
Arch. Math. 109 (2017), 73–82
c© 2017 Springer International Publishing

0003-889X/17/010073-10

published online April 8, 2017
DOI 10.1007/s00013-017-1029-0 Archiv der Mathematik

Generalized Ambrosetti–Rabinowitz condition for minimal
period solutions of autonomous Hamiltonian systems
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Abstract. We show, under an iterative condition, generalizing that of
Ambrosetti–Rabinowitz and using a variational method, the existence
of a T -periodic solution for the autonomous superquadratic second order
Hamiltonian system with even potential

z̈ + V ′(z) = 0, z ∈ R
N , N ∈ N

∗

for any prescribed period T > 0. Moreover, under a certain symmetry
condition, such a solution possesses T or T/3 as its minimal period.
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1. Introduction. In this paper, we consider the following second order Hamil-
tonian system

z̈ + V ′(z) = 0, (1.1)

where z : R → R
N is a vector function, N is a positive integer, and V ′ is the

gradient vector of the potential function V with respect to z.
In [24], Rabinowitz proved the following result

Theorem 1.1. Suppose V ∈ C1(RN ,R) and satisfies
(V1) V (z) = o(|z|2) at z = 0.
(AR) ∃μ > 2, r > 0, s.t. V ≥ 0 and ∀|z| > r, 0 < μV (z) ≤ zV ′(z).
Then, for every T > 0, problem (1.1) has a non-constant T -periodic solu-

tion.

He also conjectured that (1.1) possesses a non-trivial solution with any
prescribed minimal period. Later, Ekeland, and Hoffer [9] confirmed this con-
jecture in the case of strictly convex Hamiltonian systems.
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In the last years, many researchers have been interested in [24]. We can
cite, for example, [1,2,4–6,18]. Most of these works are based on convex or
weak convex assumptions to insure the existence of periodic solutions [7,8,12–
14,19,20,26]. Only few of them treated the problem without relying on this
condition. One can be referred, for example, to Girardi, Matzeu [10,11] and
Long [16–18].

Recently, Souissi studied in [25] the problem (1.1) for the superquadratic
second order Hamiltonian system with non-convex even potential, under the
following new growth assumption

(ARS)
There exist n ∈ N

∗ and αn > 3 − n, such that

αnzn−1V (n−1)(z) ≤ znV (n)(z), ∀z ∈ R\{0},

where V (n) is the nth derivative of V , for any integer n ≥ 1. Under this
condition, which is stronger than (AR), he proved that there exists at least
one periodic solution with minimal period T/k for some integer 1 ≤ k ≤ 3.

Throughout this work, we write V (0) = V , V (1) = V ′, and V (2) = V ′′. The
main result of this paper reads as follows:

Theorem 1.2. Assume that there exists an integer n ≥ 2 such that V ∈
Cn(RN ,R) and satisfies

(V1) V (0) < V (z) ∀ z ∈ R
N\{0}.

(V2) V ′(z) = o(|z|) at z = 0.

(V3) V (−z) = V (z), ∀z ∈ R
N .

(ARSn) There exist αn > 3 − n and r > 0, such that

αnV (n−1)(z).zn−1 ≤ V (n)(z).zn, ∀ |z| > r.

Then, for every T > 0, problem (1.1) has at least one T -periodic solution
u with T or T/3 as its minimal period. Moreover, u is even about 0 and T/2
and odd about T/4 and 3T/4.

Remark 1.3. (1) Take N = 1 and consider the potential V defined by

V (z) = z2 log(1 + z2).

It is easily seen that V satisfies the conditions (V1), (V2), (V3), and
(ARS5). However, it satisfies neither (AR) nor (ARS).

(2) Condition (ARSn) is just a local version of (ARS) in [25], which is not
necessarily satisfied near zero. The condition (V2) enables us to overcome
the difficulty arising from this restriction.

2. Variational formulation. First of all, we remark that if V is such that
V (0) �= 0, then setting

Ṽ (z) = V (z) − V (0), ∀ z ∈ R
N ,
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we obtain a potential function Ṽ vanishing at zero and satisfiying the condi-
tions of Theorem 1.2. In addition, for any integer k such that (2k +1 ≤ n), we
have by (V3) that

Ṽ (0) = V (2k+1)(0) = Ṽ (2k+1)(0) = 0. (2.1)

Moreover, the equation

z̈(t) + Ṽ ′(z(t)) = 0, z : R → R
N

has the same solutions as (1.1). It follows that we can replace, without loss of
generality, in Theorem 1.2 the condition (V1) by the following one

0 = V (0) < V (z), ∀ z ∈ R
N\{0}. (Ṽ1)

Now, to look for solutions of (1.1), we denote by

ST = R/TZ,

and consider the Sobolev space

ET = H1(ST ,RN ),

equipped with its usual norm

‖z‖2
T =

T∫

0

(|z(t)|2 + |ż(t)|2) dt = ‖z‖2
2 + ‖ż‖2

2,

where ‖.‖2 is the usual norm in L2(R,RN ). Then, ET is a Hilbert space with
the corresponding inner product

<y, z>T =

T∫

0

y(t).z(t)dt +

T∫

0

ẏ(t).ż(t)dt.

We define on ET the functional

f(z) =

T∫

0

(
1
2
|ż(t)|2 − V (z)

)
dt. (2.2)

It is easy to prove that f ∈ Cn (ET ,R) and to see that the solutions of
(1.1) are the critical points of the functional f .

3. Proof of Theorem 1.2. To look for non-trivial critical points of f , we start
by defining the W -action for any T -periodic function z : ST → R

N , where

W = {δ1, δ2}
with

δ1z(t) = z(−t) and δ2z(t) = −z(t + T/2), a.e.

Definition 3.1. Let t0 ∈ R and z : R → R
N , a vector function. Then z is

(1) t0-even or even about t0 if z(t0 − t) = z(t0 + t), ∀ t ∈ R.
(2) t0-odd or odd about t0 if z(t0 − t) = −z(t0 + t), ∀ t ∈ R.
(3) even if z is 0-even.
(4) odd if z is 0-odd.
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Lemma 3.2. Suppose that z is T -periodic on R. Then, for all t0 ∈ R and k ∈ Z,
(1) if z is t0-even (resp. t0-odd), then z is also even (resp. odd) about (t0 +

kT/2).
(2) if z is differentiable and t0-even (resp. t0-odd), then z′ is t0-odd (resp.

t0-even).

Proof. (1) If z is t0-even, then

z(t0 + kT/2 + t) = z(t0 − kT/2 − t) (by symmetry of z about t0)
= z(t0 + kT/2 − t) (by periodicity of z).

Then z is even about t0 + kT/2.
A similar proof is given in the case where z is t0-odd.

(2) is obvious. �

Corollary 3.3. Suppose that z is T -periodic on R. If z is even (resp. odd), then
z is also even (resp. odd) about T/2.

Now, we can define

Definition 3.4. A T -periodic vector function z : ST → R
N is said to have

(1) the W -symmetry if δz = z, ∀δ ∈ W.
(2) the W -anti-symmetry if δz = −z, ∀δ ∈ W.

Definition 3.5. A functional f , defined on ET , is said to be W -invariant if

f(δz) = f(z), ∀δ ∈ W, and ∀z ∈ ET .

These definitions make us able to consider the following closed subspace of
ET ,

SET = {z ∈ ET , s.t. z has the W -symmetry}.

Lemma 3.6. If z ∈ SET , then z is (T/4)-odd.

Proof. If z ∈ SET , then

z(T/4 − t) = z(T/2 − T/4 − t)
= z(T/2 + T/4 + t) (by Corollary 3.3)
= δ2z(T/4 + t)
= −z(T/4 + t).

Then z is (T/4)-odd.

Lemma 3.7. Suppose that V ∈ C2(RN ,R) and satisfies (ARS2), then the func-
tional f is W -invariant.

Now, we can prove the following result.

Lemma 3.8. Suppose that V ∈ C2(RN ,R) and satisfies (ARS2), then the fol-
lowing assertions are equivalent:
(1) z is a critical point of f on SET .
(2) z is a C2(ST ,RN )-solution of (1.1) and it has the W -symmetry.
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Proof. (1) =⇒ (2): Suppose z is a critical point of f on SET . Then

f ′(z).y =

T∫

0

(
ż.ẏ − V ′(z).y

)
dt = 0, ∀y ∈ SET . (3.1)

Since V is of class C2, we have that V ′(z) ∈ ET , and so it is in C(ST ,RN ).
This makes that the linear system⎧⎨

⎩
ṗ = q,
q̇ = −V ′(z),
p(T/2) = q(3T/4) = 0,

(3.2)

possesses a unique solution

(u, v) ∈ C2(R,RN ) × C1(R,RN )

Moreover, since z has the W -symmetry and by (V3), it is the same for
V ′(z). Therefore,

T/2∫

0

V ′(z)dt =

T∫

0

V ′(z)dt = 0,

so that v is T -periodic and has the W -anti-symmetry. So, we have
T∫

0

v(t)dt = 0 and v(3T/4) = 0.

Thus u is T -periodic and has the W -symmetry. So u ∈ SET and by (3.2),
T∫

0

(u̇.ẏ − V ′(z).y) dt =

T∫

0

(u̇ − v).ẏ dt + v(t).y(t)|T0 = 0, ∀y ∈ SET .

Using (3.1), this leads to
T∫

0

(u̇ − v)ẏ dt = 0, ∀y ∈ SET .

Particularly, for y = z −u and by the fact that z(3T/4) = v(3T/4) = 0, we
obtain

|z(t) − u(t)| ≤
t∫

3T/4

|ż − u̇|(s) ds ≤
√

T‖ż − u̇‖L2 = 0, ∀t ∈ [0, T ].

It follows that z ∈ C2(ST ,RN ) and is a solution of (1.1).
(2) =⇒ (1) is obvious and the proof is complete. �

Thanks to this lemma, we will look, in the following, for non-trivial critical
points of the functional f on SET . For this, we begin by showing

Lemma 3.9. Suppose that V ∈ Cn(RN ,R) and that (ARSn) is satisfied, then
(ARSk) is also satisfied for any integer k such that 1 ≤ k ≤ n − 1.
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Proof. We suppose that V ∈ Cn(RN ,R) and that (ARSn) is satisfied. We will
prove that (ARSn−1) is also satisfied. The proof will depend on the parity of
n.

First case: n is odd

Let us consider the function φn,z defined, for t ∈ [0, 1], by

φn,z(t) = V (n−2)(tz).zn−2 − V (n−1)(0).zn−1t.

We have immediately that φn,z ∈ Cn([0, 1],R) and for all t ∈ [0, 1], we
have

φ′
n,z(t) = V (n−1)(tz).zn−1 − V (n−1)(0).zn−1,

φ′′
n,z(t) = V (n)(tz).zn.

It follows that

φn,z(0) = φ′
n,z(0) = φ′′

n,z(0) = 0,

so that we have

V (n−2)(z).zn−2 = φn,z(1) − φn,z(0) + V (n−1)(0).zn−1 =

1∫

0

V (n−1)(tz).zn−1dt.

Moreover, from (ARSn), we deduce that

αnV (n−2)(z).zn−2 ≤
1∫

0

tV (n)(tz).zndt = V (n−1)(z).zn−1 − V (n−2)(z).zn−2

which means that

(αn + 1)V (n−2)(z).zn−2 ≤ V (n−1)(z).zn−1 (3.3)

Second case: n is even

We consider the function ψn,z defined, for t ∈ [0, 1], by

ψn,z(t) = V (n−2)(tz).zn−2 − 1
2
V (n)(0).znt2.

Following the same procedure as in the first case and replacing φn,z by
ψn,z, we also obtain (3.3).

Conclusion

To recapitulate, we have proved, independently on the parity of n, that
taking αn−1 = αn + 1, we obtain that (ARSn) implies (ARSn−1).

Obviously, iterating this procedure (n − k) times, for some integer k such
that 0 ≤ k ≤ n − 1, we obtain (ARSk). �

We recall, in what follows, a fundamental condition, due to Palais and
Smale, for the convergence of bounded sequences in Banach spaces.
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Definition 3.10 (Palais-Smale condition). Let E be a Banach space and con-
sider a functional f ∈ C1(E,R). We say that f satisfies the Palais-Smale con-
dition (PS) on E if for all sequences {un} ⊂ E such that {f(un)} is bounded
and f ′(un) → 0, there exists a convergent subsequence.

Lemma 3.11. Assume that V ∈ C1(RN ,R) and satisfies (Ṽ1), (V2), and
(ARS1), then f satisfies (PS) on ET and SET .

Proof. If V ∈ C1(RN ,R) and satisfies (ARS1), then

0 < α1V (z) ≤ V ′(z).z, ∀|z| > r. (3.4)

Moreover, by (Ṽ1) and (V2), we obtain

V (z) = o(|z|2), at z = 0.

Then, proceeding as Rabinowitz [23,24], we deduce that the functional f
satisfies (PS) on ET . Or, SET is a closed subset of ET , then f satisfies (PS)
on SET . �

For a given T > 0 in order to find T -periodic solutions of (1.1), we use the
Mountain-pass theorem due to Ambrosetti and Rabinowitz. For its proof, we
refer the reader, for example, to [23].

Theorem 3.12. Let E be a real Hilbert space and consider f ∈ C2(E,RN ).
Suppose that f satisfies the (PS) condition and the following

(F1) There exist ρ and α > 0 such that f(w) ≥ α, ∀w ∈ ∂Bρ(0).
(F2) There exist R > ρ and e ∈ E with ‖e‖ ≥ R such that f(e) ≤ 0.

Then

(1) f possesses a critical value c ≥ α, which is given by

c = inf
h∈Γ

max
w∈h([0,1])

f(h(w)),

where Γ = {h ∈ C([0, 1], E)/ h(0) = 0, h(1) = e}.
(2) There exists an element w0 ∈ Kc = {w ∈ E/ f(w) = c and f ′(w) = 0}

such that the negative Morse index i(w0) of f at w0 satisfies

i(w0) ≤ 1. (3.5)

In order to apply this theorem, set

E = SET .

As it was shown in the proof of Lemma 3.11, the potential V satisfies (V1).
It follows that for any ε > 0, there exists ρ > 0 such that

‖z‖ ≤ ρ =⇒ 0 ≤ V (z) ≤ ε‖z‖2.
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Moreover, if z ∈ E, we have that z(T/4) = z(3T/4) = 0. This leads to

z(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∫
T
4

ż(s) ds, if t ∈ [0, T/2],

t∫
3T
4

ż(s) ds, if t ∈]T/2, T ],

so that

|z(t)| ≤
√

T

2
‖ż‖2,

and then,

‖z‖2 ≤ T√
2
‖ż‖2. (3.6)

By Lemma 3.11, the functional f is of class C2 and satisfies the (PS)
condition on E. Then, for ε > 0, small enough, using (3.6), we obtain

f(z) ≥ 1
2
(1 − εT 2)‖ż‖2

2,

which leads to condition (F1) of Theorem 1.2.
Moreover, from (3.4), we deduce obviously the condition (F2) of Theorem

1.2.
Now, following Rabinowitz [23], we get

∃z ∈ SET such that f ′(z) = 0 and f(z) > 0.

Next, for every non-constant T -periodic solution z of (1.1), we define the in-
teger

O(z) = sup{k ≥ 1, such that z is (T/k)-periodic},

and we denote by siT (z) the negative Morse index of f at z. Then we can
recall the following result, which is a simple corollary of Theorem 4.2 in [18].

Theorem 3.13. Suppose that V ∈ C2(RN ,R). Then, for T > 0 and for any
non-constant C2(ST ,RN )-solution z of (1.1), being even and (T/4)-odd, we
have

O(z) ≤ 2(siT (z)) + 1. (3.7)

Lemma 3.14. For T > 0, if z ∈ SET \{0}, then z is not a 2mT -periodic func-
tion for any m ∈ N

∗.

Proof. Arguing by contradiction, we consider z ∈ SET \{0} and m ∈ N
∗. We

suppose z to be a 2mT -periodic function. Since z is even about 0 and T/2,
then is also even about mT/2. Now, if z has the W -symmetry, it must be odd
about mT/2. Therefore, z ≡ 0. �
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Finally, we are interested in the minimal period of the solutions. Supposing
that z has T/k as a minimal period, for some integer k ≥ 1, we can deduce,
combining (3.5) and (3.7), that

1 ≤ k ≤ 2siT (z) + 1 ≤ 3.

Now, suppose that k = 2, i.e. z is (T/2)-periodic. By Lemma 3.14, z can
not be [2m(T/2)]-periodic, for any m ∈ N

∗. Particularly, for m = 1, we obtain
that z can not be T -periodic. This contradicts the definition of z. It follows
that

O(z) ∈ {1, 3}.
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