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On the image, characterization, and automatic continuity
of (σ, τ )-derivations
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Abstract. The first main theorem of this paper asserts that any (σ, τ)-
derivation d, under certain conditions, either is a σ-derivation or is a scalar
multiple of (σ − τ), i.e. d = λ(σ − τ) for some λ ∈ C\{0}. By using this
characterization, we achieve a result concerning the automatic continuity
of (σ, τ)-derivations on Banach algebras which reads as follows. Let A be
a unital, commutative, semi-simple Banach algebra, and let σ, τ : A → A
be two distinct endomorphisms such that ϕσ(e) and ϕτ(e) are non-zero
complex numbers for all ϕ ∈ ΦA. If d : A → A is a (σ, τ)-derivation
such that ϕd is a non-zero linear functional for every ϕ ∈ ΦA, then d is
automatically continuous. As another objective of this research, we prove
that if M is a commutative von Neumann algebra and σ : M → M is an
endomorphism, then every Jordan σ-derivation d : M → M is identically
zero.
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1. Introduction and preliminaries. Throughout the paper, A and M will de-
note a Banach algebra and a von Neumann algebra, respectively. If A is unital,
then e stands for its unit element. Before everything else, let us recall some
basic definitions and set the notation which is used in the sequel. A non-zero
linear functional ϕ on A is called a character if ϕ(ab) = ϕ(a)ϕ(b) for every
a, b ∈ A. Throughout this article, ΦA denotes the set of all characters on A.
We know that, for an arbitrary element ϕ ∈ ΦA, ker ϕ, the kernel of ϕ, is a
maximal ideal of A (see [4, Proposition 3.1.2]).

Let H be a Hilbert space. By B(H) we denote the set of all bounded linear
mappings from H into itself. For each subset M of B(H), let M′ denote the
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set of all bounded linear maps on H commuting with every linear mapping of
M. Clearly, M′ is a Banach algebra containing the identity operator I. If M
is invariant under the ∗-operation, that is, if X ∈ M implies X∗ ∈ M, then
M′ is a C∗-algebra acting on the Hilbert space H. A von Neumann algebra on
the Hilbert space H is a ∗-subalgebra M of B(H) such that M = (M′)′ = M′′.
For more details see [18]. By Msa we denote the set of all self-adjoint elements
of M (i.e. Msa = {A ∈ M | A∗ = A}) and the set of all projections in M
is denoted by P(M) (i.e. P(M) = {P ∈ M | P 2 = P, P ∗ = P}). Elements
in M which can be written as a finite real-linear combinations of mutually
orthogonal projections in M are usually called algebraic elements. It is known
that the set of all algebraic elements of M is norm dense in Msa. For more
details see [10,13,16].

Let σ, τ : A → A be linear maps. A linear mapping d : A → A is called a
(σ, τ)-derivation (resp. Jordan (σ, τ)-derivation) if d(ab) = d(a)σ(b)+ τ(a)d(b)
(resp. d(a2) = d(a)σ(a) + τ(a)d(a)) holds for all a, b ∈ A. In the case that
σ = τ , the linear mapping d is called a σ-derivation (resp. Jordan σ-derivation).
Clearly, if σ = τ = I, the identity mapping on A, then we reach to the usual no-
tion of a derivation (resp. Jordan derivation) on the algebra A. Note that every
homomorphism θ is a θ

2 -derivation, since θ(ab) = θ(a) θ(b)
2 + θ(a)

2 θ(b). Hence, the
theory of σ-derivations covers the theory of derivations and homomorphisms
(see [7–9,11]). So far, many studies have been done about (σ, τ)-derivations.
As can be seen, most of these articles have focused on the commutativity of
rings, automatic continuity, amenability, stability, and so on (for instance, see
[1,2,5,6,11,12]). It is noteworthy that the theory of automatic continuity of
derivations has a fairly long history. Results on automatic continuity of lin-
ear operators defined on Banach algebras comprise a fruitful area of research
intensively developed during the last sixty years. The references [3,4] review
most of the main achievements obtained during the last sixty years. Further-
more, the problem of automatic continuity is also considered for σ-derivations
(see [7,8,11] ). In this study, by getting idea from [3, Proposition 1.8.10], we
offer a characterization of (σ, τ)-derivations on Banach algebras. The first main
theorem reads as follows.

Let A be a unital, commutative, semi-simple Banach algebra, and let
σ, τ : A → A be two endomorphisms such that ϕσ(e) and ϕτ(e) are non-
zero complex numbers for all ϕ ∈ ΦA. If d : A → A is a (σ, τ)-derivation such
that ϕd is a non-zero linear functional for every ϕ ∈ ΦA, then either

(1) σ = τ and d is a σ-derivation; or
(2) σ �= τ and d = λ(σ − τ) for some λ ∈ C\{0}.
From the above-mentioned theorem, we achieve a corollary concerning the

automatic continuity of (σ, τ)-derivations which reads as follows. Let A be a
unital, commutative, semi-simple Banach algebra, and let σ, τ : A → A be
two distinct endomorphisms such that ϕσ(e) and ϕτ(e) are non-zero complex
numbers for all ϕ ∈ ΦA. If d : A → A is a (σ, τ)-derivation such that ϕd is a
non-zero linear functional for every ϕ ∈ ΦA, then d is automatically continu-
ous. In the current study, we prove a Singer–Wermer type theorem for Jordan
σ-derivations on von Neumann algebras. Now, we offer a short background
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in this issue. In 1955, Singer and Wermer [17] achieved a fundamental result
which started a subsequent investigation about the image of derivations on
Banach algebras. The result states that if A is a commutative Banach algebra
and d : A → A is a bounded derivation, then d(A) ⊆ Rad(A), where Rad(A)
denotes the Jacobson radical of A. It is evident that if A is semi-simple, i.e.
Rad(A) = {0}, then d is identically zero. In this paper, we show that if M is
a commutative von Neumann algebra and σ : M → M is an endomorphism,
then every Jordan σ-derivation d : M → M is identically zero. From this the-
orem it is obtained that if M is a commutative von Neumann algebra and
σ, τ : M → M are ∗-linear mappings such that σ+τ

2 is an endomorphism, then
every Jordan ∗ − (σ, τ)-derivation d : M → M is identically zero.

2. Characterization of (σ, τ )-derivations on algebras. We begin with a char-
acterization of (σ, τ)-derivations on unital, commutative, semi-simple Banach
algebras.

Theorem 2.1. Let A be a unital, commutative, semi-simple Banach algebra,
and let σ, τ : A → A be two endomorphisms such that ϕσ(e) and ϕτ(e) are
non-zero complex numbers for all ϕ ∈ ΦA. If d : A → A is a (σ, τ)-derivation
such that ϕd is a non-zero linear functional for every ϕ ∈ ΦA, then either

(1) σ = τ and d is a σ-derivation; or
(2) σ �= τ and d = λ(σ − τ) for some λ ∈ C\{0}.

Proof. Let ϕ be an arbitrary element of ΦA. Putting D = ϕd, Σ = ϕσ, and
Ψ = ϕτ , we have D(ab) = D(a)Σ(b)+Ψ(a)D(b) for all a, b ∈ A. It means that
D is a non-zero (Σ,Ψ)-derivation from A into C. Clearly, Σ(e) = Ψ(e) = 1
and so, D(e) = 0. Therefore, ker (D) is a subalgebra of A containing the unit
element e. According to the main theorem of [15], D has one of the following
forms:
(1) D = λϕ1, where λ ∈ C\{0} and ϕ1 ∈ ΦA,
(2) There is an element ϕ1 ∈ ΦA such that D(ab) = D(a)ϕ1(b) + ϕ1(a)D(b),
(3) D = λ(ϕ′ − τ ′), where λ ∈ C\{0} and ϕ′, τ ′ are distinct elements of ΦA.

In the following, we investigate the above-mentioned three cases.
Case 1: Suppose that D has the first form, i.e. D = λϕ1. Then 0 = D(e) =

λϕ1(e) = λ. This contradiction shows that case (1) above is impossible.
Case 2: Suppose that there exists an element ϕ1 of ΦA satisfying

D(ab) = D(a)ϕ1(b) + ϕ1(a)D(b). (2.1)

On the other side, we have

D(ab) = D(a)Σ(b) + Ψ(a)D(b). (2.2)

Comparing (2.1) and (2.2), we obtain that

(Σ − ϕ1)(b)D(a) + (Ψ − ϕ1)(a)D(b) = 0 for all a, b ∈ A. (2.3)

If D(a) = 0, then (Ψ − ϕ1)(a) = 0. By switching a and b in (2.3), we get that
(Σ − ϕ1)(a) = 0. Therefore, we have

(Ψ − ϕ1)(a) = (Σ − ϕ1)(a) = 0. (2.4)
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It follows from (2.4) that (Ψ − ϕ1)(a) + (Σ − ϕ1)(a) = 0, and it means that

(Ψ − 2ϕ1 + Σ)(a) = 0. (2.5)

If D(a) �= 0, then by considering a = b in (2.3) and factoring out D(a), we
find that

(Σ − 2ϕ1 + Ψ)(a) = 0. (2.6)

The Eqs. (2.5) and (2.6) imply that (Ψ−2ϕ1 +Σ)(a) = 0 for all a ∈ A. Hence,
we can write

Ψ − 2ϕ1 + Σ ≡ 0. (2.7)

We know that ΦA is a linearly independent subspace in A× (see [3, p. 38]).
Since Ψ,Σ, ϕ1 ∈ ΦA with ϕ1 = 1

2 (Ψ + Σ), we have Ψ = Σ = ϕ1. Thus
ϕ(τ(a) − σ(a)) = 0 for all a ∈ A. Since we are assuming that ϕ is arbitrary,
τ(a) − σ(a) ∈ ⋂

ϕ∈ΦA ker(ϕ). It is well known that in a unital, commutative,
and semi-simple complex Banach algebra A,

⋂
ϕ∈ΦA ker(ϕ) = Rad(A) = {0}.

Hence, τ = σ and it means that d is a σ-derivation.
Case 3: Suppose that D = λ(ϕ′ − τ ′), where λ ∈ C\{0} and ϕ′, τ ′ are

distinct elements of ΦA, i.e. ϕ′ �= τ ′. Hence, we can consider an element b0

of A such that ϕ′(b0) = 1 and τ ′(b0) = 0. In this case, we have D(b0) =
λ(ϕ′(b0) − τ ′(b0)) = λ and further,

λϕ′(a) = λ(ϕ′(ab0) − τ ′(ab0))

= D(ab0)

= D(a)Σ(b0) + Ψ(a)D(b0)

= λ(ϕ′(a) − τ ′(a))Σ(b0) + λΨ(a)

= λ [(ϕ′(a) − τ ′(a))Σ(b0) + Ψ(a)] .

Since λ �= 0 and a is an arbitrary element of A, we have

ϕ′ − Σ(b0)(ϕ′ − τ ′) − Ψ ≡ 0. (2.8)

If Σ(b0) = 0, then we find that

ϕ′ = Ψ. (2.9)

Now, assume that Σ(b0) �= 0. It follows from (2.8) that

(1 − Σ(b0))ϕ′ + Σ(b0)τ ′ − Ψ ≡ 0. (2.10)

Since τ ′, ϕ′,Ψ ∈ ΦA with (1 − Σ(b0))ϕ′ = Ψ − Σ(b0)τ ′, we have Σ(b0) = 1 and
consequently,

τ ′ = Ψ. (2.11)

From (2.9) and (2.11) we obtain that

ϕ′ = Ψ or τ ′ = Ψ. (2.12)
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Similarly, let a0 be an element of A such that ϕ′(a0) = 1 and τ ′(a0) = 0. So,
D(a0) = λ(ϕ′(a0) − τ ′(a0)) = λ and further,

λϕ′(b) = λ(ϕ′(a0b) − τ ′(a0b))

= D(a0b)

= D(a0)Σ(b) + Ψ(a0)D(b)

= λ(ϕ′(a0) − τ ′(a0))Σ(b) + λΨ(a0)(ϕ′(b) − τ ′(b))

= λΣ(b) + λΨ(a0)(ϕ′(b) − τ ′(b)).

Since λ �= 0 and b is an arbitrary element of A, we get

ϕ′ − Σ − Ψ(a0)(ϕ′ − τ ′) ≡ 0. (2.13)

If Ψ(a0) = 0, then it follows from (2.13) that

ϕ′ = Σ. (2.14)

If Ψ(a0) �= 0, we have (1−Ψ(a0))ϕ′ −Σ+Ψ(a0)τ ′ ≡ 0. By an argument similar
to what was mentioned above, we obtain that

ϕ′ = Σ or τ ′ = Σ. (2.15)

The above discussion can be summarized as follows.
1) ϕ′ = Ψ or τ ′ = Ψ.
2) Σ = ϕ′ or Σ = τ ′.
If ϕ′ = Ψ and ϕ′ = Σ, then we have

D(ab) = D(a)Σ(b) + Ψ(a)D(b)

= D(a)Σ(b) + Σ(a)D(b).

It means that

λ(Σ(ab) − τ ′(ab)) = λ(Σ(a) − τ ′(a))Σ(b) + λΣ(a)(Σ(b) − τ ′(b)).

Since λ �= 0 and Σ, τ ′ are homomorphisms, we find that

− τ ′(a) (τ ′(b) − Σ(b)) = Σ(a) (Σ(b) − τ ′(b)) for all a, b ∈ A. (2.16)

Now, we show that ker(Σ) � ker(τ ′). Suppose that ker(Σ) ⊆ ker(τ ′). Since
a − Σ(a)e ∈ ker(Σ) and ker(Σ) ⊆ ker(τ ′), τ ′(a − Σ(a)e) = 0 for all a ∈ A,
and it implies that τ ′ = Σ. This conclusion together with ϕ′ = Σ imply
that ϕ′ = τ ′, which is a contradiction. Therefore, ker(Σ) is not a subset of
ker(τ ′). So, there is an element a0 ∈ ker(Σ) such that a0 �∈ ker(τ ′), i.e.
Σ(a0) = 0 and τ ′(a0) �= 0. Replacing a with a0 in (2.16), we obtain that
−τ ′(a0) (τ ′(b) − Σ(b)) = 0. Since τ ′(a0) �= 0 and b is an arbitrary element of
A, τ ′ = Σ. Hence, we have τ ′ = Σ = ϕ′, and it is a contradiction. Therefore,
we have ϕ′ = Ψ and τ ′ = Σ. Moreover, by a similar argument we will achieve
that τ ′ = Ψ and Σ = ϕ′. Consequently, D = λ(ϕ′ − τ ′) = λ(Ψ − Σ) or
D = λ(ϕ′ − τ ′) = λ(Σ − Ψ). So, we can write D = ±λ(Σ − Ψ). From this,
we obtain that ϕ (d(a) ± λ(σ − τ)(a)) = 0 for all a ∈ A, ϕ ∈ ΦA. Since⋂

ϕ∈ΦA ker ϕ = {0}, d = ±λ(σ − τ). This proves the theorem completely. �
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An immediate corollary about the automatic continuity of (σ, τ)-derivations
reads as follows.

Corollary 2.2. Let A be a unital, commutative, semi-simple Banach algebra,
and let σ, τ : A → A be two distinct endomorphisms such that ϕσ(e) and
ϕτ(e) are non-zero complex numbers for all ϕ ∈ ΦA. If d : A → A is a (σ, τ)-
derivation such that ϕd is a non-zero linear functional for every ϕ ∈ ΦA, then
d is automatically continuous.

Proof. Since σ and τ are supposed to be two distinct endomorphisms, it follows
from part (2) of Theorem2.1 that d = λ(σ−τ) for some λ ∈ C\{0}. This proves
the corollary. �

Theorem 2.3. Let A be a C∗-algebra, and let σ, τ : A → A be continuous
endomorphisms. Then every Jordan (σ, τ)-derivation from A into a Banach
A-bimodule M is a continuous (σ, τ)-derivation.

Proof. It is clear that M is a Banach A-bimodule by the following module
actions:

a � m = τ(a)m, m � a = mσ(a) (a ∈ A,m ∈ M).

We denote the above module by M̂. We have d(a2) = d(a)σ(a) + τ(a)d(a) =
d(a) � a + a � d(a) for all a ∈ A. It means that d : A → M̂ is a Jordan
derivation. In view of [14, Corollary 17] we get the required result. �

Below, we present a remark which is used in the proof of Theorem 2.5.

Remark 2.4. Let M be a von Neumann algebra. Here, the spectrum of an
arbitrary element A ∈ M is denoted by S(A) and recall that S(A) = {λ ∈
C|λI − A is not invertible in M}. Suppose that P is an idempotent of M, i.e.
P 2 = P . Clearly, if P �= 0, I, then {0, 1} ⊆ S(P ). We show that S(P ) ⊆ {0, 1}
and it means that S(P ) = {0, 1}. For λ �= 0, 1 we have
(

1
1 − λ

P − 1
λ

(I − P )
)

(P − λI) = (P − λI)
(

1
1 − λ

P − 1
λ

(I − P )
)

= I.

It means that P −λI is invertible and so, λ /∈ S(P ). Therefore, S(P ) = {0, 1}.

The following theorem is a Singer-Wermer type theorem for Jordan σ-
derivations.

Theorem 2.5. Let M be a commutative von Neumann algebra, and let σ :
M → M be an endomorphism. Then every Jordan σ-derivation d : M → M is
identically zero.

Proof. We know that every von Neumann algebra is a C∗-algebra and every
C∗-algebra is semi-simple (see [13]). Hence, [4, Proposition 5.1.1] implies that
σ is continuous, i.e. ‖σ‖ < ∞. It follows from Theorem 2.3 that d is continuous.
Suppose that ϕ is an arbitrary character on M, i.e. ϕ ∈ ΦM. It follows from [4,
Proposition 3.1.2] that ker(ϕ) is a maximal ideal of M of codimension 1, i.e.
dim( M

ker ϕ ) = 1 for each ϕ ∈ ΦM. Evidently, the algebra M
ker(ϕ) is commutative.
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Since M is a von Neumann algebra, the set of all algebraic elements of M is
norm dense in Msa. Let Q be an arbitrary non-zero projection of M. We have

d(Q) + ker ϕ = d(Q)σ(Q) + σ(Q)d(Q) + ker ϕ = 2d(Q)σ(Q) + ker ϕ.

So,

2d(Q)
(

1
2
I − σ(Q)

)

∈ ker ϕ. (2.17)

Clearly, σ(Q) is an idempotent and it follows from Remark 2.4 that 1
2 �∈

S(σ(Q)). It means that 1
2I−σ(Q) is an invertible element in M. This fact along

with (2.17) imply that d(Q) ∈ ker (ϕ). Since ϕ is an arbitrary element of ΦM,
d(Q) ∈ ⋂

ϕ∈ΦM
ker(ϕ). According to [4, Theorem 3.1.3] each member of ΦM

is continuous and so, ker(ϕ) (ϕ ∈ ΦM) is a closed subset and consequently,⋂
ϕ∈ΦM

ker(ϕ) is also a closed subset of M. Our next task is to show that
ϕ(d(A)) = 0 for every A ∈ M. Let X be an arbitrary algebraic element
of M. Hence, X =

∑m
i=1 riPi, where P1, P2, . . . , Pm are mutually orthogonal

projections and r1, r2, . . . , rm are real numbers. We have

ϕ(d(X)) = ϕ

(

d

(
m∑

i=1

riPi

))

=
m∑

i=1

riϕ(d(Pi))

= 0.

Since the set of all algebraic elements is norm dense in Msa and d is a con-
tinuous σ-derivation, ϕ(d(A)) = 0 for every A ∈ Msa. We know that each A
in M can be represented as A = A1 + iA2, where A1, A2 ∈ Msa. Therefore,
ϕ(d(A)) = ϕ(d(A1 + iA2)) = 0 for all A ∈ M and ϕ ∈ ΦM. It means that
d(M) ⊆ ⋂

ϕ∈ΦM
ker(ϕ). Since M is commutative, it follows from [4, Proposi-

tion 3.2.1] that
⋂

ϕ∈ΦM
ker(ϕ) = Rad(M). As we know, every von Neumann

algebra is semi-simple and consequently, d is identically zero. �

Let A be a ∗-algebra and T : A → A be a linear mapping. We define a
linear mapping T ∗ on A by T ∗(a) = (T (a∗))∗ for all a ∈ A. A linear mapping
T is called a ∗-map if T = T ∗. We are now ready to prove the above-mentioned
theorem for Jordan ∗ − (σ, τ)−derivations.

Corollary 2.6. Suppose that M is a commutative von Neumann algebra and
σ, τ : M → M are ∗-linear mappings such that σ+τ

2 is an endomorphism.
Then every Jordan ∗ − (σ, τ)-derivation d : M → M is identically zero.

Proof. According to the aforementioned assumptions, we have d = d∗, σ = σ∗,
and τ = τ∗. By getting idea from [11], we have

d(A2) = d∗(A2) = (d(A2)∗)∗ = (d(A∗)σ(A∗) + τ(A∗)d(A∗))∗

= σ(A)d(A) + d(A)τ(A).



468 A. Hosseini Arch. Math.

Therefore,

d(A2) =
1
2
d(A2) +

1
2
d(A2)

= d(A)
σ(A)

2
+

τ(A)
2

d(A) + d(A)
τ(A)

2
+

σ(A)
2

d(A)

= d(A)
(

σ + τ

2

)

(A) +
(

σ + τ

2

)

(A)d(A).

So d is a Jordan Σ-derivation, where Σ = σ+τ
2 . Now, Theorem 2.5 is exactly

what we need to complete the proof. �
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