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Abstract. We calculate the L2-Alexander torsion for Seifert fiber spaces
and graph manifolds in terms of the Thurston norm.
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1. Introduction and main result. In [7] Dubois, Friedl, and Lück associated
to an admissible triple (M,φ, γ) a function τ (2)(M,φ, γ) : R>0 → R≥0 called
L2-Alexander torsion. The triple consists of a manifold M , a cohomology class
φ ∈ H1(M ;R), and a group homomorphism γ : π1(M) → G such that φ factors
through γ.

This invariant is a generalization of the L2-Alexander polynomial intro-
duced by Li–Zhang [17–19] and has been studied recently by many authors,
e.g., Dubois–Wegner [8,9], Ben Aribi [2,3], Dubois–Friedl–Lück [5–7], Friedl–
Lück [11], and Liu [14].

Given a 2-dimensional manifold S with connected components S1∪· · ·∪Sk,
we define its complexity to be χ−(S) :=

∑k
i=1 max {−χ(Si), 0}. Thurston has

shown in [21] that the function

xM : H1(M ;Z) −→ Z

φ �−→ min
{

χ−(S)
∣
∣
∣
∣

[S] is Poincaré dual to φ
and properly embedded

}

extends to a semi-norm on H1(M ;R) for any irreducible 3-manifold M . Here
and throughout this paper, every 3-manifold is understood to be orientable,
compact, and to have empty or toroidal boundary.

In this paper we will show that for a Seifert fiber space M the function
τ (2)(M,φ, γ) is completely determined by xM (φ). To be more precise:
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Theorem 1.1. (Main Theorem) Let M be a Seifert fiber space with M �= S1 ×
S2, S1×D2 and (M,φ, γ) an admissible triple, such that the image of a regular
fiber under γ is an element with infinite order. Then the L2-Alexander torsion
is given by

τ (2)(M,φ, γ) .= max
{

1, txM (φ)
}

.

Here we write f
.= g for two functions f, g : R>0 → R≥0 if there exists a

r ∈ R such that f(t) = trg(t) for all t ∈ R>0.
Theorem 1.1 was already used in [7] to show the following two corollaries.

Corollary 1.2. Let (M,φ, γ) be an admissible triple with M �= S1×S2, S1×D2.
Suppose that M is a graph manifold and that given any JSJ-component of M
the image of a regular fiber under γ is an element of infinite order, then

τ (2)(M,φ, γ) .= max
{

1, txM (φ)
}

.

Note that the next corollary was first proved by Ben Aribi [2] using a
somewhat different approach.

Corollary 1.3. Let K ⊂ S3 be an oriented knot. Denote by νK a tubular neigh-
borhood of K and by φK ∈ H1(S3\νK) the cohomology class which sends the
oriented meridian to 1. Then K is trivial if and only if τ (2)(S3\νK, φK , id)
(t) .= max {1, t}−1.

In the literature the class φK ∈ H1(S3\νK;Z) = Hom(π1(S3\νK);Z) is
often referred to as the abelianisation of π1(S3\νK).

The proof of the main theorem is obtained from two lemmas. The first
lemma characterizes the Thurston norm of a Seifert fiber space M by the
combinatorial invariant χS1

orb(M) (see Definition 2.1).

Lemma A. Let M �= S1 × S2, S1 × D2 be a Seifert fibered space with infinite
fundamental group. Then for any φ ∈ H1(M ;R), we have

xM (φ) = |χS1

orb(M) · kφ|,
where kφ := φ([F ]) and F is a regular fiber.

The second lemma calculates the function τ (2)(X,φ, γ) for spaces with a
certain S1-action.

Lemma B. Let X be a connected S1-CW-complex of finite type and φ ∈ H1

(X;R). Suppose that for one and hence all x ∈ X the map evx : S1 → X
defined by z �→ z · x induces an injective map γ ◦ evx : π1(S1, 1) → G. The
composite

π1(S1, 1) π1(X,x) R
evx φ

is given by multiplication with a real number. Let kφ denote this number. Define
the S1-orbifold Euler characteristic of X by

χS1

orb(X) =
∑

n≥0

(−1)n ·
∑

i∈Jn

1
|Hi|
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where Jn denotes the set of open n-cells, and for i ∈ Jn the set Hi is the
isotropy group of the corresponding cell. Then

τ (2)(X,φ, γ) .= max
{
1, tkφ

}−χS1
orb(X)

.

The paper is organized as follows. In Section 2 we recall the definition of
Seifert fiber spaces and prove Lemma A. Afterwards we give in Section 3 the
definition of the L2-Alexander torsion and some basic properties. In the last
part of the paper, we prove Lemma B. Note that not all Seifert fiber spaces
admit an S1-action, and so we will prove the main result for the remaining
cases in the remainder of this paper.

2. Thurston norm for Seifert fiber spaces.

2.1. Preliminaries about Seifert fiber spaces. We quickly recall the definition
and basic facts about Seifert fiber spaces. Most results are taken from the
survey article [20].

Definition. A Seifert fibered space is a 3-manifold M together with a decom-
position of M into disjoint simple closed curves (called Seifert fibers) such that
each Seifert fiber has a tubular neighborhood that forms a standard fibered
torus. The standard fibered torus corresponding to a pair of coprime integers
(a; b) with a > 0 is the surface bundle of the automorphism of a disk given by
rotation by an angle of 2πb/a, equipped with the natural fibering by circles.

We call a the index of a Seifert fiber. A fiber is regular if the index is one
and exceptional otherwise.

Remark. The number of exceptional fibers of a Seifert fiber space M is finite.

Definition. Let M be a Seifert fibered space and F1, . . . , Fn the exceptional
fibers with corresponding indices a1, . . . , an. We define

χS1

orb(M) := χ(M/S1) −
n∑

i=1

(
1 − 1

ai

)
,

where M/S1 is obtained from M by identifying all points in the same Seifert
fiber.

Remark. In Scott’s survey article this is the Euler number of the base orbifold
M/S1.

Let p : M̂ → M be a finite cover. If M is Seifert fibered, then p induces a
Seifert fiber structure on M̂ such that p is a fiber preserving map. Therefore
we get a induced branched cover p : M̂/S1 → M/S1. Denote by l the degree
of the branched cover. Then standard arguments show

l · χS1

orb(M) = χS1

orb(M̂).

For more detail we refer to [20, Section 2 and 3].
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2.2. Proof of Lemma A. Having all the notions to our hand, we can prove

Lemma A. Let M �= S1 × S2, S1 × D2 be a Seifert fibered space with infinite
fundamental group. Then for any φ ∈ H1(M ;R), we have

xM (φ) = |χS1

orb(M) · kφ|,
where kφ := φ([F ]) and F is a regular fiber.

The proof will consist of the following steps. First we reduce the problem
from Seifert fiber spaces to principal S1-bundles. Then we look at the two
cases of a trivial and non trivial principal S1-bundle separately.

Claim. It is sufficient to prove Lemma A only for principal S1-bundles.

Proof. As shown in [1, Section 3.2(C.10)] a Seifert fiber space is finitely covered
by a principal S1-bundle. Let p : M̂ → M be such a finite cover. We can
pullback the Seifert fiber structure from M to M̂ . This structure and the
structure of the S1-bundle on M̂ coincide, because the Seifert fiber structure
of an aspherical S1-bundle is unique by the argument of [20, Theorem 3.8]. Let
m denote the degree with which regular fibers of M̂ cover regular fibers of M .
Then we have m · kφ = kp∗φ. Denote by l the degree of the induced branched
cover p : M̂/S1 → M/S1. Then l · m is the degree of the cover p : M̂ → M .
From the discussion above we deduce

χS1

orb(M) · kφ =
χS1

orb(M̂) · kp∗φ

d
.

Furthermore Gabai showed in [12, Corollary 6.13] for a finite cover of 3-
manifold p : M̂ → M :

xM (φ) =
x

M̂
(p∗φ)
d

.

Putting together both equations, we see that it is enough to prove Lemma A
for S1-bundles. �

For the next proof we need the following well-known fact about fiber bun-
dles and the Thurston norm. If Σg → M

p−→ S1 is a fiber bundle and φ is given
by p∗ : H1(M ;R) → H1(S1;R), then

xM (φ) =

{
−χ(Σg) if χ(Σg) < 0,

0 else.
(1)

Lemma 2.1. Let Σg be a surface with χ(Σg) < 0. Consider M = S1 × Σg and
φ ∈ H1(M ;R). Then we have

xM (φ) = |kφ · χ(Σg)|,
where kφ = φ([F ]) and F is regular fiber.

Proof. In the following homology and cohomology is understood with real
coefficients. By the Künneth theorem H1(M) ∼= H2(M,∂M) decomposes into

H2(M,∂M) ∼= H2(Σg, ∂Σg) ⊕ H1(Σg, ∂Σg) ⊗ H1(S1).
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Every generator of H1(Σg, ∂Σg) ⊗ H1(S1) can be represented by a torus, and
therefore H1(Σg, ∂Σg) ⊗ H1(S1) is a subspace with vanishing Thurston norm.
The number kφ can be interpreted as the intersection number of a regular fiber
F with the surface representing the cohomology class φ. A surface representing
φ ∈ H1(Σg, ∂Σg) ⊗ H1(S1) is parallel to a regular fiber, and therefore kφ = 0.

Since H1(Σg, ∂Σg)⊗H1(S1) is a subspace of vanishing Thurston norm, the
Thurston norm of a class does not change if we add elements of H1(Σg, ∂Σg)⊗
H1(S1). Moreover kφ is linear in φ, and therefore the last open case is PD(φ) =
[Σg] ∈ H2(M,∂M). This is equivalent with φ being the fiber class of the
fibration Σg → S1 ×Σg → S1, and there the formula holds by Eq. (1) and the
fact that in this case kφ = 1. �

Lemma 2.2. Let M be a non trivial S1-bundle over a surface Σg. Then the
following equation

xM (φ) = |kφ · χ(Σg)|
holds for all φ ∈ H1(M ;R).

Proof. We will in fact proof that both sides are equal to zero. To calculate
H1(M) we look at a part of the Gysin short exact sequence [4, Theorem
13.2]:

0 H1(Σg) H1(M) H0(Σg) H2(Σg) . . .
p∗ ∪ e

Here ∪ e means the cup product with the Euler class e associated to the S1-
bundle M . This is an isomorphism because the bundle is not trivial. Therefore
p∗ is an isomorphism too. We apply Poincaré duality to the sequence

0 H1(Σg) H2(M) H2(Σg) H0(Σg) . . .
p! (∪ e)!

and get an isomorphism p! : H1(Σg) → H2(M). By the argument of [13,
Section 4] the map p! has the following geometric interpretation. An element
c ∈ H1(Σg;Z) can be represented by embedded curves in Σg. Then p!(c) is the
homology class, which is represented by the product of these curves and the
regular fiber. This is a collection of tori, and we conclude that all elements in
H2(M) have trivial Thurston norm. We now have a second look at the Gysin
sequence to show that 0 = [F ] ∈ H1(M) for a regular fiber F .

. . . H0(Σg) H2(Σg) H2(M) . . .∪ e p∗

We change again via Poincaré duality to homology and obtain the map p! : H0

(Σg) → H1(M), [x0] �→ [F ] which sends a point to a regular fiber F . This
map is trivial, because ∪ e is surjective. Hence [F ] = 0, and we conclude
kφ = φ([F ]) = 0. �

3. Definition and basic properties of the L2-Alexander torsion. In the mono-
graph [15] Lück defines the L2-torsion ρ(2)(C∗) ∈ R of a finite Hilbert-N (G)
chain complex of determinant class C∗. We refer to [15, Chapter 3] for the
precise definition and basic properties.
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Definition. Let X be a connected finite CW-complex, φ ∈ H1(X;R) = Hom
(π1(X),R), and γ : π1(X) → G a group homomorphism. We call (X,φ, γ) an
admissible triple if φ : π1(X) → R factors through γ, i.e., there exists φ′ : G →
R such that φ = φ′γ.

An admissible triple (X,φ, γ) and positive number t ∈ R>0 give rise to a
ring homomorphism:

κ(φ, γ, t) : Z[π1(X)] −→ R[G]
n∑

i=1

aigi �−→
n∑

i=1

ait
φ(gi)γ(gi).

Definition. (L2-Alexander torsion) Let (X,φ, γ) be an admissible triple. We
write Cφ,γ,t

∗ := l2(G) ⊗κ(φ,γ,t) Ccell
∗ (X̃;Z), where X̃ is the universal cover and

consider the function

τ (2)(X,φ, γ)(t)

:=

{
exp

(
−ρ(2)

(
Cφ,γ,t

∗
))

Cφ,γ,t
∗ if is of determinant class and weakly acyclic,

0 else.

This function may not be continuous in general, but Liu showed that in the
case of a 3-manifold and γ = id this function is always greater than zero and
continuous [14, Theorem 1.2].

We can define the L2-Alexander torsion for a pair of CW-complexes (X,Y )
in the following way. Let (X,φ, γ) be an admissible triple and Y ⊂ X a
subcomplex. We denote by p : X̃ → X the universal cover of X. We write
Ỹ = p−1(Y ). Then Ccell

∗ (X̃, Ỹ ;Z) is a free left Z[π1(X̃)]-chain complex. We
write Cφ,γ,t

∗ := l2(G) ⊗κ(φ,γ,t) Ccell
∗ (X̃, Ỹ ;Z) and define the L2-Alexander tor-

sion τ (2)(X,Y, φ, γ)(t) as before.
We will make use of the following two propositions. The proofs are straight

forward. One applies [15, Theorem 3.35(1)] to the short exact sequences of the
chain complexes in question.

Proposition 3.1. (Product formula) Let (X,φ, γ) be an admissible triple and
i : Y ↪→ X a subcomplex. If two out of three of τ (2)(X,φ, γ), τ (2)(X,φi∗, γi∗),
and τ (2)(X,Y, φ, γ) are nonzero, then we have the identity

τ (2)(Y, φi∗, γi∗) · τ (2)(X,Y, φ, γ) .= τ (2)(X,φ, γ).

Proposition 3.2. (Gluing formula) Consider a pushout diagram of finite CW-
complexes

X0 X1

X2 X3

i1

i2 j2

j2

such that every map is cellular and i1 is injective. Let (X3, φ, γ) be an admis-
sible triple. If three out of four of τ (2)(X0, φi1j1, γi1j1), τ (2)(X1, φj1, γj1), τ (2)

(X2, φj2, γj2), and τ (2)(X3, φ, γ) are nonzero, then we have
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τ (2)(X3, φ, γ) · τ (2)(X0, φi1j1, γi1j1)
.= τ (2)(X2, φj2, γj2) · τ (2)(X1, φj1, γj1).

More details on the gluing formula especially in the case of link exteriors
can be found in [3].

3.1. The L2-Alexander torsion for S1-CW-complexes. The calculation of the
L2-Alexander torsion of a circle can be found in [7, Lemma 2.8] or [9, Example
2.22]. It is the starting point of the proof of Lemma B.

Lemma 3.3. Let (S1, φ, γ) be an admissible triple and γ injective, then the L2-
Alexander torsion is given by

τ (2)(S1, φ, γ) .= max
{

1, tφ(g)
}−1

,

where g is a generator of π1(S1).

Lemma B. Let X be a connected S1-CW-complex of finite type and φ ∈ H1

(X;R). Suppose that for one and hence all x ∈ X the map evx : S1 → X
defined by z �→ z ·x induces an injective map γ ◦ evx : π1(S1, 1) → G. The map
φ ◦ evx : H1(S1) → R is given by multiplication with a real number which we
denote by kφ. We obtain

τ2(X,φ, γ) .= max
{
1, tkφ

}−χS1
orb(X)

This proof is a variation of the proof of [15, Theorem 3.105]:

Proof. We use induction over the dimension of cells. In dimension zero X is a
circle. There the statement holds by Lemma 3.3. Now the induction step from
n − 1 to n is done as follows. Per definition of an S1-CW-complex, we can
choose an equivariant S1-pushout with dim(Xn) = n

⊔
i∈Jn

S/Hi × Sn−1 Xn−1

⊔
i∈Jn

S/Hi × Dn Xn .

⊔
qi

i j
⊔

Qi

We obtain from the gluing formula 3.2:
∏

i∈Jn

τ (2)(S1/Hi×Dn, S1/Hi×Sn−1, φQi, γQi)
.= τ (2)(Xn,Xn−1, φ, γ).

The left-hand side can be computed by the suspension isomorphism.
∏

i∈Jn

τ (2)(S1/Hi×Dn, S1/Hi×Sn−1, φQi, γQi)

.=
∏

i∈Jn

τ (2)(S̃1, φQi, γQi)(−1)n

.=
∏

i∈Jn

max
{
1, tkφ

}(−1)n+1·1/|Hi|

= max
{
1, tkφ

}(−1)n+1 ∑
i∈Jn

1/|Hi|
.
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Here we used the assumption that γ ◦ evx is injective. The torsion for Xn−1

is defined by induction hypothesis. We can apply the product formula 3.1 and
conclude

τ (2)(Xn, φ, γ) = τ (2)(Xn,Xn−1φ, γ) · τ (2)(Xn−1, φi, γi)

.= max
{
1, tkφ

}(−1)n+1 ∑
i∈Jn

1/|Hi| · max
{
1, tkφ

}−χS1
orb(Xn−1)

= max
{
1, tkφ

}−χS1
orb(X)

.

�
Corollary 3.4. Let M be an aspherical Seifert fiber space with M �= S1 × D2

and (M,φ, γ) an admissible triple, such that the image of a regular fiber under
γ is an element with infinite order. Assume that M/S1 is orientable, then the
L2-Alexander torsion is given by

τ (2)(X,φ, γ) .= max
{

1, txM (φ)
}

.

Proof. Note that the standard fiber torus (a; b) admits an effective S1-action
such that the fibers and the orbits of the action coincide. To choose such an
action for a neighborhood of a Seifert fiber is the same as giving the corre-
sponding point in the base space a local orientation. Hence this action extends
to M because M/S1 is orientable. Therefore Lemma B implies

τ (2)(M,φ, γ) .= max
{
1, tkφ

}−χS1
orb(M)

= max
{

1, t−kφχS1
orb(M)

}
.

The last equality holds because M is aspherical, and hence −χS1

orb(M) ≥ 0
[20, Theorem 5.3]. By the construction of the S1-action, we easily see that
kφ and χS1

orb(M) are the same as in Lemma A. Moreover one has the re-
lation max

{
1, tk

} .= max
{
1, t|k|} for any k ∈ R because of the equality

max
{
1, tk

}
= tk · max

{
1, t−k

}
. �

3.2. The L2-Alexander torsion for Seifert fiber spaces without an effective
S1-action. Let M be a Seifert fiber space. An embedded torus in M is called
vertical if it is a union of regular fibers. One should observe that cutting M
along a vertical torus T is exactly the same as cutting the base space of M
along an embedded curve which does not intersect a cone point. This will be
the key observation in the next proofs.

As indicated in the following proofs we will cut M into pieces where we can
calculate the L2-Alexander function. Therefore we need a gluing formula for
the Thurston norm which is due to Eisenbud and Neumann [10, Proposition
3.5].

Theorem 3.5. Let T be a collection of incompressible disjoint tori embedded
in N . Denote by B the collection of components of N\T and by iB : B → N
the inclusion of a component B ∈ B. Then the Thurston norm of each φ ∈
H1(N ;R) satisfies the equality

xN (φ) =
∑

B∈B
xB(i∗Bφ).
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Q

S

p1

p2

p3

p1

p2

p3

p1

p2

p3

Figure 1. A Klein bottle with two boundary components
is cut along two circles to obtain two orientable pieces. The
points indicate exceptional fibers. So we do not cut through
them.

Lemma 3.6. Let M be a Seifert fiber space with base space a Klein bottle (with
boundary), i.e., M/S1 is diffeomorphic to the connected sum of two RP2 (with
some disks removed). Moreover let (M,φ, γ) be an admissible triple, such that
the image of a regular fiber under γ is an element with infinite order. Then

τ (2)(M,φ, γ) .= max
{

1, txM (φ)
}

.

Proof. We can cut M along two vertical tori, such that we obtain two pieces
M1,M2 both with orientable base space (see Fig. 1). Then the restriction of γ
to the tori has infinite image by hypothesis. We obtain from Proposition 3.2,
Corollary 3.4, and Theorem 3.5

τ (2)(M,φ, γ) .= τ (2)(M1, φi1, γi1) · τ (2)(M2, φi2, γi2)
.= max

{
1, txM1 (i

∗
1φ)

}
· max

{
1, txM2 (i

∗
2φ)

}

= max
{

1, txM1 (i
∗
1φ)+xM2 (i

∗
2φ)

}

= max
{

1, txM (φ)
}

.

Here we used that Lemma B yields τ (2)(T, φ, γ) .= 1 for a torus T and γ having
infinite image. �

Theorem 3.7. Let M be a Seifert fiber space with a non orientable base space
other than RP2 and (M,φ, γ) an admissible triple, such that the image of a
regular fiber under γ is an element with infinite order. Then

τ (2)(M,φ, γ) .= max
{

1, txM (φ)
}

.

Proof. This proof is a variation of the cutting and glueing technics estab-
lished before. Hence we only outline the argument. By the classification of
non-orientable surfaces, M/S1 is the connected sum of RP2’s with possibly
some disks removed. Hence we can cut the base space along embedded sepa-
rating curves, such that every component is a Klein bottle with boundary or
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a Möbius strip. This corresponds to cutting M along vertical tori, such that
every connected component is a Seifert fiber space which has a Möbius strip or
Klein bottle as base space. By the additivity of the Thurston norm (Theorem
3.5) and the gluing formula for L2-Alexander torsion (Proposition 3.2), it is
enough to prove the statement for every connected component. The case of the
Klein bottle has been dealt with in the Lemma 3.6. So the last remaining case
is the Möbius strip. Since the doubling of a Möbius strip is the Klein bottle, we
can use a standard doubling argument for Thurston norm and L2-Alexander
torsion to receive the desired result. �
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