CrossMark

Irreducibility of the Hilbert scheme of smooth curves in \mathbb{P}^3 **of degree** *g* **and genus** *g*

CHANGHO KEEM^o and Yun-Hwan Ki[m](http://orcid.org/0000-0002-4948-2966)

To the memory of our friend and collaborator Ryutaro Horiuchi

Abstract. We denote by $\mathcal{H}_{d,q,r}$ the Hilbert scheme of smooth curves, which is the union of components whose general point corresponds to a smooth irreducible and non-degenerate curve of degree d and genus g in \mathbb{P}^r . In this note, we show that any non-empty $\mathcal{H}_{q,q,3}$ is irreducible without any restriction on the genus *g*. This extends the result obtained earlier by Iliev (Proc Am Math Soc 134:2823–2832, [2006\)](#page-6-0).

Mathematics Subject Classification. Primary 14H10; Secondary 14C05.

Keywords. Hilbert scheme, Algebraic curves, Linear series.

1. An overview, preliminaries, and basic set-up. Given non-negative integers d, g and $r \geq 3$, let $\mathcal{H}_{d,q,r}$ be the Hilbert scheme of smooth curves parametrizing smooth irreducible and non-degenerate curves of degree d and genus g in \mathbb{P}^r .

After Severi asserted that $\mathcal{H}_{d,g,r}$ is irreducible for $d \geq g+r$ in [\[14,](#page-6-1) Anhang G, p. 368, the irreducibility of $\mathcal{H}_{d,q,r}$ has been widely studied by several authors. Ein proved Severi's claim for $r = 3$ and $r = 4$; cf. [\[6](#page-6-2), Theorem 4] and [\[7](#page-6-3), Theorem 7]. Shortly after, Keem and Kim gave a different proof in the same range $d \geq g+3$ while they also proved the irreducibility of $\mathcal{H}_{g+2,g,3}$ for $g \geq 5$ as well as $\mathcal{H}_{g+1,g,3}$ for $g \ge 11$; cf. [\[12](#page-6-4), Theorem 1.5]. On the other hand, Severi's assertion turned out to be untrue for curves in higher dimensional projective spaces \mathbb{P}^r with $r \geq 6$; cf. [\[11](#page-6-5), Theorem 2.3]. Quite recently, Keem et al. proved that the irreducibility of $\mathcal{H}_{g+2,g,3}$ and $\mathcal{H}_{g+1,g,3}$ even holds for any genus g as long as they are non-empty; cf. [\[13,](#page-6-6) Proposition 2.1 & Proposition 3.2]. For the case $d = g$, Hristo Iliev proved that $\mathcal{H}_{g,g,3}$ is irreducible for $g \geq 13$; cf.

The first named author was supported in part by National Research Foundation Grant $#$ 2011-0010298.

[\[10](#page-6-0), Theorem 3.1]. However, the irreducibility of $\mathcal{H}_{g,g,3}$ for lower genus $g \leq 12$ has been left open. In this article, we prove that every non-empty $\mathcal{H}_{q,q,3}$ is irreducible without any restriction on the genus g.

Before proceeding, we recall several related results which are rather well known; cf. [\[1\]](#page-6-7) and [\[2\]](#page-6-8). Let \mathcal{M}_q be the moduli space of smooth curves of genus g. For any given isomorphism class $[C] \in \mathcal{M}_q$ corresponding to a smooth irreducible curve C, there exist a neighborhood $U \subset \mathcal{M}_q$ of the class [C] and a smooth connected variety M which is a finite ramified covering $h : \mathcal{M} \to U$, as well as varieties $\mathcal{C}, \mathcal{W}_d^r$, and \mathcal{G}_d^r proper over $\mathcal M$ with the following properties:

- (1) $\xi : \mathcal{C} \to \mathcal{M}$ is a universal curve, i.e. for every $p \in \mathcal{M}, \xi^{-1}(p)$ is a smooth curve of genus g whose isomorphism class is $h(p)$,
- (2) W_d^r parametrizes the pairs (p, L) where L is a line bundle of degree d and $h^{0}(L) \geq r + 1$ on $\xi^{-1}(p)$,
- (3) \mathcal{G}_d^r parametrizes the couples (p, \mathcal{D}) , where $\mathcal D$ is possibly an incomplete linear series of degree d and dimension r on $\xi^{-1}(p)$ - which is usually denoted by g_d^r . $h^0(I)$
 \mathcal{G}_d^r I
 $\lim_{d \to 0}$
 $\lim_{d \to 0}$

Let $\widetilde{\mathcal{G}}$

 \mathcal{G} be the union of components of \mathcal{G}^r_d whose general element (p, \mathcal{D}) corresponds to a very ample linear series D on the curve $C = \xi^{-1}(p)$. Note that an open subset of $\mathcal{H}_{d,q,r}$ consisting of points corresponding to smooth irreducible and non-degenerate curves is a $\mathbb{P} GL(r + 1)$ -bundle over an open Let \tilde{G} be the union of components of \mathcal{G}_d^r whose general element (p, D)
corresponds to a very ample linear series D on the curve $C = \xi^{-1}(p)$. Note
that an open subset of $\mathcal{H}_{d,g,r}$ consisting of points cor We also make a note of the following basic and well-known facts regarding the scheme \mathcal{G}_d^r ; cf. [\[2,](#page-6-8) Proposition 2.8] and [\[8,](#page-6-9) §2.a, p. 67].

Proposition 1.1. *For non-negative integers d, g, and r, let* $\rho(d, g, r) := g - (r +$ $1)(g - d + r)$ *be the Brill-Noether number.*

- (1) *The dimension of any component of* G_d^r *is at least* $3g-3+\rho(d,g,r)$ *which is denoted by* $\lambda(d, q, r)$ *.*
- (2) Suppose $g > 1$ and let X be a component of \mathcal{G}_d^2 whose general element (p, D) *is such that* D *is a birationally very ample linear series on* $\xi^{-1}(p)$ *. Then*

$$
\dim X = 3g - 3 + \rho(d, g, 2) = 3d + g - 9.
$$

We recall that the family of plane curves of degree d in \mathbb{P}^2 are naturally parametrised by the projective space $\mathbb{P}^N, N = \frac{d(d+3)}{2}$. Let $\Sigma_{d,g} \subset \mathbb{P}^N$ be the Severi variety of plane curves of degree d with geometric genus g . We also recall that a general point of $\Sigma_{d,q}$ corresponds to an irreducible plane curve of degree d having $\delta := \frac{(d-1)(d-2)}{2} - g$ nodes and no other singulariy. The following theorem of Harris is fundamental; cf. [\[4](#page-6-10), Theorem 10.7 and 10.12, pp. 847-850] or [\[9\]](#page-6-11).

Theorem 1.2. $\Sigma_{d,g}$ *is irreducible of dimension* $3d + g - 1 = \lambda(d,g,2) + \dim$ $\mathbb{P}GL(3)$.

Denoting by $\mathcal{G}' \subset \mathcal{G}_d^2$ the union of components whose general element $(p, D) \in \mathcal{G}'$ is such that D is birationally very ample on $C = \xi^{-1}(p)$, we remark that an open subset of the Severi variety $\Sigma_{d,q}$ is a $\mathbb{P} GL(3)$ -bundle over

an open subset of \mathcal{G}' . Therefore, as an immediate consequence of Theorem [1.2,](#page-1-0) the irreducibility of $\Sigma_{d,g}$ implies the irreducibility of the locus \mathcal{G}' and vice versa. We make a note of this simple observation as the following lemma.

Lemma 1.3. Let $\mathcal{G}' \subset \mathcal{G}_d^2$ be the union of components whose general element (p, \mathcal{D}) *is such that* $\mathcal D$ *is birationally very ample on* $C = \xi^{-1}(p)$ *. Then* $\mathcal G'$ *is irreducible.*

We will utilize the following upper bound of the dimension of an irreducible component of \mathcal{W}_d^r , which was proved and used effectively in [\[10\]](#page-6-0).

Proposition 1.4. ([\[10,](#page-6-0) Proposition 2.1]) *Let* d, g and $r \geq 2$ *be positive integers such that* $d \leq g + r - 2$ *and let* W *be an irreducible component of* W_a^{*d}</sup>. For*</sup> *a general elment* $(p, L) \in W$ *, let* b *be the degree of the base locus of the line bundle* $L = |D|$ *on* $C = \xi^{-1}(p)$ *. Assume further that for a general* $(p, L) \in W$ *the curve* $C = \xi^{-1}(p)$ *is not hyperelliptic. If the moving part of* $L = |D|$ *is*

- (a) *very ample and* $r \geq 3$ *, then* dim $W \leq 3d + g + 1 5r 2b$;
- (b) *birationally very ample, then* dim $W \leq 3d + g 1 4r 2b$;
- (c) *compounded, then* dim $W \leq 2g 1 + d 2r$.

For notations and conventions, we usually follow those in [\[3](#page-6-12)] and [\[4\]](#page-6-10); e.g., (d, r) is the maximal possible arithmetic genus of an irreducible and nondegenerate curve of degree d in \mathbb{P}^r . Throughout we work over the field of complex numbers.

2. Irreducibility of $\mathcal{H}_{q,q,3}$ **.** The main result of this article is the following theorem.

Theorem 2.1. *Every non-empty* $\mathcal{H}_{q,q,3}$ *is irreducible.*

We make a note of the following well-known facts - which are also very easy to prove - when the genus of curves under consideration is relatively low.

Proposition 2.2. (1) $\mathcal{H}_{g,g,3} = \emptyset$ *for* $1 \le g \le 7$ (2) $\mathcal{H}_{8,8,3}$ *and* $\mathcal{H}_{9,9,3}$ *is irreducible of dimension 32, 36, respectively.*

Proof. (1) If $1 \leq g \leq 7$, one has $g \leq \pi(d, 3) < g$ by the Castelnuovo genus bound, a contradiction.

(2) We refer [\[5](#page-6-13), Theorem 5.2.1] for a detailed treatment.

Therefore we shall assume that $g \geq 10$ for the rest of this section. The following lemma is a crucial step toward the proof of the irreducibility of $\mathcal{H}_{g,g,3}.$

Lemma 2.3. *Let* $\mathcal{G} \subset \mathcal{G}_{g}^{3}$ *be an irreducible component whose general element* (p, D) *is a very ample linear series* D *on the curve* $C = \xi^{-1}(p)$ *and assume* $q \geq 10$. Then

(1) \mathcal{D} *is complete and* dim $\mathcal{G} = 4g - 15$ *.*

 \Box

(2) *a general element of the component* $W^{\vee} \subset W_{g-2}^2$ *consisting of the residual series (with respect to the canonical series on the corresponding curve) of those elements in* G *is a base-point-free, complete, and birationally very ample net.*

Proof. By Proposition [1.1,](#page-1-1) we have

$$
\lambda(g, g, 3) = 3g - 3 + \rho(g, g, 3) = 4g - 15 \le \dim \mathcal{G}.
$$

We set $r := h^0(C, |\mathcal{D}|) - 1$ for a general $(p, \mathcal{D}) \in \mathcal{G}$.

Let $W \subset \mathcal{W}^r_g$ be the component containing the image of the natural rational $\text{map } \mathcal{G} \dashrightarrow \mathcal{W}^r_g \text{ with } \iota(\mathcal{D}) = |\mathcal{D}|.$ Since $\dim \mathcal{G} \leq \dim \mathcal{W} + \dim \mathbb{G}(3, r)$, it follows by Proposition $1.4(a)$ $1.4(a)$ that

 $\lambda(g, g, 3) = 4g - 15 \le \dim \mathcal{G} \le (4g + 1 - 5r) + 4(r - 3) = 4g - r - 11$ and hence $r \leq 4$.

Let $W^{\vee} \subset V_{q-2}^{r-1}$ be the locus consisting of the residual series (with respect to the canonical series on the corresponding curve) of those elements in W , i.e. $W^{\vee} = \{(p, \omega_C \otimes L^{-1}) : (p, L) \in W\}.$

(a) If a general element of W^{\vee} is compounded, then by Proposition [1.4\(](#page-2-0)c),

$$
4g - 15 \le \dim \mathcal{G} \le \dim \mathcal{W} + \dim \mathbb{G}(3, r) = \dim \mathcal{W}^{\vee} + 4(r - 3)
$$

\n
$$
\le (2g - 1 + (g - 2) - 2(r - 1)) + 4(r - 3)
$$

\n
$$
= 3g + 2r - 13
$$

implying $10 \le g \le 2r + 2 \le 10$ and hence $(g, r) = (10, 4)$. If $(g, r) =$ (10, 4), by the Castelnuovo genus bound one has $q = 10 \le \pi(10, 4) = 9$, a contradiction. Therefore it follows that a general element of \mathcal{W}^{\vee} is not compunded.

(b) Suppose that the moving part of a general element of \mathcal{W}^{\vee} is very ample and let b be the degree of the base locus of a general element of W^{\vee} . By Proposition $1.4(a)$ $1.4(a)$, we have

$$
4g - 15 \le \dim \mathcal{G} \le \dim \mathcal{W} + \dim \mathbb{G}(3, r) = \dim \mathcal{W}^{\vee} + 4(r - 3)
$$

\n
$$
\le (3(g - 2) + g + 1 - 5(r - 1) - 2b) + 4(r - 3)
$$

\n
$$
= 4g - r - 2b - 12,
$$

implying $r = 3$ and $b = 0$. Therefore a general element of $\mathcal{W}^{\vee} \subset \mathcal{W}_{q-2}^{r-1}$ is a smooth plane curve C of degree $g - 2$ equipped with a base-point-free and very ample g_{g-2}^2 . However the equality $g = p_a(C) = \frac{(g-3)(g-4)}{2}$ does not have an integer solution.

(c) Thus the moving part of a general element $(p, \mathcal{E}) \in \mathcal{W}^{\vee}$ is birationally very ample on $C = \xi^{-1}(p)$. Applying Proposition [1.4\(](#page-2-0)b), we get

$$
4g - 15 \le \dim \mathcal{G} \le \dim \mathcal{W} + \dim \mathbb{G}(3, r) = \dim \mathcal{W}^{\vee} + 4(r - 3)
$$

\n
$$
\le (3(g - 2) + g - 1 - 4(r - 1) - 2b) + 4(r - 3)
$$

\n
$$
= 4g - 15 - 2b,
$$

implying $b = 0$, i.e. $\mathcal E$ is base-point-free, birationally very ample, and

$$
\dim \mathcal{W} = \dim \mathcal{W}^{\vee} = 4g - 4r - 3. \tag{2.1}
$$

We finally claim that $r = 3$. Suppose that $r = 4$. By (2.1) we have dim $\mathcal{W}^{\vee} =$ $4g - 19$. We consider the following diagram.

$$
\mathcal{W}_{g-4}^2 \underset{\mathcal{M}}{\times} \mathcal{W}_2 \xrightarrow{q} \mathcal{W}_{g-2}^2
$$

$$
\downarrow \pi
$$

$$
\mathcal{W}_{g-4}^2
$$

where $q(\mathcal{E}', \mathcal{O}_C(R+S)) = \mathcal{E}' \otimes \mathcal{O}_C(R+S)$ and $\pi(\mathcal{E}', \mathcal{O}_C(R+S)) = \mathcal{E}'$. Since a general element $(p, \mathcal{E}) \in \mathcal{W}^{\vee} \subset \mathcal{W}_{g-2}^{3} \subset \mathcal{W}_{g-2}^{2}$ is birationally very ample and base-point-free (which can never be very ample by semi-continuity), $q^{-1}(\mathcal{E}) \neq \emptyset$ for a general $(p, \mathcal{E}) \in \mathcal{W}^{\vee}$. Let Σ be a component of $q^{-1}(\mathcal{W}^{\vee})$ such that $q(\Sigma) = \mathcal{W}^{\vee}$. By the birationality of a general $(p, \mathcal{E}) \in \mathcal{W}^{\vee}$, we see that $\dim q^{-1}(\mathcal{E})=0$ and hence

$$
\dim \Sigma = \dim \mathcal{W}^{\vee} = 4g - 19.
$$

Setting $\mathcal{Z} := \pi(\Sigma) \subset \mathcal{W}_{g-4}^2$, we have the following induced diagram:

$$
\mathcal{W}_{g-4}^2 \underset{\mathcal{M}}{\times} \mathcal{W}_2 \supset \Sigma \stackrel{q}{\longrightarrow} \mathcal{W}^{\vee} \subset \mathcal{W}_{g-2}^3 \subset \mathcal{W}_{g-2}^2
$$

$$
\downarrow^{\pi}
$$

$$
\mathcal{W}_{g-4}^2 \supset \mathcal{Z}
$$

We now show that $\dim \pi^{-1}(\mathcal{E}') = 0$ for a general $(p, \mathcal{E}') \in \mathcal{Z}$. We choose $(p, \mathcal{E}) \in \mathcal{W}^{\vee}$ and fix $(p, \mathcal{E}') \in \mathcal{Z}$ such that $(\mathcal{E}', \mathcal{O}_C(R+S)) \in q^{-1}(\mathcal{E})$ for some $R, S \in C = \xi^{-1}(p)$, i.e. $\mathcal{E} \cong \mathcal{E}' \otimes \mathcal{O}_C(R+S)$. Recall that by our initial setting, $\omega_C \otimes \mathcal{E}^{-1} = \mathcal{D} \in \mathcal{W} \subset \mathcal{W}_g^4$ is a very ample line bundle for a general $\mathcal{E} \in \mathcal{W}^{\vee} \subset \mathcal{W}_{g-2}^{3}$. We also note that the very ample, base-point-free and complete linear system $\mathcal{D} = \omega_C \otimes \mathcal{E}^{-1} = \omega_C \otimes \mathcal{E}'^{-1} \otimes \mathcal{O}_C(-R-S)$ is a subsystem of $\omega_C \otimes \mathcal{E}'^{-1}$. Hence $\omega_C \otimes \mathcal{E}'^{-1}$ is birationally very ample; otherwise the isomorphism induced by the very ample $\mathcal D$ on $C = \xi^{-1}(p)$ factors nontrivially through the morphism induced by $\omega_C \otimes \mathcal{E}'^{-1}$, which is an absurdity. Therefore by noting that $\omega_C \otimes \mathcal{E}'^{-1} = g_{g+2}^5$, there are only finitely many choices complete intear system $D - \omega_C \otimes C - \omega_C \otimes C \otimes C \otimes C(-R - S)$ is a subsystem of $\omega_C \otimes \mathcal{E}'^{-1}$. Hence $\omega_C \otimes \mathcal{E}'^{-1}$ is birationally very ample; otherwise the isomorphism induced by the very ample \mathcal{D} on $C = \xi^{-1}(p)$ (E isomorphism induced by the very ample \mathcal{D} on $C = \xi^{-1}(p)$ factors non-
vially through the morphism induced by $\omega_C \otimes \mathcal{E}'^{-1}$, which is an absurdity.
erefore by noting that $\omega_C \otimes \mathcal{E}'^{-1} = g_{g+2}^5$, there are only $\dim \pi^{-1}(\mathcal{E}') = 0$. By semi-continuity, we have $\dim \pi^{-1}(\mathcal{E}') = 0$ for a general $(p, \mathcal{E}') \in \mathcal{Z}$ and hence

$$
\dim \mathcal{Z} = \dim \Sigma = 4g - 19.
$$

The following three possibilities may occur.

(i) A general element of $\mathcal{Z} \subset \mathcal{W}_{g-4}^2$ is compounded; by Proposition [1.4\(](#page-2-0)c),

$$
4g - 19 = \dim \mathcal{Z} \le (2g - 1 + (g - 4) - 2 \cdot 2) = 3g - 9
$$

which is impossible unless $g = 10$. However, a curve of genus 10 cannot have a very ample $g_{10}^4 \in \mathcal{W} \subset \mathcal{W}_g^4$ by exactly the same reason when we were eliminating the possibility $(g, r) = (10, 4)$ in (a).

- (ii) An (general) element of $\mathcal{Z} \subset \mathcal{W}_{g-4}^2$ is very ample; in this case, one has $p_a(C) = \frac{(g-5)(g-6)}{2} = g \ge 10$ and hence $g = 10$. On the other hand, a smooth plane curve of degree $g - 4 = 6$ cannot have a very ample $g_{10}^4 \in \mathcal{W} \subset \mathcal{W}_g^4$ by the same reason as in (i) or (a).
- (iii) A general element of $\mathcal{Z} \subset \mathcal{W}_{g-4}^2$ is birationally very ample; by Proposition $1.4(b)$ $1.4(b)$,

$$
4g - 19 = \dim \mathcal{Z} \le (3(g - 4) + g - 1 - 4 \cdot 2) = 4g - 21
$$

which is a contradiction.

Therefore it finally follows that $r = 3$ and by (2.1) , we have

$$
\dim \mathcal{G} = \dim \mathcal{W} = \dim \mathcal{W}^{\vee} = 4g - 15. \tag{2.2}
$$

 \Box

Remark 2.4. As was mentioned earlier, Hrito Iliev proved the irreducibility of $\mathcal{H}_{g,g,3}$ for $g \ge 13$; cf. [\[10,](#page-6-0) Theorem 3.1]. In doing so, he used the fact that \mathcal{G}_d^2 has a unique component whose general element is birationally very ample on the correspoinding curve if $\rho(d, g, 2) > 0$; cf. [\[2](#page-6-8), Theorem 1.1 & Proposition 2.1]. In our proof of Theorem [2.1](#page-2-1) we use Lemma [1.3](#page-2-2) as well as Lemma [\(2.3\)](#page-2-3) instead, which will take care of all the possible cases including the unknown cases $g \leq 12$.

The irreducibility of $\mathcal{H}_{q,q,3}$ follows easily as an immediate consequence of Lemma [2.3](#page-2-3) together with Lemma [1.3.](#page-2-2) *Proof of Theorem [2.1.](#page-2-1)* Retaining the same notations as before, let \tilde{G} be the same of \tilde{G} be the same notations as before, let \tilde{G} be the same notations as before, let \tilde{G} be the

union of irreducible components \mathcal{G} of \mathcal{G}^3_g whose general element corresponds to a pair (p, D) such that D is a very ample linear series on $C := \xi^{-1}(p)$. Let a \mathcal{W}^{\vee} be the union of the components \mathcal{W}^{\vee} of \mathcal{W}_{g-2}^2 , where \mathcal{W}^{\vee} consists of the residual series of elements in a component $\mathcal G$ of $\tilde{\mathcal G}$. We also let $\mathcal G'$ be the union of irreducible components of \mathcal{G}_{g-2}^2 whose general element is a birationally very ample and base-point-free linear series. We recall that, by Lemma [1.3](#page-2-2) and Proposition [1.1\(](#page-1-1)2), \mathcal{G}' is irreducible and dim $\mathcal{G}' = 3(g - 2) + g - 9 = 4g - 15$. By Lemma [2.3](#page-2-3) (or (2.2)),

$$
\dim \mathcal{W}^{\vee} = \dim \mathcal{G} = 4g - 15 = \dim \mathcal{G}'.
$$
 (2.3)

Since a general element of any component $W^{\vee} \subset W^{\vee} \subset W_{g-2}^2$ is a basepoint-free, birationally very ample, and complete net by Lemma [2.3,](#page-2-3) there is a natural rational map $\widetilde{W}^{\vee} \stackrel{\kappa}{\dashrightarrow} \mathcal{G}'$ with $\kappa(|\mathcal{D}|) = \mathcal{D}$ which is clearly injective on an open subset $\mathcal{W}^{\vee o}$ of \mathcal{W}^{\vee} consisting of those which are base-point-free,

birationally very ample, and complete nets. Therefore the rational map κ is dominant by [\(2.3\)](#page-5-1). We also note that there is a natural rational map $\mathcal{G}' \xrightarrow{\iota} \widetilde{\mathcal{W}}^{\vee}$ with $\iota(\mathcal{D}) = |\mathcal{D}|$, which is an inverse to κ (wherever it is defined). Therefore it follows that W^{\vee} is birationally equivalent to the irreducible locus \mathcal{G}' , hence birationally very ample, and complete nets. Therefore the rational map κ is dominant by (2.3). We also note that there is a natural rational map $\mathcal{G}' \xrightarrow{\iota} \widetilde{\mathcal{W}}^{\vee}$ with $\iota(\mathcal{D}) = |\mathcal{D}|$, which is an inve dominant by $(2.3$
with $\iota(\mathcal{D}) = |\mathcal{D}|$,
it follows that $\widetilde{\mathcal{W}}$
 $\widetilde{\mathcal{W}}^{\vee}$ is irreducibl
open subset of $\widetilde{\mathcal{G}}$ open subset of $\widetilde{\mathcal{G}}, \mathcal{H}_{q,q,3}$ is irreducible.

References

- [1] E. Arbarello and M. Cornalba, Su una congetura di Petri, Comment. Math. Helv. **56** (1981), 1–38.
- [2] E. Arbarello and M. Cornalba, A few remarks about the variety of irreducible plane curves of given degree and genus, Ann. Sei. École Norm. Sup. (4) **16** (1983), 467–483.
- [3] E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Geometry of Algebraic Curves Vol.I, Springer-Verlag, New York, 1985.
- [4] E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Geometry of Algebraic Curves Vol.II, Springer-Verlag, Heidelberg, 2011.
- [5] K. Dasaratha, The reducibility and dimension of Hilbert schemes of complex projective curves, undergraduate thesis, Harvard University, Department of Mathematics, available at [http://www.math.harvard.edu/theses/senior/](http://www.math.harvard.edu/theses/senior/dasaratha/dasaratha) [dasaratha/dasaratha.](http://www.math.harvard.edu/theses/senior/dasaratha/dasaratha)
- [6] L. Ein, Hilbert scheme of smooth space curves, Ann. Scient. Ec. Norm. Sup. (4) **19** (1986) 469–478.
- [7] L. Ein, The irreducibility of the Hilbert scheme of complex space curves, In: Algebraic geometry, Bowdoin, 1985, Proc. Sympos. Pure Math., 46, Part 1, 83– 87, Amer. Math. Soc., 1987.
- [8] J. Harris, Curves in projective space, in "Sem.Math.Sup.,", Press Univ. Montréal, Montréal, 1982.
- [9] J. HARRIS, On the Severi problem, Invent. Math. **84** (1986), 445–461.
- [10] H. Iliev, On the irreducibility of the Hilbert scheme of space curves, Proc. Amer. Math. Soc. **134** (2006), 2823–2832.
- [11] C. Keem, Reducible Hilbert scheme of smooth curves with positive Brill-Noether number, Proc. Amer. Math. Soc. **122** (1994), 349–354.
- [12] C. Keem and S. Kim, Irreducibility of a subscheme of the Hilbert scheme of complex space curves, J. Algebra **145** (1992), 240–248.
- [13] C. Keem, Y.-H. Kim, and A.F. Lopez, Irreducibility and components rigid in moduli of the Hilbert Scheme of smooth curves, Preprint, [arXiv:1605.00297](http://arxiv.org/abs/1605.00297) [math.AG], available at [https://arxiv.org/abs/1605.00297.](https://arxiv.org/abs/1605.00297)
- [14] F. SEVERI, Vorlesungen über algebraische Geometrie, Teubner, Leipzig, 1921.

Changho Keem and Yun-Hwan Kim Department of Mathematics Seoul National University Seoul 151-742 South Korea e-mail: ckeem1@gmail.com

Yun-Hwan Kim e-mail: yunttang@snu.ac.kr

Received: 2 October 2016