Arch. Math. 109 (2017), 461–469 © 2017 Springer International Publishing AG 0003-889X/17/050461-9 published online August 22, 2017 DOI 10.1007/s00013-017-1082-8

Archiv der Mathematik

On the image, characterization, and automatic continuity of (σ, τ) -derivations

Amin Hosseini

Abstract. The first main theorem of this paper asserts that any (σ, τ) -derivation d, under certain conditions, either is a σ -derivation or is a scalar multiple of $(\sigma - \tau)$, i.e. $d = \lambda(\sigma - \tau)$ for some $\lambda \in \mathbb{C} \setminus \{0\}$. By using this characterization, we achieve a result concerning the automatic continuity of (σ, τ) -derivations on Banach algebras which reads as follows. Let \mathcal{A} be a unital, commutative, semi-simple Banach algebra, and let $\sigma, \tau : \mathcal{A} \to \mathcal{A}$ be two distinct endomorphisms such that $\varphi\sigma(\mathbf{e})$ and $\varphi\tau(\mathbf{e})$ are non-zero complex numbers for all $\varphi \in \Phi_{\mathcal{A}}$. If $d : \mathcal{A} \to \mathcal{A}$ is a (σ, τ) -derivation such that φd is a non-zero linear functional for every $\varphi \in \Phi_{\mathcal{A}}$, then d is automatically continuous. As another objective of this research, we prove that if \mathfrak{M} is a commutative von Neumann algebra and $\sigma : \mathfrak{M} \to \mathfrak{M}$ is an endomorphism, then every Jordan σ -derivation $d : \mathfrak{M} \to \mathfrak{M}$ is identically zero.

Mathematics Subject Classification. Primary 47B47; Secondary 13N15, 46L10.

Keywords. Derivation, σ -derivation, (σ, τ) -derivation, von Neumann algebra.

1. Introduction and preliminaries. Throughout the paper, \mathcal{A} and \mathfrak{M} will denote a Banach algebra and a von Neumann algebra, respectively. If \mathcal{A} is unital, then **e** stands for its unit element. Before everything else, let us recall some basic definitions and set the notation which is used in the sequel. A non-zero linear functional φ on \mathcal{A} is called a *character* if $\varphi(ab) = \varphi(a)\varphi(b)$ for every $a, b \in \mathcal{A}$. Throughout this article, $\Phi_{\mathcal{A}}$ denotes the set of all characters on \mathcal{A} . We know that, for an arbitrary element $\varphi \in \Phi_{\mathcal{A}}$, ker φ , the kernel of φ , is a maximal ideal of \mathcal{A} (see [4, Proposition 3.1.2]).

Let \mathcal{H} be a Hilbert space. By $\mathcal{B}(\mathcal{H})$ we denote the set of all bounded linear mappings from \mathcal{H} into itself. For each subset \mathfrak{M} of $\mathcal{B}(\mathcal{H})$, let \mathfrak{M}' denote the

set of all bounded linear maps on \mathcal{H} commuting with every linear mapping of \mathfrak{M} . Clearly, \mathfrak{M}' is a Banach algebra containing the identity operator \mathcal{I} . If \mathfrak{M} is invariant under the *-operation, that is, if $X \in \mathfrak{M}$ implies $X^* \in \mathfrak{M}$, then \mathfrak{M}' is a C^* -algebra acting on the Hilbert space \mathcal{H} . A von Neumann algebra on the Hilbert space \mathcal{H} is a *-subalgebra \mathfrak{M} of $\mathcal{B}(\mathcal{H})$ such that $\mathfrak{M} = (\mathfrak{M}')' = \mathfrak{M}''$. For more details see [18]. By \mathfrak{M}_{sa} we denote the set of all self-adjoint elements of \mathfrak{M} (i.e. $\mathfrak{M}_{sa} = \{A \in \mathfrak{M} \mid A^* = A\}$) and the set of all projections in \mathfrak{M} is denoted by $\mathcal{P}(\mathfrak{M})$ (i.e. $\mathcal{P}(\mathfrak{M}) = \{P \in \mathfrak{M} \mid P^2 = P, P^* = P\}$). Elements in \mathfrak{M} which can be written as a finite real-linear combinations of mutually orthogonal projections in \mathfrak{M} are usually called algebraic elements. It is known that the set of all algebraic elements of \mathfrak{M} is norm dense in \mathfrak{M}_{sa} . For more details see [10, 13, 16].

Let $\sigma, \tau : \mathcal{A} \to \mathcal{A}$ be linear maps. A linear mapping $d : \mathcal{A} \to \mathcal{A}$ is called a (σ, τ) -derivation (resp. Jordan (σ, τ) -derivation) if $d(ab) = d(a)\sigma(b) + \tau(a)d(b)$ (resp. $d(a^2) = d(a)\sigma(a) + \tau(a)d(a)$) holds for all $a, b \in \mathcal{A}$. In the case that $\sigma = \tau$, the linear mapping d is called a σ -derivation (resp. Jordan σ -derivation). Clearly, if $\sigma = \tau = \mathcal{I}$, the identity mapping on \mathcal{A} , then we reach to the usual notion of a derivation (resp. Jordan derivation) on the algebra \mathcal{A} . Note that every homomorphism θ is a $\frac{\theta}{2}$ -derivation, since $\theta(ab) = \theta(a)\frac{\theta(b)}{2} + \frac{\theta(a)}{2}\theta(b)$. Hence, the theory of σ -derivations covers the theory of derivations and homomorphisms (see [7–9,11]). So far, many studies have been done about (σ, τ) -derivations. As can be seen, most of these articles have focused on the commutativity of rings, automatic continuity, amenability, stability, and so on (for instance, see [1,2,5,6,11,12]). It is noteworthy that the theory of automatic continuity of derivations has a fairly long history. Results on automatic continuity of linear operators defined on Banach algebras comprise a fruitful area of research intensively developed during the last sixty years. The references [3,4] review most of the main achievements obtained during the last sixty years. Furthermore, the problem of automatic continuity is also considered for σ -derivations (see [7, 8, 11]). In this study, by getting idea from [3, Proposition 1.8.10], we offer a characterization of (σ, τ) -derivations on Banach algebras. The first main theorem reads as follows.

Let \mathcal{A} be a unital, commutative, semi-simple Banach algebra, and let $\sigma, \tau : \mathcal{A} \to \mathcal{A}$ be two endomorphisms such that $\varphi \sigma(\mathbf{e})$ and $\varphi \tau(\mathbf{e})$ are non-zero complex numbers for all $\varphi \in \Phi_{\mathcal{A}}$. If $d : \mathcal{A} \to \mathcal{A}$ is a (σ, τ) -derivation such that φd is a non-zero linear functional for every $\varphi \in \Phi_{\mathcal{A}}$, then either

(1) $\sigma = \tau$ and d is a σ -derivation; or

(2) $\sigma \neq \tau$ and $d = \lambda(\sigma - \tau)$ for some $\lambda \in \mathbb{C} \setminus \{0\}$.

From the above-mentioned theorem, we achieve a corollary concerning the automatic continuity of (σ, τ) -derivations which reads as follows. Let \mathcal{A} be a unital, commutative, semi-simple Banach algebra, and let $\sigma, \tau : \mathcal{A} \to \mathcal{A}$ be two distinct endomorphisms such that $\varphi\sigma(\mathbf{e})$ and $\varphi\tau(\mathbf{e})$ are non-zero complex numbers for all $\varphi \in \Phi_{\mathcal{A}}$. If $d : \mathcal{A} \to \mathcal{A}$ is a (σ, τ) -derivation such that φd is a non-zero linear functional for every $\varphi \in \Phi_{\mathcal{A}}$, then d is automatically continuous. In the current study, we prove a Singer–Wermer type theorem for Jordan σ -derivations on von Neumann algebras. Now, we offer a short background

in this issue. In 1955, Singer and Wermer [17] achieved a fundamental result which started a subsequent investigation about the image of derivations on Banach algebras. The result states that if \mathcal{A} is a commutative Banach algebra and $d: \mathcal{A} \to \mathcal{A}$ is a bounded derivation, then $d(\mathcal{A}) \subseteq Rad(\mathcal{A})$, where $Rad(\mathcal{A})$ denotes the Jacobson radical of \mathcal{A} . It is evident that if \mathcal{A} is semi-simple, i.e. $Rad(\mathcal{A}) = \{0\}$, then d is identically zero. In this paper, we show that if \mathfrak{M} is a commutative von Neumann algebra and $\sigma: \mathfrak{M} \to \mathfrak{M}$ is an endomorphism, then every Jordan σ -derivation $d: \mathfrak{M} \to \mathfrak{M}$ is identically zero. From this theorem it is obtained that if \mathfrak{M} is a commutative von Neumann algebra and $\sigma, \tau: \mathfrak{M} \to \mathfrak{M}$ are *-linear mappings such that $\frac{\sigma+\tau}{2}$ is an endomorphism, then every Jordan $* - (\sigma, \tau)$ -derivation $d: \mathfrak{M} \to \mathfrak{M}$ is identically zero.

2. Characterization of (σ, τ) -derivations on algebras. We begin with a characterization of (σ, τ) -derivations on unital, commutative, semi-simple Banach algebras.

Theorem 2.1. Let \mathcal{A} be a unital, commutative, semi-simple Banach algebra, and let $\sigma, \tau : \mathcal{A} \to \mathcal{A}$ be two endomorphisms such that $\varphi\sigma(\mathbf{e})$ and $\varphi\tau(\mathbf{e})$ are non-zero complex numbers for all $\varphi \in \Phi_{\mathcal{A}}$. If $d : \mathcal{A} \to \mathcal{A}$ is a (σ, τ) -derivation such that φd is a non-zero linear functional for every $\varphi \in \Phi_{\mathcal{A}}$, then either

(1) $\sigma = \tau$ and d is a σ -derivation; or

(2) $\sigma \neq \tau$ and $d = \lambda(\sigma - \tau)$ for some $\lambda \in \mathbb{C} \setminus \{0\}$.

Proof. Let φ be an arbitrary element of $\Phi_{\mathcal{A}}$. Putting $D = \varphi d$, $\Sigma = \varphi \sigma$, and $\Psi = \varphi \tau$, we have $D(ab) = D(a)\Sigma(b) + \Psi(a)D(b)$ for all $a, b \in \mathcal{A}$. It means that D is a non-zero (Σ, Ψ) -derivation from \mathcal{A} into \mathbb{C} . Clearly, $\Sigma(\mathbf{e}) = \Psi(\mathbf{e}) = 1$ and so, $D(\mathbf{e}) = 0$. Therefore, ker (D) is a subalgebra of \mathcal{A} containing the unit element \mathbf{e} . According to the main theorem of [15], D has one of the following forms:

(1) $D = \lambda \varphi_1$, where $\lambda \in \mathbb{C} \setminus \{0\}$ and $\varphi_1 \in \Phi_A$,

- (2) There is an element $\varphi_1 \in \Phi_{\mathcal{A}}$ such that $D(ab) = D(a)\varphi_1(b) + \varphi_1(a)D(b)$,
- (3) $D = \lambda(\varphi' \tau')$, where $\lambda \in \mathbb{C} \setminus \{0\}$ and φ', τ' are distinct elements of $\Phi_{\mathcal{A}}$.

In the following, we investigate the above-mentioned three cases.

Case 1: Suppose that *D* has the first form, i.e. $D = \lambda \varphi_1$. Then $0 = D(\mathbf{e}) = \lambda \varphi_1(\mathbf{e}) = \lambda$. This contradiction shows that case (1) above is impossible.

Case 2: Suppose that there exists an element φ_1 of Φ_A satisfying

$$D(ab) = D(a)\varphi_1(b) + \varphi_1(a)D(b).$$
(2.1)

On the other side, we have

$$D(ab) = D(a)\Sigma(b) + \Psi(a)D(b).$$
(2.2)

Comparing (2.1) and (2.2), we obtain that

$$(\Sigma - \varphi_1)(b)D(a) + (\Psi - \varphi_1)(a)D(b) = 0 \text{ for all } a, b \in \mathcal{A}.$$
 (2.3)

If D(a) = 0, then $(\Psi - \varphi_1)(a) = 0$. By switching a and b in (2.3), we get that $(\Sigma - \varphi_1)(a) = 0$. Therefore, we have

$$(\Psi - \varphi_1)(a) = (\Sigma - \varphi_1)(a) = 0.$$
 (2.4)

It follows from (2.4) that $(\Psi - \varphi_1)(a) + (\Sigma - \varphi_1)(a) = 0$, and it means that

$$(\Psi - 2\varphi_1 + \Sigma)(a) = 0. \tag{2.5}$$

If $D(a) \neq 0$, then by considering a = b in (2.3) and factoring out D(a), we find that

$$(\Sigma - 2\varphi_1 + \Psi)(a) = 0.$$
 (2.6)

The Eqs. (2.5) and (2.6) imply that $(\Psi - 2\varphi_1 + \Sigma)(a) = 0$ for all $a \in \mathcal{A}$. Hence, we can write

$$\Psi - 2\varphi_1 + \Sigma \equiv 0. \tag{2.7}$$

We know that $\Phi_{\mathcal{A}}$ is a linearly independent subspace in \mathcal{A}^{\times} (see [3, p. 38]). Since $\Psi, \Sigma, \varphi_1 \in \Phi_{\mathcal{A}}$ with $\varphi_1 = \frac{1}{2}(\Psi + \Sigma)$, we have $\Psi = \Sigma = \varphi_1$. Thus $\varphi(\tau(a) - \sigma(a)) = 0$ for all $a \in \mathcal{A}$. Since we are assuming that φ is arbitrary, $\tau(a) - \sigma(a) \in \bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker(\varphi)$. It is well known that in a unital, commutative, and semi-simple complex Banach algebra $\mathcal{A}, \bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker(\varphi) = Rad(\mathcal{A}) = \{0\}$. Hence, $\tau = \sigma$ and it means that d is a σ -derivation.

Case 3: Suppose that $D = \lambda(\varphi' - \tau')$, where $\lambda \in \mathbb{C} \setminus \{0\}$ and φ', τ' are distinct elements of $\Phi_{\mathcal{A}}$, i.e. $\varphi' \neq \tau'$. Hence, we can consider an element b_0 of \mathcal{A} such that $\varphi'(b_0) = 1$ and $\tau'(b_0) = 0$. In this case, we have $D(b_0) = \lambda(\varphi'(b_0) - \tau'(b_0)) = \lambda$ and further,

$$\begin{aligned} \lambda \varphi'(a) &= \lambda (\varphi'(ab_0) - \tau'(ab_0)) \\ &= D(ab_0) \\ &= D(a)\Sigma(b_0) + \Psi(a)D(b_0) \\ &= \lambda (\varphi'(a) - \tau'(a))\Sigma(b_0) + \lambda \Psi(a) \\ &= \lambda \left[(\varphi'(a) - \tau'(a))\Sigma(b_0) + \Psi(a) \right] \end{aligned}$$

Since $\lambda \neq 0$ and a is an arbitrary element of \mathcal{A} , we have

$$\varphi' - \Sigma(b_0)(\varphi' - \tau') - \Psi \equiv 0.$$
(2.8)

If $\Sigma(b_0) = 0$, then we find that

$$\varphi' = \Psi. \tag{2.9}$$

Now, assume that $\Sigma(b_0) \neq 0$. It follows from (2.8) that

$$(1 - \Sigma(b_0))\varphi' + \Sigma(b_0)\tau' - \Psi \equiv 0.$$
(2.10)

Since $\tau', \varphi', \Psi \in \Phi_{\mathcal{A}}$ with $(1 - \Sigma(b_0))\varphi' = \Psi - \Sigma(b_0)\tau'$, we have $\Sigma(b_0) = 1$ and consequently,

$$\tau' = \Psi. \tag{2.11}$$

From (2.9) and (2.11) we obtain that

$$\varphi' = \Psi \text{ or } \tau' = \Psi. \tag{2.12}$$

Similarly, let a_0 be an element of \mathcal{A} such that $\varphi'(a_0) = 1$ and $\tau'(a_0) = 0$. So, $D(a_0) = \lambda(\varphi'(a_0) - \tau'(a_0)) = \lambda$ and further,

$$\begin{split} \lambda \varphi'(b) &= \lambda (\varphi'(a_0 b) - \tau'(a_0 b)) \\ &= D(a_0 b) \\ &= D(a_0) \Sigma(b) + \Psi(a_0) D(b) \\ &= \lambda (\varphi'(a_0) - \tau'(a_0)) \Sigma(b) + \lambda \Psi(a_0) (\varphi'(b) - \tau'(b)) \\ &= \lambda \Sigma(b) + \lambda \Psi(a_0) (\varphi'(b) - \tau'(b)). \end{split}$$

Since $\lambda \neq 0$ and b is an arbitrary element of \mathcal{A} , we get

$$\varphi' - \Sigma - \Psi(a_0)(\varphi' - \tau') \equiv 0.$$
(2.13)

If $\Psi(a_0) = 0$, then it follows from (2.13) that

$$\varphi' = \Sigma. \tag{2.14}$$

If $\Psi(a_0) \neq 0$, we have $(1 - \Psi(a_0))\varphi' - \Sigma + \Psi(a_0)\tau' \equiv 0$. By an argument similar to what was mentioned above, we obtain that

$$\varphi' = \Sigma \quad \text{or} \quad \tau' = \Sigma.$$
 (2.15)

The above discussion can be summarized as follows.

1) $\varphi' = \Psi$ or $\tau' = \Psi$. 2) $\Sigma = \varphi'$ or $\Sigma = \tau'$. If $\varphi' = \Psi$ and $\varphi' = \Sigma$, then we have $D(ab) = D(a)\Sigma(b) + \Psi(a)D(b)$ $= D(a)\Sigma(b) + \Sigma(a)D(b).$

It means that

$$\lambda(\Sigma(ab) - \tau'(ab)) = \lambda(\Sigma(a) - \tau'(a))\Sigma(b) + \lambda\Sigma(a)(\Sigma(b) - \tau'(b))$$

Since $\lambda \neq 0$ and Σ, τ' are homomorphisms, we find that

$$-\tau'(a)\left(\tau'(b) - \Sigma(b)\right) = \Sigma(a)\left(\Sigma(b) - \tau'(b)\right) \text{ for all } a, b \in \mathcal{A}.$$
 (2.16)

Now, we show that $\ker(\Sigma) \not\subseteq \ker(\tau')$. Suppose that $\ker(\Sigma) \subseteq \ker(\tau')$. Since $a - \Sigma(a)\mathbf{e} \in \ker(\Sigma)$ and $\ker(\Sigma) \subseteq \ker(\tau')$, $\tau'(a - \Sigma(a)\mathbf{e}) = 0$ for all $a \in \mathcal{A}$, and it implies that $\tau' = \Sigma$. This conclusion together with $\varphi' = \Sigma$ imply that $\varphi' = \tau'$, which is a contradiction. Therefore, $\ker(\Sigma)$ is not a subset of $\ker(\tau')$. So, there is an element $a_0 \in \ker(\Sigma)$ such that $a_0 \notin \ker(\tau')$, i.e. $\Sigma(a_0) = 0$ and $\tau'(a_0) \neq 0$. Replacing a with a_0 in (2.16), we obtain that $-\tau'(a_0)(\tau'(b) - \Sigma(b)) = 0$. Since $\tau'(a_0) \neq 0$ and b is an arbitrary element of $\mathcal{A}, \tau' = \Sigma$. Hence, we have $\tau' = \Sigma = \varphi'$, and it is a contradiction. Therefore, we have $\varphi' = \Psi$ and $\Sigma = \varphi'$. Consequently, $D = \lambda(\varphi' - \tau') = \lambda(\Psi - \Sigma)$ or $D = \lambda(\varphi' - \tau') = \lambda(\Sigma - \Psi)$. So, we can write $D = \pm \lambda(\Sigma - \Psi)$. From this, we obtain that $\varphi(d(a) \pm \lambda(\sigma - \tau)(a)) = 0$ for all $a \in \mathcal{A}, \varphi \in \Phi_{\mathcal{A}}$. Since $\bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi = \{0\}, d = \pm \lambda(\sigma - \tau)$. This proves the theorem completely. \Box

An immediate corollary about the automatic continuity of (σ, τ) -derivations reads as follows.

Corollary 2.2. Let \mathcal{A} be a unital, commutative, semi-simple Banach algebra, and let $\sigma, \tau : \mathcal{A} \to \mathcal{A}$ be two distinct endomorphisms such that $\varphi\sigma(e)$ and $\varphi\tau(e)$ are non-zero complex numbers for all $\varphi \in \Phi_{\mathcal{A}}$. If $d : \mathcal{A} \to \mathcal{A}$ is a (σ, τ) derivation such that φd is a non-zero linear functional for every $\varphi \in \Phi_{\mathcal{A}}$, then d is automatically continuous.

Proof. Since σ and τ are supposed to be two distinct endomorphisms, it follows from part (2) of Theorem 2.1 that $d = \lambda(\sigma - \tau)$ for some $\lambda \in \mathbb{C} \setminus \{0\}$. This proves the corollary.

Theorem 2.3. Let \mathcal{A} be a C^* -algebra, and let $\sigma, \tau : \mathcal{A} \to \mathcal{A}$ be continuous endomorphisms. Then every Jordan (σ, τ) -derivation from \mathcal{A} into a Banach \mathcal{A} -bimodule \mathcal{M} is a continuous (σ, τ) -derivation.

Proof. It is clear that \mathcal{M} is a Banach \mathcal{A} -bimodule by the following module actions:

$$a \ltimes m = \tau(a)m, \quad m \rtimes a = m\sigma(a) \quad (a \in \mathcal{A}, m \in \mathcal{M}).$$

We denote the above module by $\widehat{\mathcal{M}}$. We have $d(a^2) = d(a)\sigma(a) + \tau(a)d(a) = d(a) \rtimes a + a \ltimes d(a)$ for all $a \in \mathcal{A}$. It means that $d : \mathcal{A} \to \widehat{\mathcal{M}}$ is a Jordan derivation. In view of [14, Corollary 17] we get the required result. \Box

Below, we present a remark which is used in the proof of Theorem 2.5.

Remark 2.4. Let \mathfrak{M} be a von Neumann algebra. Here, the spectrum of an arbitrary element $A \in \mathfrak{M}$ is denoted by $\mathfrak{S}(A)$ and recall that $\mathfrak{S}(A) = \{\lambda \in \mathbb{C} | \lambda \mathcal{I} - A \text{ is not invertible in } \mathfrak{M}\}$. Suppose that P is an idempotent of \mathfrak{M} , i.e. $P^2 = P$. Clearly, if $P \neq 0, \mathcal{I}$, then $\{0, 1\} \subseteq \mathfrak{S}(P)$. We show that $\mathfrak{S}(P) \subseteq \{0, 1\}$ and it means that $\mathfrak{S}(P) = \{0, 1\}$. For $\lambda \neq 0, 1$ we have

$$\left(\frac{1}{1-\lambda}P - \frac{1}{\lambda}\left(\mathcal{I} - P\right)\right)\left(P - \lambda \mathcal{I}\right) = \left(P - \lambda \mathcal{I}\right)\left(\frac{1}{1-\lambda}P - \frac{1}{\lambda}\left(\mathcal{I} - P\right)\right) = \mathcal{I}.$$

It means that $P - \lambda \mathcal{I}$ is invertible and so, $\lambda \notin \mathfrak{S}(P)$. Therefore, $\mathfrak{S}(P) = \{0, 1\}$.

The following theorem is a Singer-Wermer type theorem for Jordan $\sigma\text{-}$ derivations.

Theorem 2.5. Let \mathfrak{M} be a commutative von Neumann algebra, and let σ : $\mathfrak{M} \to \mathfrak{M}$ be an endomorphism. Then every Jordan σ -derivation $d : \mathfrak{M} \to \mathfrak{M}$ is identically zero.

Proof. We know that every von Neumann algebra is a C^* -algebra and every C^* -algebra is semi-simple (see [13]). Hence, [4, Proposition 5.1.1] implies that σ is continuous, i.e. $\|\sigma\| < \infty$. It follows from Theorem 2.3 that d is continuous. Suppose that φ is an arbitrary character on \mathfrak{M} , i.e. $\varphi \in \Phi_{\mathfrak{M}}$. It follows from [4, Proposition 3.1.2] that ker(φ) is a maximal ideal of \mathfrak{M} of codimension 1, i.e. $\dim(\frac{\mathfrak{M}}{\ker \varphi}) = 1$ for each $\varphi \in \Phi_{\mathfrak{M}}$. Evidently, the algebra $\frac{\mathfrak{M}}{\ker(\varphi)}$ is commutative.

Since \mathfrak{M} is a von Neumann algebra, the set of all algebraic elements of \mathfrak{M} is norm dense in \mathfrak{M}_{sa} . Let Q be an arbitrary non-zero projection of \mathfrak{M} . We have

$$d(Q) + \ker \varphi = d(Q)\sigma(Q) + \sigma(Q)d(Q) + \ker \varphi = 2d(Q)\sigma(Q) + \ker \varphi.$$

So,

$$2d(Q)\left(\frac{1}{2}\mathcal{I}-\sigma(Q)\right) \in \ker \varphi.$$
 (2.17)

Clearly, $\sigma(Q)$ is an idempotent and it follows from Remark 2.4 that $\frac{1}{2} \notin \mathfrak{S}(\sigma(Q))$. It means that $\frac{1}{2}\mathcal{I}-\sigma(Q)$ is an invertible element in \mathfrak{M} . This fact along with (2.17) imply that $d(Q) \in \ker(\varphi)$. Since φ is an arbitrary element of $\Phi_{\mathfrak{M}}$, $d(Q) \in \bigcap_{\varphi \in \Phi_{\mathfrak{M}}} \ker(\varphi)$. According to [4, Theorem 3.1.3] each member of $\Phi_{\mathfrak{M}}$ is continuous and so, $\ker(\varphi)$ ($\varphi \in \Phi_{\mathfrak{M}}$) is a closed subset and consequently, $\bigcap_{\varphi \in \Phi_{\mathfrak{M}}} \ker(\varphi)$ is also a closed subset of \mathfrak{M} . Our next task is to show that $\varphi(d(A)) = 0$ for every $A \in \mathfrak{M}$. Let X be an arbitrary algebraic element of \mathfrak{M} . Hence, $X = \sum_{i=1}^{m} r_i P_i$, where P_1, P_2, \ldots, P_m are mutually orthogonal projections and r_1, r_2, \ldots, r_m are real numbers. We have

$$\varphi(d(X)) = \varphi\left(d\left(\sum_{i=1}^{m} r_i P_i\right)\right)$$
$$= \sum_{i=1}^{m} r_i \varphi(d(P_i))$$
$$= 0.$$

Since the set of all algebraic elements is norm dense in \mathfrak{M}_{sa} and d is a continuous σ -derivation, $\varphi(d(A)) = 0$ for every $A \in \mathfrak{M}_{sa}$. We know that each Ain \mathfrak{M} can be represented as $A = A_1 + iA_2$, where $A_1, A_2 \in \mathfrak{M}_{sa}$. Therefore, $\varphi(d(A)) = \varphi(d(A_1 + iA_2)) = 0$ for all $A \in \mathfrak{M}$ and $\varphi \in \Phi_{\mathfrak{M}}$. It means that $d(\mathfrak{M}) \subseteq \bigcap_{\varphi \in \Phi_{\mathfrak{M}}} \ker(\varphi)$. Since \mathfrak{M} is commutative, it follows from [4, Proposition 3.2.1] that $\bigcap_{\varphi \in \Phi_{\mathfrak{M}}} \ker(\varphi) = Rad(\mathfrak{M})$. As we know, every von Neumann algebra is semi-simple and consequently, d is identically zero.

Let \mathcal{A} be a *-algebra and $T : \mathcal{A} \to \mathcal{A}$ be a linear mapping. We define a linear mapping T^* on \mathcal{A} by $T^*(a) = (T(a^*))^*$ for all $a \in \mathcal{A}$. A linear mapping T is called a *-map if $T = T^*$. We are now ready to prove the above-mentioned theorem for Jordan $* - (\sigma, \tau)$ -derivations.

Corollary 2.6. Suppose that \mathfrak{M} is a commutative von Neumann algebra and $\sigma, \tau : \mathfrak{M} \to \mathfrak{M}$ are *-linear mappings such that $\frac{\sigma+\tau}{2}$ is an endomorphism. Then every Jordan $* - (\sigma, \tau)$ -derivation $d : \mathfrak{M} \to \mathfrak{M}$ is identically zero.

Proof. According to the aforementioned assumptions, we have $d = d^*$, $\sigma = \sigma^*$, and $\tau = \tau^*$. By getting idea from [11], we have

$$d(A^2) = d^*(A^2) = (d(A^2)^*)^* = (d(A^*)\sigma(A^*) + \tau(A^*)d(A^*))^*$$

= $\sigma(A)d(A) + d(A)\tau(A).$

Therefore,

$$d(A^{2}) = \frac{1}{2}d(A^{2}) + \frac{1}{2}d(A^{2})$$

= $d(A)\frac{\sigma(A)}{2} + \frac{\tau(A)}{2}d(A) + d(A)\frac{\tau(A)}{2} + \frac{\sigma(A)}{2}d(A)$
= $d(A)\left(\frac{\sigma+\tau}{2}\right)(A) + \left(\frac{\sigma+\tau}{2}\right)(A)d(A).$

So d is a Jordan Σ -derivation, where $\Sigma = \frac{\sigma + \tau}{2}$. Now, Theorem 2.5 is exactly what we need to complete the proof.

Acknowledgements. The author is greatly indebted to the referee for his/her valuable suggestions and careful reading of the paper.

References

- [1] S. ALI, A. FOSNER, M. FOSNER, AND M. S. KHAN, On generalized Jordan triple $(\alpha, \beta)^*$ -derivations and related mappings, Mediterr. J. Math. **10** (2013), 1657–1668.
- [2] M. ASHRAF AND N. REHMAN, On (σ, τ) -derivations in prime rings, Arch. Math. **38** (2002), 259–264.
- [3] H. G. DALES, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, 24, Oxford University Press, New York, 2000.
- [4] H. G. DALES, P. AIENA, J. ESCHMEIER, K. LAURSEN, AND G. A. WILLIS, Introduction to Banach Algebras, Operators and Harmonic Analysis, Cambridge University Press, Cambridge, 2003.
- [5] M. E. GORDJI, A characterization of (σ, τ) -derivations on von Neumann algebras, Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. **73** (2011), 111–116.
- [6] O. GOLBASI AND E. KOC, Notes on Jordan (σ, τ)*-derivations and Jordan triple (σ, τ)*-derivations, Aequat. Math. 85 (2013), 581–591.
- [7] A. HOSSEINI, M. HASSANI, A. NIKNAM, AND S. HEJAZIAN, Some results on σ -derivations, Ann. Funct. Anal. 2 (2011), 75–84.
- [8] A. HOSSEINI, M. HASSANI, AND A. NIKNAM, Generalized σ-derivation on Banach algebras, Bull. Iran. Math. Soc. 37 (2011), 81–94.
- [9] A. HOSSEINI, Characterization of some derivations on von Neumann algebras via left centralizers, Ann. Univ. Ferrara, (to appear).
- [10] I. KAPLANSKY, Projections in Banach algebras, Ann. Math. 53 (1951), 235–249.
- [11] M. MIRZAVAZIRI AND M. S. MOSLEHIAN, Automatic continuity of σ -derivations on C^* -algebras, Proc. Amer. Math. Soc. **134** (2006), 3319–3327.
- [12] M. MIRZAVAZIRI AND M. S. MOSLEHIAN, (σ, τ) -amenability of C^{*}-algebras, Georgian Math. J. 18 (2011), 137–145.
- [13] G. J. MURPHY, C*-Algebras and Operator Theory, Boston Academic Press, Boston, MA, 1990.

- [14] A. PERALTA AND B. RUSSO, Automatic continuity of derivations on C^{*}-algebras and JB^{*}-triples, J. Algebra **399** (2014), 960–977.
- [15] J. F. RENNISON, A note on subalgebras of co-dimension 1, Proc. Camb. Philos. Soc. 3 (1970), 673–674.
- [16] K. SAITÔ AND J. D. MAITLAND WRIGHT, On defining AW*-algebras and Rickart C*-algebras, Q. J. Math. 66 (2015), 979–989.
- [17] I. M. SINGER AND J. WERMER, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260–264.
- [18] M. TAKESAKI, Theory of Operator Algebras I, Springer, Berlin, 2001.

AMIN HOSSEINI Department of Mathematics, Kashmar Higher Education Institute, Kashmar, Iran e-mail: hosseini.amin82@gmail.com

Received: 18 February 2017