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Unitary groups as stabilizers of orbits

Erik Friese

Abstract. We show that a finite unitary group which has orbits spanning
the whole space is necessarily the setwise stabilizer of a certain orbit.
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I. M. Isaacs has shown that any finite matrix group G ⊂ GL(n,k) over an
infinite field k is the setwise stabilizer of a finite subset X ⊂ kn [1]. If G acts
absolutely irreducible on kn, it is even possible to take a single orbit of G for
X.

In general X cannot be chosen as an orbit of G, for example, if no orbit of
G linearly spans kn. But even if there are orbits of G spanning the space, the
stabilizer of any G-orbit may be strictly larger than G. Consider for example
the orthogonal group G generated by the 90◦ rotation of the plane. The orbit
of any nonzero vector forms a square which has reflection symmetries not
contained in G. So the setwise stabilizer of any orbit is strictly larger than G,
even in the orthogonal group of the plane.

In fact, there are exceptional isomorphism types of finite groups which can
never occur as (orthogonal or linear) setwise stabilizer of one of their orbits.
In the orthogonal case these groups were fully classified by Babai [2]. In the
linear case the classification was recently done for k = R and k = Q in joint
work with Ladisch [3]. The present note deals with the complex unitary case
where no such exceptional isomorphism types arise. In fact, we have an even
stronger result.

Theorem 1. Let G ≤ U(Cn) be a finite unitary group such that some orbit
of G spans Cn (over C). Then there is an open and dense subset of elements
x ∈ Cn such that G = U(Gx). In particular, G is the setwise stabilizer of one
of its orbits.
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Here U(Cn) denotes the group of all complex unitary (n×n)-matrices, and
U(X) = {A ∈ U(Cn) : AX = X} denotes the stabilizer of X ⊆ Cn in U(Cn).
In the following, we regard Cn as a vector space over R and equip Cn with
the real Zariski topology. Explicitly, the closed subsets of Cn are the common
zero sets of real polynomials f ∈ R[X1, Y1, . . . , Xn, Yn], where

f(x) = f(Re(x1), Im(x1), . . . ,Re(xn), Im(xn)) for x ∈ Cn.

For a general treatment of the Zariski topology over arbitrary fields, we refer
to [4].

Proof of Theorem 1. Let Cn carry the real Zariski topology. We begin by defin-
ing a certain subset X ⊂ Cn as the intersection of finitely many nonempty open
sets. Since Cn ∼= R2n is an irreducible topological space, X will be nonempty
as well. Furthermore, as any nonempty Zariski-open set, X will be open and
dense in the Euclidean topology. Afterwards, we prove that G = U(Gx) for
all x ∈ X.

First, let U ⊂ Cn be the set of elements x ∈ Cn such that Gx spans Cn.
This set is open, as it consists of those elements x ∈ Cn satisfying

det(A1x, . . . , Anx) �= 0 for certain matrices A1, . . . , An ∈ G.

It is nonempty by the assumption that at least one orbit of G spans Cn.
Next, for any permutation π ∈ Sym(G) on G with π(In) = In, we consider

Oπ = {x ∈ Cn : 〈π(A)x, x〉 �= 〈Ax, x〉 for some A ∈ G},

where 〈x, y〉 = y∗x is the standard inner product on Cn. As a union of open
sets, Oπ is clearly open (at this point we actually need the real Zariski topol-
ogy). Note that Oπ may be empty, for example, if π is the identity permutation.
We define X as the intersection of U and all nonempty Oπ, where π ∈ Sym(G)
with π(In) = In.

We proceed by showing that G = U(Gz) for an arbitrary element z ∈ X.
Of course the inclusion G ⊆ U(Gz) is trivial. If C ∈ U(Gz), then C permutes
the elements of Gz which means there is a permutation π ∈ Sym(G) such that

CAz = π(A)z for all A ∈ G. (1)

By multiplying C by some element of G if necessary, we may assume without
loss of generality that Cz = z, and π(In) = In. As C is unitary, we have

〈π(A)z, z〉 = 〈CAz,Cz〉 = 〈Az, z〉 for all A ∈ G,

so that z /∈ Oπ by definition. We conclude that Oπ is empty, and hence

〈π(A)v, v〉 = 〈Av, v〉 (2)

holds for all A ∈ G and all v ∈ Cn. By plugging v = x+y into (2) for x, y ∈ Cn

arbitrary and expanding both sides, we get

〈π(A)x, x〉 + 〈π(A)x, y〉 + 〈π(A)y, x〉 + 〈π(A)y, y〉
= 〈Ax, x〉 + 〈Ax, y〉 + 〈Ay, x〉 + 〈Ay, y〉.

By applying (2) again and canceling common terms, we get

〈π(A)x, y〉 + 〈π(A)y, x〉 = 〈Ax, y〉 + 〈Ay, x〉. (3)



Vol. 109 (2017) Unitary groups as stabilizers of orbits 103

In (3) we replace y by iy and multiply both sides by i to get

〈π(A)x, y〉 − 〈π(A)y, x〉 = 〈Ax, y〉 − 〈Ay, x〉. (4)

Combining (3) and (4) yields

〈π(A)x, y〉 = 〈Ax, y〉 for all A ∈ G.

Since x and y were arbitrary, we conclude π(A) = A for all A ∈ G. Finally, we
apply (1) again to obtain

CAz = π(A)z = Az for all A ∈ G.

Since z ∈ U by definition, the orbit of z spans Cn so that C = In ∈ G. �
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