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A remainder term for Hölder’s inequality for matrices
and quantum entropy inequalities

Eric A. Carlen

Abstract. We prove a sharp remainder term for Hölder’s inequality for
traces as a consequence of the uniform convexity properties of the Schat-
ten trace norms. We then show how this implies a novel family of Pinsker
type bounds for the quantum Rényi entropy. Finally, we show how the
sharp form of the usual quantum Pinsker inequality for relative entropy
may be obtained as a fairly direct consequence of uniform convexity.

Mathematics Subject Classification. 26B25, 94A17.

Keywords. Density matrix, Entropy, Uniform convexity.

1. Introduction. For any complex n×n matrix A, define |A| = (A∗A)1/2, and
for 1 ≤ p < ∞, ‖A‖p = (Tr|A|p)1/p. If σ1 ≥ · · · ≥ σn are the singular values

of A, then ‖A‖p =
(∑n

j=1 σp
j

)1/p

. For p = ∞, ‖A‖∞ is simply the operator
norm of A, which is also the largest singular value of A. It is well-known that
‖ · ‖p is a norm, the Schatten p norm, on Mn, the space of n×n matrices. The
space Cp is the space Mn of n × n complex matrices equipped with this norm.

The Schatten norms are in many ways close analogs of the �p norms. In
particular, one has the analog of Hölder’s inequality

|Tr[AB]| ≤ ‖A‖p‖B‖p′

where 1/p + 1/p′ = 1, 1 ≤ p ≤ ∞. Whenever p and p′ appear together below,
it is assumed that 1/p+1/p′ = 1. For all 1 ≤ p ≤ ∞, a simple argument using
the singular value decomposition shows that

‖A‖p = sup {� (Tr[AB]) : ‖B‖p′ = 1} , (1.1)

This work is partially supported by U.S. National Science Foundation Grant DMS 1501007.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-017-1066-8&domain=pdf
http://orcid.org/0000-0003-2613-187X


366 E. A. Carlen Arch. Math.

and in fact, the supremum is achieved. The Minkowski inequality; i.e., the fact
that our norms are norms, follows in the usual way. For 1 < p < ∞, and
non-zero A ∈ Cp, define

Dp(A) = ‖A‖1−p
p |A|p−1U∗ (1.2)

where A = U |A| is the polar decomposition of A. Then one readily checks that

‖Dp(A)‖p′ = 1 and Tr[Dp(A)A] = ‖A‖p. (1.3)

Thus, for 1 < p < ∞, the supremum in (1.1) is a maximum, and the maximum
is attained at Dp(A). It then follows from (1.1) that for all A,B ∈ Mn and all
t ∈ R,

‖A + tB‖p ≥ Tr [Dp(A)(A + tB)] = ‖A‖p + t Tr [Dp(A)B] .

Likewise, writing A = (A + tB) − tB,

‖A‖p ≥ Tr [Dp(A + tB)(A)] = ‖A + tB‖p − t Tr [Dp(A + tB)B] .

Thus, provided that t‖Dp(A + tB) − Dp(A)‖p = o(|t|), we have that∣∣‖A + tB‖p − ‖A‖p − t Tr [Dp(A)B]
∣∣ = o(|t|),

and this says that the norm function A �→ ‖A‖p is (Fréchet) differentiable
for 1 < p < ∞, and that Dp(A) is the derivative at A ∈ Mn. In fact, for
1 < p < ∞, the map A �→ Dp(A) is Hölder continuous, and the modulus of
continuity has been given in [4]. Thus, A �→ Dp(A) is the gradient of the norm
function A �→ ‖A‖p for 1 < p < ∞, and this is the reason for the notation
using D.

The map A �→ Dp(A) is closely related to the non-commutative Mazur map
studied in [1] and [9]. For 1 ≤ p, q ≤ ∞, the Mazur map Mp,q is defined on
Mn by Mp,q(A) = A|A|(p−q)/q. For q = p′, (p − q)/q = p − 2, and hence

Mp,p′(A) = ‖A‖p−1
p (Dp(A))∗

.

Sharp Hölder continuity bounds on Mp,q in a very general von Neumann
algebra setting are proved in [9], which can be consulted for further references.

The norm gradient maps, which are the Mazur maps for q = p′, normalized
to be homogeneous of degree zero, are the focus of this note which concerns
another setting in which they arise. Our first result is a quantitative remain-
der term for the tracial Hölder inequality. From this we shall deduce several
quantum entropy inequalities.

The next theorem is a non-commutative analog of a theorem proved in [3]
in the commutative context of Lp spaces for Lebesgue integration. The proof
simply uses the sharp uniform convexity properties of the Cp norms proved in
[2] in place of the corresponding sharp uniform convexity properties of the Cp

norms that were used in [3].

1.1 Theorem. (Hölder’s inequality with remainder) Let 1 < p ≤ 2. Let A be a
unit vector in Cp, and let B be a unit vector in Cp′ . Let θ ∈ [0, 2π) be chosen
such that eiθTr[AB] is non-negative. Then we have both

|Tr[AB]| ≤ 1 − p − 1
4

‖Dp′(B) − eiθA‖2p, (1.4)
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and
|Tr[AB]| ≤ 1 − 1

p′ 2p′−1
‖eiθB − Dp(A)‖p′

p′ . (1.5)

The exponents 2 and p′ on the right sides of (1.4) and (1.5) are best possible.

Proof. By (1.2) and the choice of θ, 1 + eiθTr[AB] = Tr[(Dp′(B) + eiθA)B].
Therefore, by Hölder’s inequality and the choice of θ,

1 + |Tr[AB]| ≤ ‖Dp′(B) + eiθA‖p ≤ 2
∥∥∥∥

Dp′(B) + eiθA

2

∥∥∥∥
p

. (1.6)

Now apply the optimal 2-uniform convexity inequality [2], valid for 1 < p ≤ 2,
and unit vectors X,Y ∈ Cp:

∥∥∥∥
X + Y

2

∥∥∥∥
p

≤ 1 − p − 1
2

∥∥∥∥
X − Y

2

∥∥∥∥
2

p

. (1.7)

This leads directly to (1.4). The proof of (1.5) is similar except that one uses
∥∥∥∥

X + Y

2

∥∥∥∥
p

≤ 1 − 1
p

∥∥∥∥
X − Y

2

∥∥∥∥
p

p

valid for 2 ≤ p, and unit vectors X,Y ∈ Cp [2]. The fact that the exponents
are the best possible follows from the fact that this is true in the commutative
case, and the proof of this may be found in [3, Theorem 3.1]. �

2. Application to entropy. Recall that for α ∈ (0, 1), the Rényi α-relative
entropy for ρ with respect to σ is the quantity

Dα(ρ||σ) =
1

α − 1
log

(
Tr[ρασ1−α]

)
. (2.1)

Recall also that

lim
α→1

Dα(ρ||σ) = D(ρ||σ) := Tr[ρ(log ρ − log σ)],

the von Neumann relative entropy. Pinsker’s inequality for the von Neumann
relative entropy states that

D(ρ||σ) ≥ 1
2
‖ρ − σ‖21. (2.2)

We now show that Theorem 1.1 gives a Pinsker type inequality for the
Rényi entropy from which (2.2) can be derived in the limit α → 1. By the
definition (2.1), for α ∈ (0, 1), an upper bound on Tr[ρασ1−α] implies a lower
bound on Dα(ρ||σ).

2.1 Theorem. Let ρ and σ be density matrices in Mn for some n, and let
1 < p ≤ 2. Then

Tr[σ1−1/pρ1/p] ≤ 1 − p − 1
4

‖ρ1/p − σ1/p‖2p, (2.3)

and
Tr[σ1−1/pρ1/p] ≤ 1 − 1

p′ 2p′−1
‖ρ1/p′ − σ1/p′‖p′

p′ . (2.4)
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Proof. Define A = ρ1/p and B = σ1/p′
so that A and B are unit vectors in Cp

and Cp′ respectively. First note that Dp′(B) = B1/(p−1) = σ1/p. Hence (2.3)
follows directly from (1.4). Next, note that Dp(A) = Ap−1 = ρ1−1/p. Hence
(2.4) follows directly from (1.5). �
2.2 Corollary. For all α ∈ [1/2, 1),

Dα(ρ||σ) ≥ 1
4α

‖ρα − σα‖21/α. (2.5)

Proof. Take p := 1/α and α ∈ [1/2, 1) so that p ∈ (1, 2]. Then (2.3) yields
(2.5). �

We could of course use (1.5) to treat the cases α ∈ (0, 1/2) in an analogous
way; the result would be similar, but the exponent on the right would be 1/α
in place of 2.

Lower bounds on Dα(ρ||σ) in terms of ‖ρ − σ‖1 are known in the classical
case, and easily generalize to the quantum case, but these bounds are weaker
than the bounds provided by Corollary 2.2. It is known [6] in the classical case
(ρ and σ commuting) that

Dα(ρ||σ) ≥ α

2
‖ρ − σ‖21. (2.6)

As a quite direct consequence of the Lieb concavity theorem [7] which says
that (ρ, σ) �→ Tr[ρασ1−α] is concave for α ∈ [0, 1], this is also valid in the
quantum case. Indeed, let P be the projector onto the range of (ρ − σ)+. Let
U be any unitary that commutates with P . Then

Tr[(UρU∗)α(UσU∗)1−α] = Tr[ρασ1−α].

By a theorem of Uhlmann [11], there is a finite set of such unitaries such that
if we define ρ̂ and σ̂ to be the averages of UρU∗ and UσU∗, respectively, over
all unitaries U in our set, then ρ̂ and σ̂ both belong to the algebra generated
by P , and hence for some p, q ∈ [0, 1],

ρ̂ =
p

Tr[P ]
P +

(1 − p)
Tr[I − P ]

(I − P ) and σ̂ =
q

Tr[P ]
P +

(1 − q)
Tr[I − P ]

I − P.

Then the Lieb concavity theorem implies that Tr[ρ̂ασ̂1−α] ≥ Tr[ρασ1−α].
Hence Dα(ρ||σ) ≥ Dα(ρ̂||σ̂). However, since ρ̂ and σ̂ commute, the classi-
cal bound (2.6) applies to yield Dα(ρ̂||σ̂) ≥ α

2
‖ρ̂ − σ̂‖21, and one easily sees

that ‖ρ − σ‖1 = ‖ρ̂ − σ̂‖1. Hence, (2.6) is valid in the quantum setting as well.
We now show that (2.5) improves upon (2.6): the ratio of ‖ρα − σα‖1/α to

‖ρ − σ‖1 can be arbitrarily large, and the ratio of ‖ρ − σ‖1 to ‖ρα − σα‖1/α is
bounded above by a finite constant.

For the first of these points, an example suffices. Let ε ∈ (0, 1/2), and define

ρ =
[

1
2 0
0 1

2

]
and σ =

[
1
2 + ε 0

0 1
2 − ε

]
.

Then ‖ρ − σ‖1 = 2ε, while ‖ρα − σα‖1/α = (2αε)α + O(ε2α). It follows that

‖ρα − σα‖1/α

‖ρ − σ‖1 =
αα

2ε1−α
+ O(ε2α−1) (2.7)
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This shows that (2.5) can provide a much stronger bound than (2.6).
Lemma 2.3 in [9] says (in particular) that for all positive A,B ∈ Mn, and

all α ∈ (0, 1),
α

3
‖A − B‖1 ≤ ‖Aα − Bα‖1/α max{‖Aα‖1/α , ‖Bα‖1/α}. (2.8)

Applying this with A = ρ and B = σ, (α/3)‖ρ − σ‖1 ≤ ‖ρα − σα‖1/α. Com-
bining this with (2.5) yields, for α ∈ [1/2, 1),

Dα(ρ||σ) ≥ α

36
‖ρ − σ‖21, (2.9)

which is (2.6) apart from a constant that is worse by a factor of 18. Thus apart
from the constant, (2.5) implies (2.6). Part of the discrepancy in the constants
is due to the constant in (2.8), but part also is due to the fact that we have
not yet made optimal use of the uniform convexity bounds.

As we now show, more can be gleaned from the argument that we used
to deduce a remainder term for Hölder’s inequality from uniform convexity
bounds. We now prove a variant of Theorem 1.1 and show that using this
variant, we may obtain the full non-commutative Pinsker inequality; i.e., the
α → 1 limit of (2.6), with the exact constants. This derivation shows that the
sharp form of Pinsker’s inequality is actually a fairly direct consequence of the
uniform convexity properties of the Cp spaces.

3. Pinsker’s inequality and uniform convexity. Since

lim
α↑1

Dα(ρ||σ) = D(ρ||σ) = Tr[ρ(log ρ − log σ)],

taking the limit α ↑ 1 in (2.2) yields D(ρ||σ) ≥ 1
4
‖ρ − σ‖21. This is Pinsker’s

inequality [8,10], except that it is not in the sharp form which has a factor
of 1/2 in place of the 1/4 on the right, which is what one obtains from (2.6)
in the limit α ↑ 1. However, one can recover the sharp form of Pinsker’s
inequality from the optimal 2-uniform convexity inequality by going back to
the proof of Theorem 1.1 and noting that we gave something up arriving at
(1.6) by applying the usual Hölder inequality without taking the remainder
into account.

3.1 Definition. Let P be the set of functions A(p) from [1, 2] into the positive
n×n matrices such that limp→1 A(p) = A(1) in C1 and such that ‖A(p)‖p = 1
for each p ∈ [1, 2].

For example, let ρ be any density matrix in Mn. Then A(p) := ρ1/p ∈ P.
Moreover, if A(p) and B(p) belong to P, then so does (A(p) + B(p))/‖A(p) +
B(p)‖p.

3.2 Theorem. (Variant of Hölder’s inequality with remainder) Let 1 < p ≤ 2.
Then for all A(p) and B(p) in P, and any constant K < 1/2,

Tr[A(p)Bp−1(p)] ≤ 1 − K(p − 1)‖A(p) − B(p)‖2p + o(p − 1). (3.1)
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3.3 Corollary. (Pinsker’s inequality for density matrices) For all density ma-
trices ρ and σ in Mn,

D(ρ||σ) ≥ 1
2
‖ρ − σ‖21.

Proof. Take A(p) = ρ1/p and B(p) = σ1/p. By Theorem 3.2, for all K < 1/2,

Tr[σ1−1/pρ1/p] ≤ 1 − K(p − 1)‖ρ1/p − σ1/p‖2p + o(p − 1).

Rearranging terms as above, and taking p → 1, we obtain

D(ρ||σ) ≥ K‖ρ − σ‖21.
Since K < 1/2 can be arbitrarily close to 1/2, the inequality is proved. �
Proof of Theorem 3.2. We note that for K = 1/4, (3.1) is valid by Theo-
rem 1.1. Next, supposing that (3.1) is valid for some constant K, we show that
it is also valid when K is replaced by (K + 1/2)/2. Iterating this yields the
claimed result.

Therefore, let us make the inductive assumption that (3.1) is valid for some
constant K. We have

1 + Tr
[
A(p)Bp−1(p)

]
= Tr[(A(p) + B(p))Bp−1(p)]

= ‖A(p) + B(p)‖pTr[C(p)Bp−1(p)] (3.2)

where

C(p) = ‖A(p) + B(p)‖−1
p (A(p) + B(p)) ∈ P.

By hypothesis,

Tr[C(p)Bp−1(p)] ≤ 1 − K(p − 1)‖B(p) − C(p)‖2p + o(p − 1),

and since limp↓1 ‖A(p) + B(p)‖p = 2,

‖B(p) − C(p)‖p =
∥∥∥∥B(p) − A(p) + B(p)

2

∥∥∥∥
p

+ o(1) =
1
2
‖A(p) − B(p)‖p + o(1).

Combining this with the previous bound,

Tr[Bp−1(p)C(p))] ≤ 1 − (p − 1)
K

4
‖A(p) − B(p)‖2p + o(p − 1). (3.3)

By the 2-uniform convexity inequality,

‖A(p) + B(p)‖p ≤ 2 − p − 1
4

‖A(p) − B(p)‖2p.
Using this and (3.3) in (3.2), we obtain

1 + Tr
[
Bp−1(p)A(p)

] ≤ 2
(

1 − p − 1
8

‖A(p) − B(p)‖2p
)

×
(

1 − (p − 1)
K

4
‖A(p) − B(p)‖2p + o(1)

)

≤ 2 − (p − 1)
(

1
4

+
K

2

)
‖A(p) − B(p)‖2p + o(p − 1).

Thus, in (3.1), we may replace K by (K+1/2)/2, and the validity is maintained.
�
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