂2k−2

xx···xu(t, x)‖L2‖xu‖L2 .

It remains conceivable that estimates of the lower-order derivative terms
can be achieved by a commuting-operator approach. For that to hold, however,
one would likely need to allow the commuting operator to be pseudo-differential
on one or both of the physical and Fourier sides. And this, in a way, defeats
the purpose of this exercise.
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