© 2017 Springer International P 0003-889X/17/050461-9 published online August 22, 2017
DOL 10 1007/s00013-017-1082-8 DOI 10.1007/s00013-017-1082-8 **Archiv der Mathematik**

On the image, characterization, and automatic continuity of (σ, τ) -derivations

Amin Hosseini

Abstract. The first main theorem of this paper asserts that any (σ, τ) derivation d, under certain conditions, either is a σ -derivation or is a scalar multiple of $({\sigma} - {\tau})$, i.e. $d = \lambda({\sigma} - {\tau})$ for some $\lambda \in \mathbb{C} \setminus \{0\}$. By using this characterization, we achieve a result concerning the automatic continuity of (σ, τ) -derivations on Banach algebras which reads as follows. Let A be a unital, commutative, semi-simple Banach algebra, and let $\sigma, \tau : A \to A$ be two distinct endomorphisms such that $\varphi \sigma(e)$ and $\varphi \tau(e)$ are non-zero complex numbers for all $\varphi \in \Phi_{\mathcal{A}}$. If $d : \mathcal{A} \to \mathcal{A}$ is a (σ, τ) -derivation such that φd is a non-zero linear functional for every $\varphi \in \Phi_{\mathcal{A}}$, then d is automatically continuous. As another objective of this research, we prove that if \mathfrak{M} is a commutative von Neumann algebra and $\sigma : \mathfrak{M} \to \mathfrak{M}$ is an endomorphism, then every Jordan σ -derivation $d : \mathfrak{M} \to \mathfrak{M}$ is identically zero.

Mathematics Subject Classification. Primary 47B47; Secondary 13N15, 46L10.

Keywords. Derivation, σ -derivation, (σ, τ) -derivation, von Neumann algebra.

1. Introduction and preliminaries. Throughout the paper, A and \mathfrak{M} will denote a Banach algebra and a von Neumann algebra, respectively. If A is unital, then **e** stands for its unit element. Before everything else, let us recall some basic definitions and set the notation which is used in the sequel. A non-zero linear functional φ on A is called a *character* if $\varphi(ab) = \varphi(a)\varphi(b)$ for every $a, b \in \mathcal{A}$. Throughout this article, $\Phi_{\mathcal{A}}$ denotes the set of all characters on \mathcal{A} . We know that, for an arbitrary element $\varphi \in \Phi_{\mathcal{A}}$, ker φ , the kernel of φ , is a maximal ideal of A (see [\[4](#page-7-0), Proposition 3.1.2]).

Let H be a Hilbert space. By $\mathcal{B}(\mathcal{H})$ we denote the set of all bounded linear mappings from H into itself. For each subset \mathfrak{M} of $\mathcal{B}(\mathcal{H})$, let \mathfrak{M}' denote the

set of all bounded linear maps on H commuting with every linear mapping of \mathfrak{M} . Clearly, \mathfrak{M}' is a Banach algebra containing the identity operator \mathcal{I} . If \mathfrak{M} is invariant under the ∗-operation, that is, if $X \in \mathfrak{M}$ implies $X^* \in \mathfrak{M}$, then \mathfrak{M}' is a C^* -algebra acting on the Hilbert space \mathcal{H} . A von Neumann algebra on the Hilbert space H is a \ast -subalgebra M of $\mathcal{B}(\mathcal{H})$ such that $\mathfrak{M} = (\mathfrak{M}')' = \mathfrak{M}''$. For more details see [\[18\]](#page-8-0). By \mathfrak{M}_{sa} we denote the set of all self-adjoint elements of \mathfrak{M} (i.e. $\mathfrak{M}_{sa} = \{A \in \mathfrak{M} \mid A^* = A\}$) and the set of all projections in \mathfrak{M} is denoted by $\mathcal{P}(\mathfrak{M})$ (i.e. $\mathcal{P}(\mathfrak{M}) = \{P \in \mathfrak{M} \mid P^2 = P, P^* = P\}$). Elements in \mathfrak{M} which can be written as a finite real-linear combinations of mutually orthogonal projections in \mathfrak{M} are usually called algebraic elements. It is known that the set of all algebraic elements of \mathfrak{M} is norm dense in \mathfrak{M}_{sa} . For more details see [\[10,](#page-7-1)[13](#page-7-2)[,16](#page-8-1)].

Let $\sigma, \tau : A \to A$ be linear maps. A linear mapping $d : A \to A$ is called a (σ, τ) -derivation (resp. Jordan (σ, τ) -derivation) if $d(ab) = d(a)\sigma(b) + \tau(a)d(b)$ (resp. $d(a^2) = d(a)\sigma(a) + \tau(a)d(a)$) holds for all $a, b \in A$. In the case that $\sigma = \tau$, the linear mapping d is called a σ -derivation (resp. Jordan σ -derivation). Clearly, if $\sigma = \tau = \mathcal{I}$, the identity mapping on A, then we reach to the usual notion of a derivation (resp. Jordan derivation) on the algebra A. Note that every homomorphism θ is a $\frac{\theta}{2}$ -derivation, since $\theta(ab) = \theta(a)\frac{\theta(b)}{2} + \frac{\theta(a)}{2}\theta(b)$. Hence, the theory of σ -derivations covers the theory of derivations and homomorphisms (see [\[7](#page-7-3)[–9](#page-7-4)[,11](#page-7-5)]). So far, many studies have been done about (σ, τ) -derivations. As can be seen, most of these articles have focused on the commutativity of rings, automatic continuity, amenability, stability, and so on (for instance, see $[1,2,5,6,11,12]$ $[1,2,5,6,11,12]$ $[1,2,5,6,11,12]$ $[1,2,5,6,11,12]$ $[1,2,5,6,11,12]$ $[1,2,5,6,11,12]$ $[1,2,5,6,11,12]$ $[1,2,5,6,11,12]$. It is noteworthy that the theory of automatic continuity of derivations has a fairly long history. Results on automatic continuity of linear operators defined on Banach algebras comprise a fruitful area of research intensively developed during the last sixty years. The references $[3,4]$ $[3,4]$ $[3,4]$ review most of the main achievements obtained during the last sixty years. Furthermore, the problem of automatic continuity is also considered for σ -derivations (see $[7,8,11]$ $[7,8,11]$ $[7,8,11]$ $[7,8,11]$). In this study, by getting idea from $[3,$ $[3,$ Proposition 1.8.10], we offer a characterization of (σ, τ) -derivations on Banach algebras. The first main theorem reads as follows.

Let A be a unital, commutative, semi-simple Banach algebra, and let $\sigma, \tau : A \to A$ be two endomorphisms such that $\varphi \sigma(\mathbf{e})$ and $\varphi \tau(\mathbf{e})$ are nonzero complex numbers for all $\varphi \in \Phi_A$. If $d : A \to A$ is a (σ, τ) -derivation such that φd is a non-zero linear functional for every $\varphi \in \Phi_{\mathcal{A}}$, then either

(1) $\sigma = \tau$ and d is a σ -derivation; or

(2) $\sigma \neq \tau$ and $d = \lambda(\sigma - \tau)$ for some $\lambda \in \mathbb{C} \setminus \{0\}.$

From the above-mentioned theorem, we achieve a corollary concerning the automatic continuity of (σ, τ) -derivations which reads as follows. Let A be a unital, commutative, semi-simple Banach algebra, and let $\sigma, \tau : A \to A$ be two distinct endomorphisms such that $\varphi \sigma(e)$ and $\varphi \tau(e)$ are non-zero complex numbers for all $\varphi \in \Phi_{\mathcal{A}}$. If $d : \mathcal{A} \to \mathcal{A}$ is a (σ, τ) -derivation such that φd is a non-zero linear functional for every $\varphi \in \Phi_{\mathcal{A}}$, then d is automatically continuous. In the current study, we prove a Singer–Wermer type theorem for Jordan σ -derivations on von Neumann algebras. Now, we offer a short background

in this issue. In 1955, Singer and Wermer [\[17\]](#page-8-2) achieved a fundamental result which started a subsequent investigation about the image of derivations on Banach algebras. The result states that if A is a commutative Banach algebra and $d : \mathcal{A} \to \mathcal{A}$ is a bounded derivation, then $d(\mathcal{A}) \subseteq Rad(\mathcal{A})$, where $Rad(\mathcal{A})$ denotes the Jacobson radical of A . It is evident that if A is semi-simple, i.e. $Rad(\mathcal{A}) = \{0\}$, then d is identically zero. In this paper, we show that if \mathfrak{M} is a commutative von Neumann algebra and $\sigma : \mathfrak{M} \to \mathfrak{M}$ is an endomorphism, then every Jordan σ -derivation $d : \mathfrak{M} \to \mathfrak{M}$ is identically zero. From this theorem it is obtained that if \mathfrak{M} is a commutative von Neumann algebra and $\sigma, \tau : \mathfrak{M} \to \mathfrak{M}$ are *-linear mappings such that $\frac{\sigma + \tau}{2}$ is an endomorphism, then every Jordan $* - (\sigma, \tau)$ -derivation $d : \mathfrak{M} \to \mathfrak{M}$ is identically zero.

2. Characterization of (σ, τ) **-derivations on algebras.** We begin with a characterization of (σ, τ) -derivations on unital, commutative, semi-simple Banach algebras.

Theorem 2.1. *Let* A *be a unital, commutative, semi-simple Banach algebra, and let* $\sigma, \tau : A \to A$ *be two endomorphisms such that* $\varphi \sigma(e)$ *and* $\varphi \tau(e)$ *are non-zero complex numbers for all* $\varphi \in \Phi_{\mathcal{A}}$ *. If* $d : \mathcal{A} \to \mathcal{A}$ *is a* (σ, τ) *-derivation such that* φd *is a non-zero linear functional for every* $\varphi \in \Phi_{\mathcal{A}}$ *, then either*

(1) σ = τ *and* d *is a* σ*-derivation; or*

(2) $\sigma \neq \tau$ *and* $d = \lambda(\sigma - \tau)$ *for some* $\lambda \in \mathbb{C} \setminus \{0\}.$

Proof. Let φ be an arbitrary element of $\Phi_{\mathcal{A}}$. Putting $D = \varphi d$, $\Sigma = \varphi \sigma$, and $\Psi = \varphi \tau$, we have $D(ab) = D(a)\Sigma(b) + \Psi(a)D(b)$ for all $a, b \in \mathcal{A}$. It means that D is a non-zero (Σ, Ψ) -derivation from A into C. Clearly, $\Sigma(\mathbf{e}) = \Psi(\mathbf{e}) = 1$ and so, $D(\mathbf{e}) = 0$. Therefore, ker (D) is a subalgebra of A containing the unit element **e**. According to the main theorem of [\[15](#page-8-3)], D has one of the following forms:

(1) $D = \lambda \varphi_1$, where $\lambda \in \mathbb{C} \backslash \{0\}$ and $\varphi_1 \in \Phi_{\mathcal{A}}$,

(2) There is an element $\varphi_1 \in \Phi_A$ such that $D(ab) = D(a)\varphi_1(b) + \varphi_1(a)D(b)$,

(3) $D = \lambda(\varphi' - \tau')$, where $\lambda \in \mathbb{C} \setminus \{0\}$ and φ', τ' are distinct elements of $\Phi_{\mathcal{A}}$.

In the following, we investigate the above-mentioned three cases.

Case 1: Suppose that D has the first form, i.e. $D = \lambda \varphi_1$. Then $0 = D(e)$ $\lambda \varphi_1(\mathbf{e}) = \lambda$. This contradiction shows that case (1) above is impossible.

Case 2: Suppose that there exists an element φ_1 of Φ_A satisfying

$$
D(ab) = D(a)\varphi_1(b) + \varphi_1(a)D(b).
$$
 (2.1)

On the other side, we have

$$
D(ab) = D(a)\Sigma(b) + \Psi(a)D(b).
$$
\n(2.2)

Comparing (2.1) and (2.2) , we obtain that

$$
(\Sigma - \varphi_1)(b)D(a) + (\Psi - \varphi_1)(a)D(b) = 0 \text{ for all } a, b \in \mathcal{A}.
$$
 (2.3)

If $D(a) = 0$, then $(\Psi - \varphi_1)(a) = 0$. By switching a and b in (2.3) , we get that $(\Sigma - \varphi_1)(a) = 0$. Therefore, we have

$$
(\Psi - \varphi_1)(a) = (\Sigma - \varphi_1)(a) = 0.
$$
 (2.4)

It follows from [\(2.4\)](#page-2-3) that $(\Psi - \varphi_1)(a) + (\Sigma - \varphi_1)(a) = 0$, and it means that

$$
(\Psi - 2\varphi_1 + \Sigma)(a) = 0.
$$
\n(2.5)

If $D(a) \neq 0$, then by considering $a = b$ in [\(2.3\)](#page-2-2) and factoring out $D(a)$, we find that

$$
(\Sigma - 2\varphi_1 + \Psi)(a) = 0. \tag{2.6}
$$

The Eqs. [\(2.5\)](#page-3-0) and [\(2.6\)](#page-3-1) imply that $(\Psi - 2\varphi_1 + \Sigma)(a) = 0$ for all $a \in \mathcal{A}$. Hence, we can write

$$
\Psi - 2\varphi_1 + \Sigma \equiv 0. \tag{2.7}
$$

We know that Φ_A is a linearly independent subspace in \mathcal{A}^{\times} (see [\[3](#page-7-11), p. 38]). Since Ψ , Σ , $\varphi_1 \in \Phi_{\mathcal{A}}$ with $\varphi_1 = \frac{1}{2}(\Psi + \Sigma)$, we have $\Psi = \Sigma = \varphi_1$. Thus $\varphi(\tau(a) - \sigma(a)) = 0$ for all $a \in \mathcal{A}$. Since we are assuming that φ is arbitrary, $\tau(a) - \sigma(a) \in \bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker(\varphi)$. It is well known that in a unital, commutative, and semi-simple complex Banach algebra $\mathcal{A}, \bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker(\varphi) = Rad(\mathcal{A}) = \{0\}.$ Hence, $\tau = \sigma$ and it means that d is a σ -derivation.

Case 3: Suppose that $D = \lambda(\varphi' - \tau')$, where $\lambda \in \mathbb{C}\backslash\{0\}$ and φ' , τ' are distinct elements of $\Phi_{\mathcal{A}}$, i.e. $\varphi' \neq \tau'$. Hence, we can consider an element b_0 of A such that $\varphi'(b_0) = 1$ and $\tau'(b_0) = 0$. In this case, we have $D(b_0) =$ $\lambda(\varphi'(b_0) - \tau'(b_0)) = \lambda$ and further,

$$
\lambda \varphi'(a) = \lambda (\varphi'(ab_0) - \tau'(ab_0))
$$

= $D(ab_0)$
= $D(a)\Sigma(b_0) + \Psi(a)D(b_0)$
= $\lambda(\varphi'(a) - \tau'(a))\Sigma(b_0) + \lambda\Psi(a)$
= $\lambda [(\varphi'(a) - \tau'(a))\Sigma(b_0) + \Psi(a)].$

Since $\lambda \neq 0$ and a is an arbitrary element of A, we have

$$
\varphi' - \Sigma(b_0)(\varphi' - \tau') - \Psi \equiv 0.
$$
\n(2.8)

If $\Sigma(b_0) = 0$, then we find that

$$
\varphi' = \Psi. \tag{2.9}
$$

Now, assume that $\Sigma(b_0) \neq 0$. It follows from (2.8) that

$$
(1 - \Sigma(b_0))\varphi' + \Sigma(b_0)\tau' - \Psi \equiv 0.
$$
\n(2.10)

Since $\tau', \varphi', \Psi \in \Phi_A$ with $(1 - \Sigma(b_0))\varphi' = \Psi - \Sigma(b_0)\tau'$, we have $\Sigma(b_0) = 1$ and consequently,

$$
\tau' = \Psi. \tag{2.11}
$$

From (2.9) and (2.11) we obtain that

$$
\varphi' = \Psi \text{ or } \tau' = \Psi. \tag{2.12}
$$

Similarly, let a_0 be an element of A such that $\varphi'(a_0) = 1$ and $\tau'(a_0) = 0$. So, $D(a_0) = \lambda(\varphi'(a_0) - \tau'(a_0)) = \lambda$ and further,

$$
\lambda \varphi'(b) = \lambda (\varphi'(a_0 b) - \tau'(a_0 b))
$$

= $D(a_0 b)$
= $D(a_0) \Sigma(b) + \Psi(a_0) D(b)$
= $\lambda (\varphi'(a_0) - \tau'(a_0)) \Sigma(b) + \lambda \Psi(a_0) (\varphi'(b) - \tau'(b))$
= $\lambda \Sigma(b) + \lambda \Psi(a_0) (\varphi'(b) - \tau'(b)).$

Since $\lambda \neq 0$ and b is an arbitrary element of A, we get

$$
\varphi' - \Sigma - \Psi(a_0)(\varphi' - \tau') \equiv 0.
$$
\n(2.13)

If $\Psi(a_0) = 0$, then it follows from (2.13) that

$$
\varphi' = \Sigma. \tag{2.14}
$$

If $\Psi(a_0) \neq 0$, we have $(1 - \Psi(a_0))\varphi' - \Sigma + \Psi(a_0)\tau' \equiv 0$. By an argument similar to what was mentioned above, we obtain that

$$
\varphi' = \Sigma \quad \text{or} \quad \tau' = \Sigma. \tag{2.15}
$$

The above discussion can be summarized as follows.

1) $\varphi' = \Psi$ or $\tau' = \Psi$. 2) $\Sigma = \varphi'$ or $\Sigma = \tau'$. If $\varphi' = \Psi$ and $\varphi' = \Sigma$, then we have

$$
D(ab) = D(a)\Sigma(b) + \Psi(a)D(b)
$$

=
$$
D(a)\Sigma(b) + \Sigma(a)D(b).
$$

It means that

$$
\lambda(\Sigma(ab) - \tau'(ab)) = \lambda(\Sigma(a) - \tau'(a))\Sigma(b) + \lambda\Sigma(a)(\Sigma(b) - \tau'(b)).
$$

Since $\lambda \neq 0$ and Σ, τ' are homomorphisms, we find that

$$
-\tau'(a)\left(\tau'(b) - \Sigma(b)\right) = \Sigma(a)\left(\Sigma(b) - \tau'(b)\right) \text{ for all } a, b \in \mathcal{A}.\tag{2.16}
$$

Now, we show that ker(Σ) \nsubseteq ker(τ'). Suppose that ker(Σ) \subseteq ker(τ'). Since $a - \Sigma(a)\mathbf{e} \in \text{ ker}(\Sigma) \text{ and } \text{ker}(\Sigma) \subseteq \text{ ker}(\tau'), \tau'(a - \Sigma(a)\mathbf{e}) = 0 \text{ for all } a \in \mathcal{A},$ and it implies that $\tau' = \Sigma$. This conclusion together with $\varphi' = \Sigma$ imply that $\varphi' = \tau'$, which is a contradiction. Therefore, ker(Σ) is not a subset of $\ker(\tau')$. So, there is an element $a_0 \in \ker(\Sigma)$ such that $a_0 \notin \ker(\tau')$, i.e. $\Sigma(a_0) = 0$ and $\tau'(a_0) \neq 0$. Replacing a with a_0 in [\(2.16\)](#page-4-1), we obtain that $-\tau'(a_0)(\tau'(b) - \Sigma(b)) = 0$. Since $\tau'(a_0) \neq 0$ and b is an arbitrary element of $\mathcal{A}, \tau' = \Sigma$. Hence, we have $\tau' = \Sigma = \varphi'$, and it is a contradiction. Therefore, we have $\varphi' = \Psi$ and $\tau' = \Sigma$. Moreover, by a similar argument we will achieve that $\tau' = \Psi$ and $\Sigma = \varphi'$. Consequently, $D = \lambda(\varphi' - \tau') = \lambda(\Psi - \Sigma)$ or $D = \lambda(\varphi' - \tau') = \lambda(\Sigma - \Psi)$. So, we can write $D = \pm \lambda(\Sigma - \Psi)$. From this, we obtain that $\varphi(d(a) \pm \lambda(\sigma - \tau)(a)) = 0$ for all $a \in \mathcal{A}, \varphi \in \Phi_{\mathcal{A}}$. Since $\bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi = \{0\}, d = \pm \lambda(\sigma - \tau)$. This proves the theorem completely. \Box

An immediate corollary about the automatic continuity of (σ, τ) -derivations reads as follows.

Corollary 2.2. *Let* A *be a unital, commutative, semi-simple Banach algebra, and let* $\sigma, \tau : A \rightarrow A$ *be two distinct endomorphisms such that* $\varphi \sigma(e)$ *and* $\varphi \tau(e)$ *are non-zero complex numbers for all* $\varphi \in \Phi_A$ *. If* $d : A \to A$ *is a* (σ, τ) *derivation such that* φd *is a non-zero linear functional for every* $\varphi \in \Phi_A$, then d *is automatically continuous.*

Proof. Since σ and τ are supposed to be two distinct endomorphisms, it follows from part (2) of Theorem [2.1](#page-2-4) that $d = \lambda(\sigma - \tau)$ for some $\lambda \in \mathbb{C}\backslash\{0\}$. This proves the corollary.

Theorem 2.3. Let A be a C^* -algebra, and let $\sigma, \tau : A \rightarrow A$ be continuous *endomorphisms. Then every Jordan* (σ, τ) *-derivation from* A *into* a Banach \mathcal{A} *-bimodule* $\mathcal M$ *is a continuous* (σ, τ) *-derivation.*

Proof. It is clear that M is a Banach A -bimodule by the following module actions:

$$
a \ltimes m = \tau(a)m
$$
, $m \rtimes a = m\sigma(a)$ $(a \in \mathcal{A}, m \in \mathcal{M})$.

We denote the above module by $\widehat{\mathcal{M}}$. We have $d(a^2) = d(a)\sigma(a) + \tau(a)d(a) =$ $d(a) \rtimes a + a \ltimes d(a)$ for all $a \in \mathcal{A}$. It means that $d : \mathcal{A} \to \mathcal{M}$ is a Jordan derivation. In view of [14 Corollary 17] we get the required result derivation. In view of $[14, Corollary 17]$ $[14, Corollary 17]$ we get the required result.

Below, we present a remark which is used in the proof of Theorem [2.5.](#page-5-0)

Remark 2.4. Let \mathfrak{M} be a von Neumann algebra. Here, the spectrum of an arbitrary element $A \in \mathfrak{M}$ is denoted by $\mathfrak{S}(A)$ and recall that $\mathfrak{S}(A) = \{ \lambda \in \mathfrak{M} \mid \lambda \in \mathfrak{M} \}$ $\mathbb{C}|\lambda \mathcal{I} - A$ is not invertible in \mathfrak{M} . Suppose that P is an idempotent of \mathfrak{M} , i.e. $P^2 = P$. Clearly, if $P \neq 0, \mathcal{I}$, then $\{0,1\} \subseteq \mathfrak{S}(P)$. We show that $\mathfrak{S}(P) \subseteq \{0,1\}$ and it means that $\mathfrak{S}(P) = \{0, 1\}$. For $\lambda \neq 0, 1$ we have

$$
\left(\frac{1}{1-\lambda}P - \frac{1}{\lambda}\left(\mathcal{I} - P\right)\right)(P - \lambda\mathcal{I}) = (P - \lambda\mathcal{I})\left(\frac{1}{1-\lambda}P - \frac{1}{\lambda}\left(\mathcal{I} - P\right)\right) = \mathcal{I}.
$$

It means that $P - \lambda \mathcal{I}$ is invertible and so, $\lambda \notin \mathfrak{S}(P)$. Therefore, $\mathfrak{S}(P) = \{0, 1\}$.

The following theorem is a Singer-Wermer type theorem for Jordan σ derivations.

Theorem 2.5. *Let* \mathfrak{M} *be a commutative von Neumann algebra, and let* σ : $\mathfrak{M} \to \mathfrak{M}$ *be an endomorphism. Then every Jordan* σ *-derivation* $d : \mathfrak{M} \to \mathfrak{M}$ *is identically zero.*

Proof. We know that every von Neumann algebra is a C[∗]-algebra and every C^* -algebra is semi-simple (see [\[13](#page-7-2)]). Hence, [\[4,](#page-7-0) Proposition 5.1.1] implies that σ is continuous, i.e. $\|\sigma\| < \infty$. It follows from Theorem [2.3](#page-5-1) that d is continuous. Suppose that φ is an arbitrary character on \mathfrak{M} , i.e. $\varphi \in \Phi_{\mathfrak{M}}$. It follows from [\[4](#page-7-0), Proposition 3.1.2] that $\ker(\varphi)$ is a maximal ideal of M of codimension 1, i.e. $\dim(\frac{\mathfrak{M}}{\ker \varphi}) = 1$ for each $\varphi \in \Phi_{\mathfrak{M}}$. Evidently, the algebra $\frac{\mathfrak{M}}{\ker(\varphi)}$ is commutative.

Since \mathfrak{M} is a von Neumann algebra, the set of all algebraic elements of \mathfrak{M} is norm dense in \mathfrak{M}_{sa} . Let Q be an arbitrary non-zero projection of \mathfrak{M} . We have

$$
d(Q) + \ker \varphi = d(Q)\sigma(Q) + \sigma(Q)d(Q) + \ker \varphi = 2d(Q)\sigma(Q) + \ker \varphi.
$$

So,

$$
2d(Q)\left(\frac{1}{2}\mathcal{I} - \sigma(Q)\right) \in \ker \varphi.
$$
 (2.17)

Clearly, $\sigma(Q)$ is an idempotent and it follows from Remark [2.4](#page-5-2) that $\frac{1}{2} \notin$ $\mathfrak{S}(\sigma(Q))$. It means that $\frac{1}{2}\mathcal{I}-\sigma(Q)$ is an invertible element in \mathfrak{M} . This fact along with [\(2.17\)](#page-6-0) imply that $d(Q) \in \text{ker } (\varphi)$. Since φ is an arbitrary element of $\Phi_{\mathfrak{M}}$, $d(Q) \in \bigcap_{\varphi \in \Phi_{\mathfrak{M}}} \ker(\varphi)$. According to [\[4](#page-7-0), Theorem 3.1.3] each member of $\Phi_{\mathfrak{M}}$ is continuous and so, ker(φ) ($\varphi \in \Phi_{\mathfrak{M}}$) is a closed subset and consequently, $\bigcap_{\varphi \in \Phi_{\mathfrak{M}}} \ker(\varphi)$ is also a closed subset of \mathfrak{M} . Our next task is to show that $\varphi(d(\tilde{A})) = 0$ for every $A \in \mathfrak{M}$. Let X be an arbitrary algebraic element of \mathfrak{M} . Hence, $X = \sum_{i=1}^{m} r_i P_i$, where P_1, P_2, \ldots, P_m are mutually orthogonal projections and r_1, r_2, \ldots, r_m are real numbers. We have

$$
\varphi(d(X)) = \varphi\left(d\left(\sum_{i=1}^{m} r_i P_i\right)\right)
$$

$$
= \sum_{i=1}^{m} r_i \varphi(d(P_i))
$$

$$
= 0.
$$

Since the set of all algebraic elements is norm dense in \mathfrak{M}_{sa} and d is a continuous σ -derivation, $\varphi(d(A)) = 0$ for every $A \in \mathfrak{M}_{sa}$. We know that each A in \mathfrak{M} can be represented as $A = A_1 + iA_2$, where $A_1, A_2 \in \mathfrak{M}_{sa}$. Therefore, $\varphi(d(A)) = \varphi(d(A_1 + iA_2)) = 0$ for all $A \in \mathfrak{M}$ and $\varphi \in \Phi_{\mathfrak{M}}$. It means that $d(\mathfrak{M}) \subseteq \bigcap_{\varphi \in \Phi_{\mathfrak{M}}} \ker(\varphi)$. Since \mathfrak{M} is commutative, it follows from [\[4,](#page-7-0) Proposition 3.2.1] that $\bigcap_{\varphi \in \Phi_{\mathfrak{M}}} \ker(\varphi) = Rad(\mathfrak{M})$. As we know, every von Neumann algebra is semi-simple and consequently, d is identically zero. \Box

Let A be a $*$ -algebra and $T : A \rightarrow A$ be a linear mapping. We define a linear mapping T^* on A by $T^*(a)=(T(a^*))^*$ for all $a \in \mathcal{A}$. A linear mapping T is called a $*$ -map if $T = T^*$. We are now ready to prove the above-mentioned theorem for Jordan $*(-\sigma, \tau)$ – derivations.

Corollary 2.6. *Suppose that* M *is a commutative von Neumann algebra and* $\sigma, \tau : \mathfrak{M} \to \mathfrak{M}$ are \ast -linear mappings such that $\frac{\sigma + \tau}{2}$ is an endomorphism. *Then every Jordan* $* - (\sigma, \tau)$ *-derivation* $d : \mathfrak{M} \to \mathfrak{M}$ *is identically zero.*

Proof. According to the aforementioned assumptions, we have $d = d^*, \sigma = \sigma^*$, and $\tau = \tau^*$. By getting idea from [\[11](#page-7-5)], we have

$$
d(A2) = d*(A2) = (d(A2)*)* = (d(A*)\sigma(A*) + \tau(A*)d(A*))*
$$

= $\sigma(A)d(A) + d(A)\tau(A)$.

Therefore,

$$
d(A^{2}) = \frac{1}{2}d(A^{2}) + \frac{1}{2}d(A^{2})
$$

= $d(A)\frac{\sigma(A)}{2} + \frac{\tau(A)}{2}d(A) + d(A)\frac{\tau(A)}{2} + \frac{\sigma(A)}{2}d(A)$
= $d(A)\left(\frac{\sigma + \tau}{2}\right)(A) + \left(\frac{\sigma + \tau}{2}\right)(A)d(A).$

So d is a Jordan Σ-derivation, where $\Sigma = \frac{\sigma + \tau}{2}$. Now, Theorem [2.5](#page-5-0) is exactly what we need to complete the proof. \Box

Acknowledgements. The author is greatly indebted to the referee for his/her valuable suggestions and careful reading of the paper.

References

- [1] S. Ali, A. Fosner, M. Fosner, and M. S. Khan, On generalized Jordan triple $(\alpha, \beta)^*$ -derivations and related mappings, Mediterr. J. Math. **10** (2013), 1657–1668.
- [2] M. ASHRAF AND N. REHMAN, On (σ, τ) -derivations in prime rings, Arch. Math. **38** (2002), 259–264.
- [3] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, 24, Oxford University Press, New York, 2000.
- [4] H. G. Dales, P. Aiena, J. Eschmeier, K. Laursen, and G. A. Willis, Introduction to Banach Algebras, Operators and Harmonic Analysis, Cambridge University Press, Cambridge, 2003.
- [5] M. E. GORDJI, A characterization of (σ, τ) -derivations on von Neumann algebras, Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. **73** (2011), 111–116.
- [6] O. GOLBASI AND E. KOC, Notes on Jordan $(\sigma, \tau)^*$ -derivations and Jordan triple $(\sigma, \tau)^*$ -derivations, Aequat. Math. **85** (2013), 581–591.
- [7] A. Hosseini, M. Hassani, A. Niknam, and S. Hejazian, Some results on σ-derivations, Ann. Funct. Anal. **2** (2011), 75–84.
- [8] A. Hosseini, M. Hassani, and A. Niknam, Generalized σ-derivation on Banach algebras, Bull. Iran. Math. Soc. **37** (2011), 81–94.
- [9] A. Hosseini, Characterization of some derivations on von Neumann algebras via left centralizers, Ann. Univ. Ferrara, (to appear).
- [10] I. Kaplansky, Projections in Banach algebras, Ann. Math. **53** (1951), 235–249.
- [11] M. MIRZAVAZIRI AND M. S. MOSLEHIAN, Automatic continuity of σ -derivations on C∗-algebras, Proc. Amer. Math. Soc. **134** (2006), 3319–3327.
- [12] M. MIRZAVAZIRI AND M. S. MOSLEHIAN, (σ, τ) -amenability of C^* -algebras, Georgian Math. J. **18** (2011), 137–145.
- [13] G. J. Murphy, C∗-Algebras and Operator Theory, Boston Academic Press, Boston, MA, 1990.
- [14] A. Peralta and B. Russo, Automatic continuity of derivations on C∗-algebras and JB∗-triples, J. Algebra **399** (2014), 960–977.
- [15] J. F. Rennison, A note on subalgebras of co-dimension 1, Proc. Camb. Philos. Soc. **3** (1970), 673–674.
- [16] K. SAITÔ AND J. D. MAITLAND WRIGHT, On defining AW*-algebras and Rickart C*-algebras, Q. J. Math. **66** (2015), 979–989.
- [17] I. M. SINGER AND J. WERMER, Derivations on commutative normed algebras, Math. Ann. **129** (1955), 260–264.
- [18] M. Takesaki, Theory of Operator Algebras I, Springer, Berlin, 2001.

Amin Hosseini Department of Mathematics, Kashmar Higher Education Institute, Kashmar, Iran e-mail: hosseini.amin82@gmail.com

Received: 18 February 2017