
Arch. Math. 109 (2017), 59–72
c© 2017 Springer International Publishing

0003-889X/17/010059-14

published online March 27, 2017
DOI 10.1007/s00013-017-1031-6 Archiv der Mathematik

J. L. Lions’ problem on maximal regularity

Wolfgang Arendt, Dominik Dier, and Stephan Fackler
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1. Introduction. The purpose of this survey is to describe the history and
the state of the art of J. L. Lions’ problem on maximal regularity for non-
autonomous forms. In particular, we formulate the problem in the concrete
case of parabolic equations for which it is open. We explain some consequences
of a positive answer for quasi-linear parabolic equations. But we also present
new results. The counterexample in Section 5 from [12, Section 5.2] is published
here for the first time in a journal. Section 10 on the critical case is new.

2. Autonomous forms. Throughout this note H and V are Hilbert spaces
over K = R or C such that V is continuously embedded into H and also dense
in H. We identify h ∈ H with the functional (h|·)H in V ′ and thus we obtain
the Gelfand triple V ↪→ H ↪→ V ′. The spaces V and H are fixed and will
not be mentioned explicitly further on. An autonomous form is a continuous,
sesquilinear mapping a : V × V → K. Assume that the form is coercive; i.e.,

Re a(v, v) ≥ α‖v‖2
V for all v ∈ V

and some α > 0. Then we associate the operator A ∈ L(V, V ′) with a by
defining Av = a(v, ·) for v ∈ V . Then −A generates a holomorphic semigroup
on V ′. Frequently, the part A of A in H given by
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D(A) = {v ∈ V : Av ∈ H}, Av = Av

is more important. We call A the operator on H associated with a. This opera-
tor is suitable to incorporate diverse boundary conditions. Also −A generates
a contractive holomorphic C0-semigroup on H. We mention en passant that
precisely those operators on H which have a bounded H∞-calculus come from
a form in that way [2]. For the definition of fractional powers used below we
refer to [21].

Definition 2.1. The form a has the Kato square root property if V = D(A1/2).

McIntosh [27] gave an example of a form that does not have the square
root property. By [24, Theorem 1] it follows that there exists an example for
which

V �⊂ D(A1/2) and D(A1/2) �⊂ V. (2.1)

Observe that we may take a direct sum to violate both inclusions. However,
if a is symmetric; i.e., a(v, w) = a(w, v) for all v, w ∈ V , then the square root
property is fulfilled: since A1/2 = A1/2∗ and

α‖v‖2
V ≤ a(v, v) = (A1/2v|A1/2∗v)H

= ‖A1/2v‖2
H ≤ M‖v‖2

V for all v ∈ D(A).

We give an example to illustrate how Neumann boundary conditions are incor-
porated into the operator A. Many further examples, e.g., Dirichlet and Robin
boundary conditions, are well-known and of importance. The choice of dimen-
sion 1 is just for simplicity.

Example 2.2 (the Neumann Laplacian). Let H = L2(0, 1), V = H1(0, 1),K =
R,m : (0, 1) → [δ, 1

δ ] measurable, where 0 < δ < 1. Define the coercive form
a : V × V → R by

a(v, w) =

1∫

0

mv′w′ dx +

1∫

0

vw dx.

No boundary condition is visible if we consider the operator A : H1(0, 1) →
(H1(0, 1))′. However, its part A in L2(0, 1) is given by

D(A) = {v ∈ H1(0, 1) : mv′ ∈ H1(0, 1), (mv′)(0) = (mv′)(1) = 0}
Av = −(mv′)′.

Recall that H1(0, 1) ⊂ C([0, 1]). Choosing the unique continuous representa-
tive, the Neumann boundary condition incorporated into D(A) makes sense.

3. Non-autonomous forms. Let T > 0 and let a : [0, T ] × V × V → K be a
non-autonomous form; i.e., a(·, v, w) : [0, T ] → K is measurable for all v, w ∈ V
and

|a(t, v, w)| ≤ M‖v‖V ‖w‖V for all t ∈ [0, T ], v, w ∈ V

and some M ≥ 0. Further, we assume that a is coercive; i.e.,

Re a(t, v, v) ≥ α‖v‖2
V for all t ∈ [0, T ], v ∈ V
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and some α > 0. As before we consider A(t) ∈ L(V, V ′) given by A(t)v =
a(t, v, ·). If X,Y are Hilbert spaces such that X ↪→ Y (i.e., X is continuously
embedded in Y ), then we define the Hilbert space

MR(X,Y ):={u ∈ C([0, T ];Y ) : u ∈ L2(0, T ;X) ∩ H1(0, T ;Y )}.

In particular, since we consider throughout V ↪→ V ′ with H as pivot, we have
MR(V, V ′) = L2(0, T ;V ) ∩ H1(0, T ;V ′). This is the maximal regularity space
of the solutions in Lions’ theorem below. Note that MR(V, V ′) ↪→ C([0, T ];H)
[32, Proposition III.1.2]. Using this notation, we can formulate Lions’ well-
posedness result with maximal regularity in V ′.

Theorem 3.1. Let u0 ∈ H and f ∈ L2(0, T ;V ′). Then there exists a unique
u ∈ MR(V, V ′) such that{

u′(t) + A(t)u(t) = f(t) t-a.e.

u(0) = u0.
(NCP)

Note that the terms u′,A(·)u(·), and f lie in the space L2(0, T ;V ′), which
is the reason for the terminology “maximal regularity”. However, as we saw
before, the right operator for solving a concrete problem is the part A(t) of
A(t) in H. So the central problem can be formulated as follows.

Problem 3.2. (Lions’ Problem) Let f ∈ L2(0, T ;H). Under which conditions
on the form a and the initial value u0 does the solution u ∈ MR(V, V ′)
of (NCP) satisfy u ∈ H1(0, T ;H)?

Lions asked this question for several conditions on the form and on the
initial value. He also gave partial positive answers as we will explain below. It
is illuminating to treat the problem of maximal regularity in H for the initial
value u0 = 0 first and to deal with other initial conditions by identifying the
trace space later on. We start to define what we desire for u0 = 0.

Definition 3.3. A non-autonomous coercive form a : [0, T ]×V ×V → K satisfies
maximal regularity in H if for u0 = 0 and each f ∈ L2(0, T ;H) the solution
u ∈ MR(V, V ′) of (NCP) is in H1(0, T ;H).

As a consequence, u(t) ∈ D(A(t)) a.e. and u′(t) + A(t)u(t) = f(t) for
almost every t ∈ [0, T ]. Thus all three functions u′, A(·)u(·), and f are in
L2(0, T ;H), which is the reason for the terminology “maximal regularity in
H”. As a consequence, the solution is in the maximal regularity space with
respect to a and H, namely

MRa(H) := {u ∈ MR(V,H) : A(·)u(·) ∈ L2(0, T ;H)}.

This is a Hilbert space for the norm

‖u‖2
MRa(H) = ‖u′‖2

L2(0,T ;H) + ‖A(·)u(·)‖2
L2(0,T ;H).

We define the corresponding trace space by Tr(a) := {u(0) : u ∈ MRa(H)}
which is a Banach space for the norm

‖x‖Tr(a) := inf{‖u‖MRa(H) : u ∈ MRa(H), u(0) = x}.
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If u ∈ MRa(H) is a solution of (NCP), it follows that u0 ∈ Tr(a). Conversely,
if a satisfies maximal regularity in H, then for each u0 ∈ Tr(a) there exists
a unique solution u ∈ MRa(H) of (NCP). In fact, let u0 ∈ Tr(a) and f ∈
L2(0, T ;H). There exists v ∈ MRa(H) such that v(0) = u0. Then g = v′ +
A(·)v(·) ∈ L2(0, T ;H). By assumption, there exists w ∈ MRa(H) such that
w′ +A(·)w(·) = f −g and w(0) = 0. Thus u := v+w ∈ MRa(H) solves (NCP).

Consequently, there are two tasks: finding conditions on the form a that
imply maximal regularity in H, and then identifying the trace space Tr(a). For
concrete problems, the given space V is known and a desirable situation occurs
when Tr(a) = V . One even would like to have MRa(H) ⊂ C([0, T ];V ). How-
ever, these properties are not valid in general as we will see in the subsequent
sections, where diverse regularity conditions on the form will be presented. We
start with the autonomous case where we already encounter a major difficulty
for identifying the trace space.

4. Autonomous forms: regularity. Let a : V × V → K be an autonomous,
coercive form, A ∈ L(V, V ′) the associated operator, and A the part of A in H.
Then the form a has maximal regularity in H and MRa(H) = H1(0, T ;H) ∩
L2(0, T ;D(A)). It follows from the trace method for real interpolation that
Tr(a) = (H,D(A))2, 12

([26, Proposition 1.13]), the real interpolation space
between H and D(A) which coincides with the complex interpolation space
[H,D(A)] 1

2
([26, Corollary 4.37]). This space, in turn, coincides with D(A1/2)

because A has bounded imaginary powers (see [34] or [21, Theorem 6.6.9]).
Hence, in the autonomous case for each f ∈ L2(0, T ;H) and u0 ∈ D(A1/2)
there is a unique u ∈ MRa(H) satisfying (NCP). By McIntosh’s example in
Section 2, it may well happen that V �⊂ D(A1/2). Then there exists u0 ∈ V
for which the solution u ∈ MR(V, V ′) of (NCP) is not in H1(0, T ;H).

5. A first counterexample. For a long time it was not known whether each
coercive non-autonomous form has maximal regularity in H. Even though
Lions only asked the problem explicitly for symmetric forms (see below), no
counterexample, even to the general case, seemed to be known. The first coun-
terexample was given by Dier [12]. It is based on McIntosh’s example of an
autonomous form which fails the square root property. We reproduce this
example, because it is easy and shows the close link between the square root
property and maximal regularity in H.

Example 5.1. [12, Section 5.2]. There exists a non-autonomous, coercive form
a for which maximal regularity in H fails.

Proof. Let b : V × V → C be an autonomous coercive form with associated
operator B on H satisfying D(B1/2) �⊂ V . Such a form exists by the result
of McInstoh mentioned in Section 2. Let c(v, w) = 1

2 (b(v, w) + b(w, v)) be the
symmetric part of b and C ∈ L(V, V ′) the operator associated with c and C
its part in H. Then D(C1/2) = V . Define the form a : [0, 2] × V × V → C by

a(t, v, w) := 1[0,1)(t)b(v, w) + 1[1,2](t)c(v, w).
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Then a is a non-autonomous, coercive form. Let A(t) ∈ L(V, V ′) be the
associated operator and A(t) its part in H. Then A(t) = B for t < 1 and
A(t) = C for t ≥ 1. Let u1 ∈ D(B1/2)\V . Then there exists ψ ∈ H1(0, 1;H)∩
L2(0, 1;D(B)) such that ψ(0) = u1 (since Tr(b) = D(B1/2), see Section 4).
Let v(t) = tψ(1 − t). Then v ∈ H1(0, 1;H) ∩ L2(0, 1;D(B)), v(0) = 0,
and v(1) = u1. Let f(t) = (v′(t) + Bv(t))1[0,1). Then f ∈ L2(0, 2;H). Let
w ∈ H1(1, 2;V ′) ∩ L2(1, 2;V ) be the solution of w′(t) + Cw(t) = 0, w(1) = u1.
Then w �∈ H1(1, 2;H) ∩ L2(1, 2;D(C)) since u1 �∈ V = D(C1/2) = Tr(c).
Let u(t) := v(t)1[0,1) + w(t)1[1,2]. Then u ∈ MR(V, V ′) is the solution of
u′(t) + A(t) = f(t), u(0) = 0, but u �∈ H1(0, 2;H). Thus the form a fails
maximal regularity in H. �

6. Symmetric forms. The form in the previous example is not symmetric and
continuous. Recall that an autonomous, symmetric form does satisfy the square
root property, so a construction similar to that in Section 5 is not possible.
Indeed, under an additional regularity hypothesis Lions proved the following.

Theorem 6.1. ([25, IV Sec. 6, Théorème 6.1]) Let a : [0, T ] × V × V → K be
a non-autonomous form satisfying

(a) a(t, v, w) = a(t, w, v) for all t ∈ [0, T ], v, w ∈ V (symmetry)
(b) a(·, v, w) ∈ C1([0, T ]) for all v, w ∈ V .
Then a has maximal regularity in H.

Lions [25, p. 68] asks whether this result remains true if the form is merely
continuous or even does not satisfy any regularity besides our general assump-
tion of measurablility. Fackler recently gave a negative answer to Lions’ prob-
lem.

Theorem 6.2. ([19]) There exists a coercive, symmetric, non-autonomous form
a satisfying

|a(t, v, w) − a(s, v, w)| ≤ K|t − s|1/2‖v‖V ‖w‖V

for all v, w ∈ V, t, s ∈ [0, T ] and some constant K > 0 which does not satisfy
maximal regularity in H.

Thus Lions’ problem (exactly as formulated by Lions) has a negative answer
even for a symmetric non-autonomous form which is Hölder continuous in time.
The Hölder index 1

2 is the worst possible case as we will see in the next section.

7. Hölder regularity. If the form is Hölder continuous of index β > 1
2 , then

it has maximal regularity in H. In the following result by Ouhabaz and Spina
it is remarkable that the hypothesis of symmetry is no longer needed.

Theorem 7.1. ([30]) Let a be a non-autonomous, coercive form such that

|a(t, v, w) − a(s, v, w)| ≤ K|t − s|β‖v‖V ‖w‖V

for all v, w ∈ V, t, s ∈ [0, T ] and some constants K > 0 and β > 1
2 . Then a has

maximal regularity in H.
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An Lp-version of maximal regularity in H is proved by Haak and Ouhabaz
[20]. They also show that D(A(0)1/2) is contained in the trace space, thus
obtaining a final result in the Hölder scale. The original proof in [30] is based
on a result by Hieber–Monniaux [22] on non-autonomous evolution equations
satisfying the Aquistapace–Terreni condition. This, in turn, needs a bounded-
ness result for pseudodifferential operators. We refer to [31, Theorem 5] and
[23, Theorem 17], which extend a scalar-valued characterization in [35, Theo-
rem 2].

We now assume that a satisfies the square root property uniformly. Then
it makes sense to ask whether the embedding MRa(H) ↪→ C([0, T ];V ) holds
true as in the autonomous case. Indeed, if a is a Lipschitz continuous form,
i.e., β = 1, then a positive answer is contained in [5]. More recently, this was
generalized to β > 1

2 by Achache and Ouhabaz [1, Theorem 4.2].

8. Bounded variation. Another regularity condition, weaker than Lipschitz
continuity and not comparable to Hölder continuity, is boundedness of the
variation. A non-autonomous form a is of bounded variation if

sup
(τk)

n∑
k=1

‖A(τk) − A(τk−1)‖ < ∞,

where the supremum is taken over all finite partitions 0 = τ0 < τ1 < · · · <
τn−1 < τn = T of [0, T ], or equivalently, there exists g : [0, T ] → R non-
decreasing with

|a(t, v, w) − a(s, v, w)| ≤ (g(t) − g(s))‖v‖V ‖w‖V for all t, s ∈ [0, T ], v, w ∈ V.

Let a be a coercive, bounded non-autonomous form of bounded variation.

Theorem 8.1. ([13]) If a is symmetric, then a has maximal regularity in H and
MRa(H) ↪→ C([0, T ];V ).

The inclusion of MRa(H) in C([0, T ];V ) is the main difficulty in the result.
We mention that El-Mennaoui and Laasri [28] showed that for symmetric
forms of bounded variation the solution can be approximated by the solu-
tions of piecewise autonomous approximating problems. The following result
shows that in Theorem 8.1 the symmetry condition can be relaxed (keeping
the condition of bounded variation).

Theorem 8.2. ([18]) If a satisfies a parameterized variant of the square root
property (see [18, Definition 2.3]), then a has maximal regularity in H.

The parameterized variant of the square root property is, for example,
satisfied for elliptic operators on bounded Lipschitz domains with Neumann
or Dirichlet boundary conditions as a consequence of [8].

9. Fractional Sobolev regularity. Hölder continuity of order β > 1
2 and

bounded variation are two different non-comparable regularity conditions. The
following result introduces a new regularity condition on the form which gen-
eralizes Hölder continuity and almost contains bounded variation. Suppose
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that the operator A(·) associated to a belongs to the homogeneous fractional
Sobolev space W̊ 1/2+δ,2(I;L(V, V ′)) for some δ > 0; i.e.,

∫

I

∫

I

‖A(t) − A(s)‖2
L(V,V ′)

|t − s|2+2δ
dt ds < ∞.

Theorem 9.1. ([14]) Then a satisfies maximal regularity in H and Tr(a) =
D(A(0)1/2). Moreover, MRa(H) embeds continuously in H1/2(I;V ).

The proof is surprisingly elementary and based on the Lax–Milgram lemma.
For an Lp-version of this result see [17, Corollary 5.7].

10. The critical case. Note that both classes of sufficient regularity condi-
tions on the form, namely Hölder and fractional Sobolev regularity, are special
instances of the homogeneous Besov scale defined for a non-autonomous form
a, its associated operator A, an interval I, and indices s ∈ (0, 1), p, q ∈ [1,∞]
via the semi-norm

‖A‖B̊s,p
q (I) =

( ∞∫

0

(
1
hs

(∫

Ih

‖A(t + h) − A(t)‖p dt

)1/p)q dh

h

)1/q

,

where Ih = {t ∈ I : t + h ∈ I} and where one uses the usual modifications
for p = ∞ or q = ∞. Observe that A is β-Hölder continuous if and only
if A ∈ B̊β,∞

∞ (I). Further, one has B̊s,p
p (I) = W̊ s,p(I) for all p ∈ [1,∞] and

s ∈ (0, 1). With the positive results and counterexamples discussed in the
previous sections, we are now able to give a rather complete picture of non-
autonomous maximal regularity for forms and to identify a critical case in the
Sobolev scale.

On the positive side it follows from embedding results for Besov spaces [33]
that B̊s,p

q (I) ↪→ W̊
1
2+δ,2(I) for some δ > 0 if s > 1

2 and the Sobolev index
s − 1

p is positive. On the other hand, for s < 1/2 the counterexample stated

in Theorem 6.2 shows, since C
1
2 (I) ↪→ B̊s,p

q (I) for all s < 1
2 and arbitrary

p, q ∈ [1,∞], that maximal regularity does not hold in the case s < 1
2 for any

p, q ∈ [1,∞]. Further, if s ≥ 1
2 and the Sobolev index s − 1

p is negative, then

B̊s,p
q (I) contains step functions and therefore Example 5.1 shows that maximal

regularity fails, at least in the absence of the Kato square root property. Hence,
what remains open are the cases of s = 1

2 and non-negative Sobolev index, i.e.,
p ≥ 2, and of s > 1

2 and zero Sobolev index, i.e., s = 1
p .

Note that in the second case one has B̊
1
p ,p
q (I) ↪→ B̊

1
2 ,2
q (I) and, further,

that we know a positive answer for symmetric forms or forms satisfying a
parameterized variant of the square root property in the boundary case s = p =
q = 1, i.e., A ∈ W̊ 1,1(I), because such a form a fortiori has bounded variation
and therefore the positive results of Section 8 apply. Using [17, Example 8.1]
in the Besov scale, we obtain the following new result for the case s = 1

2 .
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Proposition 10.1. Given p ∈ [1,∞] and q ∈ (2,∞], there exists a coercive,

symmetric, non-autonomous form a with A ∈ B̊
1
2 ,p
q (I) that does not satisfy

maximal regularity in H.

Proof. Following the line of arguments in [17, Example 8.1] and [19, Section 5],
we choose V = L2(0, 1

2 , w) for w(x) = (x|log x|)−3/2 and H = L2(0, 1
2 ). Fur-

ther, we let u(t, x) = c(x)(sin(tϕ(x)) + d) for some sufficiently large d and
c(x) = x|log x| as well as ϕ(x) = w(x). One can then show as in [19, Section 5]
that u solves the non-autonomous Cauchy problem associated to some non-
autonomous symmetric, bounded coercive form a : [0, T ] × V × V → R, some
initial value u0 ∈ V , and some inhomogeneous part f ∈ L2(0, T ;V ). Further,
A belongs to B̊s,p

q ([0, T ];L(V, V ′)) if u ∈ B̊s,p
q ([0, T ];V ). This is what we now

verify explicitly. We have for the case p, q < ∞

‖u‖q

B̊s,p
q ([0,T ];V )

=

T∫

0

(∫

Ih

( 1
2∫

0

|u(t, x)

− u(t + h, x)|2w(x) dx

) p
2

dt

) q
p dh

h1+sq
.

As in [17, Example 6] we split the inner integral. For this let ψ(h) = 2h3/2

|log h|3/2. If x ≤ ψ−1(h), we estimate the sinus term trivially and have

|u(t, x) − u(t + h, x)|2w(x) ≤ x1/2|log x|1/2.

For the innermost term we obtain for F (x) = x3/2|log x|1/2 the upper estimate
ψ−1(h)∫

0

x1/2|log x|1/2 dx �
ψ−1(h)∫

0

F ′(x) dx = F (ψ−1(h))

� ψ(ψ−1(h))|log ψ−1(h)|−1 = h|log ψ−1(h)|−1

� h|log h|−1.

Hence, one part of the triple integral can be estimated up to constants by

T∫

0

( T∫

0

( ψ−1(h)∫

0

x
1
2 |log x| 1

2 dx

) p
2

dt

) q
p dh

h1+sq
�

T∫

0

h
q
2 −sq−1|log h|− q

2 dh.

If x ≥ ψ(h), we use the mean value theorem to obtain the estimate

|u(t, x) − u(t + h, x)|2w(x) ≤ h2x−5/2|log x|−5/2.

Now, the innermost integral is estimated for F (x) = −x−3/2|log x|−5/2 by
1
2∫

ψ−1(h)

x−5/2|log x|−5/2 dx �

1
2∫

ψ−1(h)

F ′(x) dx ≤ −F (ψ−1(|r|))

� 1
ψ(ψ−1(h))

|log ψ−1(h)|−1 � h−1|log h|−1.
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Figure 1. Non-autonomous maximal regularity for A ∈ W̊ s,p(I)

Consequently, the second part of the integral is dominated up to constants by

T∫

0

( T∫

0

( 1
2∫

ψ−1(h)

h2x− 5
2 |log x|− 5

2 dx

) p
2

dt

) q
p dh

h1+sq
�

T∫

0

h
q
2 −sq−1|log h|− q

2 dh.

Hence, ‖u‖q

B̊s,p
q ([0,T ];V )

is dominated by the above term on the right hand side.

One sees that for s = 1
2 this integral is finite if and only if q > 2. Hence, a has

the claimed regularity. �

By the above counterexample maximal regularity fails for forms in B̊
1
2 ,2
q (I)

for all q > 2 and for forms in W̊
1
2 ,p(I) = B̊

1
2 ,p
p (I) for all p > 2. Further, by

Example 5.1 maximal regularity may fail for forms in B̊
1
2 ,p
p (I) for all p < 2.

Together with the positive results this clearly identifies one critical case for
maximal regularity of forms which we pose as an open problem.

Problem 10.2. Let a be a non-autonomous, bounded, coercive form with A ∈
W̊

1
2 ,2(I). Does maximal regularity in H hold if

(1) a is symmetric?
(2) a satisfies the Kato square root property uniformly?
(3) a is arbitrary?

As a final conclusion, in Fig. 1, we illustrate the validity of maximal regu-
larity of non-autonomous coercive bounded forms under the fractional Sobolev
regularity A ∈ W̊ s,p(I). If ( 1

p , s) is in the white area, maximal regularity holds
for arbitrary forms, whereas maximal regularity may fail in the grey areas. In
the dark grey area this is known for symmetric forms, whereas counterexam-
ples in the light grey area are only known for non-autonomous forms violating
the Kato square root property. At the “inner” boundary between the white
and the grey areas maximal regularity is known to fail for the solid line part,
whereas the problem of maximal regularity is open for the dashed part of the
boundary. In particular, the point in the middle of the square is the most
critical.

11. Perturbation results. As shown by Fackler’s example, the Hölder expo-
nent 1

2 is optimal for maximal regularity in H even in the symmetric case. How-
ever, if one improves the boundedness condition on the form, one can allow a
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weaker Hölder exponent. The following result can be seen as a non-autonomous
perturbation of lower order of an autonomous problem. For example, it is well
suited for treating non-autonomous Robin boundary conditions.

Theorem 11.1. ([4]) Let 0 < γ < 1, Vγ = [H,V ]γ and let a be a coercive non-
autonomous form satisfying

|a(t, v, w) − a(s, v, w)| ≤ K|t − s|β‖v‖V ‖w‖Vγ

for all t, s ∈ [0, T ], v, w ∈ V , some K ≥ 0, and some β > γ
2 . Then a has

maximal regularity in H. Moreover, the solution space MRa(H) is included in
C([0, T ];V ). In particular, Tr(a) = V .

This result has been extended to maximal regularity in Lp, 1 < p < ∞,
by Ouhabaz [29]. Moreover, the result stated above even holds for a weaker
Sobolev regularity condition in the spirit of Theorem 9.1 (see [14], where the
above result is treated as a perturbation result for non-autonomous equations).
In the limit case γ = 0, i.e.,

|a2(t, v, w)| ≤ K‖v‖V ‖w‖H for all v, w ∈ V, t ∈ [0, T ],

no additional time regularity on the perturbation is needed. For additive per-
turbations this is done in [5,13], and [14]. For multiplicative perturbations we
refer to [5,6,13], and [1].

The study of perturbations goes back to the classical works of [25, VIII
Sec. 1] and Bardos [11]. In the context of his perturbation results Lions asks
again [25, p. 154] how far regularity assumptions can be reduced. Now, we
have quite precise answers to this question.

12. Elliptic operators. In an abstract setting, Section 5 and 6 show that
maximal regularity is not valid in general and that the positive results are
already close to optimal conditions. However, so far no counterexample seems
to be known for elliptic operators. And indeed, it is known that the square root
property holds for forms associated with elliptic operators, even in a uniform
sense, i.e., D(A1/2) = D(V ) with equivalent norms, and the corresponding
constants only depending on the ellipticity constants. This is exactly what the
positive solution of the famous Kato square root problem says [9]. For the
Kato square root property on Lipschitz domains, we refer to [8] and for mixed
boundary conditions to [10,16], and [15]. Here is a formulation of the problem
of non-autonomous maximal regularity for elliptic operators.

Let Ω ⊂ Rd be open, aij : [0, T ]×Ω → R be bounded and measurable with
d∑

i,j=1

aij(t, x)ξiξj ≥ η|ξ|2

for almost all (t, x) ∈ [0, T ]×Ω and all ξ ∈ Rd, where η > 0. Let V be a closed
subspace of H1(Ω) containing H1

0 (Ω). Then

a(t, v, w) =
∫

Ω

d∑
i,j=1

aij(t, x)∂iv(x)∂jw(x) dx
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defines a coercive non-autonomous form on [0, T ] × V × V . Let H = L2(Ω).

Problem 12.1. Does this form a have maximal regularity in H?

We expect that further conditions on the coefficients are needed, but they
might be weaker than those we encountered for abstract forms. A first result
in this direction was obtained very recently by Auscher and Egert.

Theorem 12.2. ([7]) Assume in addition to the assumptions made above that
there exists M ≥ 0 such that

sup
I

1
|I|

∫

I

∫

I

|A(t, x) − A(s, x)|2
|t − s|2 ds dt ≤ M (a.e. x ∈ Ω). (12.1)

Then the form a satisfies maximal regularity in H = L2(Ω). Here A(t, x) =
(aij(t, x))i,j=1,...,d and the supremum is taken over all intervals I ⊂ [0, T ], |I|
denoting the length of I.

Condition (12.1) is stronger than Hölder continuity with index 1
2 , but

weaker than Hölder continuity with index α > 1
2 which is the hypothesis

in Theorem 7.1 by Ouhabaz and Spina. It is also shown by Auscher and Egert
that in the situation of Theorem 12.2 the solution is in H1/2([0, T ];V ), a new
regularity phenomenon first observed in [14].

Even in dimension 1 Problem 12.1 seems to be open. We want to explain
why a positive answer could be of interest for quasilinear parabolic equations.
To be as simple as possible, we formulate the following example in dimension 1.

Example 12.3. Let H = L2(0, 1), V = H1(0, 1) and let m : (0, 1) → [δ, δ−1]
be continuous, where 0 < δ < 1. Let f ∈ L2(0, T ;H), u0 ∈ H. Using the
compactness of the embedding

L2(0, T ;V ) ∩ H1(0, T ;V ′) ↪→ L2(0, T ;H) (Aubin–Lions lemma)

and Lions’ Theorem 3.1 on maximal regularity in V ′, one can show with the
help of Schauder’s fixed point theorem that there exists u ∈ MR(V, V ′) such
that u(0) = u0 and

1∫

0

u′(t)v dx +

1∫

0

m(u(t))ux(t)vx dx =

1∫

0

f(t)v dx (a.e. t ∈ [0, T ])

for all v ∈ H1(0, 1), see [5, Sec. 4 (II)] for a proof. Note that the linear part is
a non-autonomous problem since we plug in a solution. We would like to prove
that u solves the quasilinear parabolic Neumann boundary value problem. If
Problem 12.1 had a positive answer, then u ∈ H1(0, T ;L2(0, 1)) and then, by
Example 2.2, we would obtain the following.

Write u(t, x) := u(t)(x). Then for a.e. t ∈ [0, T ] we have u(t, ·) ∈ H1(0, 1)
and m(u(t, ·))ux(t, ·) ∈ H1(0, 1) and u(t, x) solves the problem{

ut(t, x) − (m(u(t, x))ux(t, x))x = f(t, x)

u(0, x) = u0(x),
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as well as ux(t, ·) ∈ C[0, 1] and ux(t, 1) = ux(t, 0) = 0 almost everywhere. Thus
the solution of the quasilinear problem satisfies Neumann boundary conditions.

Remark 12.4. The problem in one dimension occurs since our operator is in
divergence form. If it is in non-divergence form, even in higher dimensions
much more can be said (see [3]).
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[25] J-L. Lions, Équations différentielles opérationnelles et problèmes aux limites,

Die Grundlehren der mathematischen Wissenschaften, Bd. 111, Springer-Verlag,

Berlin-Göttingen-Heidelberg, 1961, pp. ix+292.

[26] A. Lunardi, Interpolation theory, Second Edition, Appunti. Scuola Normale

Superiore di Pisa (Nuova Serie). [Lecture Notes. Scuola Normale Superiore di

Pisa (New Series)], Edizioni della Normale, Pisa, 2009, pp. xiv+191.

[27] A. Mcintosh, On the comparability of A1/2, Proc. Amer. Math. Soc. 32 (1972),

430–434.

[28] O. El-Mennaoui and H. Laasri, On evolution equations governed by non-

autonomous forms, Arch. Math. 107 (2016), 43–57.

[29] E.M. Ouhabaz, Maximal regularity for non-autonomous evolution equations

governed by forms having less regularity, Arch. Math. 105 (2015), 79–91.

[30] E.M. Ouhabaz and C. Spina, Maximal regularity for non-autonomous

Schrödinger type equations, J. Differential Equations 248 (2010), 1668–1683.
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