Archiv der Mathematik

Irreducibility of the Hilbert scheme of smooth curves in \mathbb{P}^3 of degree g and genus g

Changho Keem^(D) and Yun-Hwan Kim

To the memory of our friend and collaborator Ryutaro Horiuchi

Abstract. We denote by $\mathcal{H}_{d,g,r}$ the Hilbert scheme of smooth curves, which is the union of components whose general point corresponds to a smooth irreducible and non-degenerate curve of degree d and genus g in \mathbb{P}^r . In this note, we show that any non-empty $\mathcal{H}_{g,g,3}$ is irreducible without any restriction on the genus g. This extends the result obtained earlier by Iliev (Proc Am Math Soc 134:2823–2832, 2006).

Mathematics Subject Classification. Primary 14H10; Secondary 14C05.

Keywords. Hilbert scheme, Algebraic curves, Linear series.

1. An overview, preliminaries, and basic set-up. Given non-negative integers d, g and $r \geq 3$, let $\mathcal{H}_{d,g,r}$ be the Hilbert scheme of smooth curves parametrizing smooth irreducible and non-degenerate curves of degree d and genus g in \mathbb{P}^r .

After Severi asserted that $\mathcal{H}_{d,g,r}$ is irreducible for $d \geq g + r$ in [14, Anhang G, p. 368], the irreducibility of $\mathcal{H}_{d,g,r}$ has been widely studied by several authors. Ein proved Severi's claim for r = 3 and r = 4; cf. [6, Theorem 4] and [7, Theorem 7]. Shortly after, Keem and Kim gave a different proof in the same range $d \geq g+3$ while they also proved the irreducibility of $\mathcal{H}_{g+2,g,3}$ for $g \geq 5$ as well as $\mathcal{H}_{g+1,g,3}$ for $g \geq 11$; cf. [12, Theorem 1.5]. On the other hand, Severi's assertion turned out to be untrue for curves in higher dimensional projective spaces \mathbb{P}^r with $r \geq 6$; cf. [11, Theorem 2.3]. Quite recently, Keem et al. proved that the irreducibility of $\mathcal{H}_{g+2,g,3}$ and $\mathcal{H}_{g+1,g,3}$ even holds for any genus g as long as they are non-empty; cf. [13, Proposition 2.1 & Proposition 3.2]. For the case d = g, Hristo Iliev proved that $\mathcal{H}_{g,g,3}$ is irreducible for $g \geq 13$; cf.

The first named author was supported in part by National Research Foundation Grant # 2011-0010298.

[10, Theorem 3.1]. However, the irreducibility of $\mathcal{H}_{g,g,3}$ for lower genus $g \leq 12$ has been left open. In this article, we prove that every non-empty $\mathcal{H}_{g,g,3}$ is irreducible without any restriction on the genus g.

Before proceeding, we recall several related results which are rather well known; cf. [1] and [2]. Let \mathcal{M}_g be the moduli space of smooth curves of genus g. For any given isomorphism class $[C] \in \mathcal{M}_g$ corresponding to a smooth irreducible curve C, there exist a neighborhood $U \subset \mathcal{M}_g$ of the class [C] and a smooth connected variety \mathcal{M} which is a finite ramified covering $h : \mathcal{M} \to U$, as well as varieties $\mathcal{C}, \mathcal{W}_d^r$, and \mathcal{G}_d^r proper over \mathcal{M} with the following properties:

- (1) $\xi : \mathcal{C} \to \mathcal{M}$ is a universal curve, i.e. for every $p \in \mathcal{M}, \xi^{-1}(p)$ is a smooth curve of genus g whose isomorphism class is h(p),
- (2) \mathcal{W}_d^r parametrizes the pairs (p, L) where L is a line bundle of degree d and $h^0(L) \ge r+1$ on $\xi^{-1}(p)$,
- (3) \mathcal{G}_d^r parametrizes the couples (p, \mathcal{D}) , where \mathcal{D} is possibly an incomplete linear series of degree d and dimension r on $\xi^{-1}(p)$ which is usually denoted by g_d^r .

Let $\widetilde{\mathcal{G}}$ be the union of components of \mathcal{G}_d^r whose general element (p, \mathcal{D}) corresponds to a very ample linear series \mathcal{D} on the curve $C = \xi^{-1}(p)$. Note that an open subset of $\mathcal{H}_{d,g,r}$ consisting of points corresponding to smooth irreducible and non-degenerate curves is a $\mathbb{P}\mathrm{GL}(r+1)$ -bundle over an open subset of $\widetilde{\mathcal{G}}$. Hence the irreducibility of $\widetilde{\mathcal{G}}$ guarantees the irreducibility of $\mathcal{H}_{d,g,r}$. We also make a note of the following basic and well-known facts regarding the scheme \mathcal{G}_d^r ; cf. [2, Proposition 2.8] and [8, §2.a, p. 67].

Proposition 1.1. For non-negative integers d, g, and r, let $\rho(d, g, r) := g - (r + 1)(g - d + r)$ be the Brill-Noether number.

- (1) The dimension of any component of \mathcal{G}_d^r is at least $3g-3+\rho(d,g,r)$ which is denoted by $\lambda(d,g,r)$.
- (2) Suppose g > 1 and let X be a component of \mathcal{G}_d^2 whose general element (p, \mathcal{D}) is such that \mathcal{D} is a birationally very ample linear series on $\xi^{-1}(p)$. Then

$$\dim X = 3g - 3 + \rho(d, g, 2) = 3d + g - 9.$$

We recall that the family of plane curves of degree d in \mathbb{P}^2 are naturally parametrised by the projective space $\mathbb{P}^N, N = \frac{d(d+3)}{2}$. Let $\Sigma_{d,g} \subset \mathbb{P}^N$ be the Severi variety of plane curves of degree d with geometric genus g. We also recall that a general point of $\Sigma_{d,g}$ corresponds to an irreducible plane curve of degree d having $\delta := \frac{(d-1)(d-2)}{2} - g$ nodes and no other singulariy. The following theorem of Harris is fundamental; cf. [4, Theorem 10.7 and 10.12, pp. 847-850] or [9].

Theorem 1.2. $\Sigma_{d,g}$ is irreducible of dimension $3d + g - 1 = \lambda(d, g, 2) + \dim \mathbb{P}GL(3)$.

Denoting by $\mathcal{G}' \subset \mathcal{G}_d^2$ the union of components whose general element $(p, \mathcal{D}) \in \mathcal{G}'$ is such that \mathcal{D} is birationally very ample on $C = \xi^{-1}(p)$, we remark that an open subset of the Severi variety $\Sigma_{d,g}$ is a $\mathbb{P}GL(3)$ -bundle over

an open subset of \mathcal{G}' . Therefore, as an immediate consequence of Theorem 1.2, the irreducibility of $\Sigma_{d,g}$ implies the irreducibility of the locus \mathcal{G}' and vice versa. We make a note of this simple observation as the following lemma.

Lemma 1.3. Let $\mathcal{G}' \subset \mathcal{G}_d^2$ be the union of components whose general element (p, \mathcal{D}) is such that \mathcal{D} is birationally very ample on $C = \xi^{-1}(p)$. Then \mathcal{G}' is irreducible.

We will utilize the following upper bound of the dimension of an irreducible component of \mathcal{W}_d^r , which was proved and used effectively in [10].

Proposition 1.4. ([10, Proposition 2.1]) Let d, g and $r \ge 2$ be positive integers such that $d \le g + r - 2$ and let W be an irreducible component of W_d^r . For a general elment $(p, L) \in W$, let b be the degree of the base locus of the line bundle L = |D| on $C = \xi^{-1}(p)$. Assume further that for a general $(p, L) \in W$ the curve $C = \xi^{-1}(p)$ is not hyperelliptic. If the moving part of L = |D| is

- (a) very ample and $r \ge 3$, then dim $\mathcal{W} \le 3d + g + 1 5r 2b$;
- (b) birationally very ample, then dim $W \leq 3d + g 1 4r 2b$;
- (c) compounded, then dim $W \leq 2g 1 + d 2r$.

For notations and conventions, we usually follow those in [3] and [4]; e.g., (d, r) is the maximal possible arithmetic genus of an irreducible and nondegenerate curve of degree d in \mathbb{P}^r . Throughout we work over the field of complex numbers.

2. Irreducibility of $\mathcal{H}_{g,g,3}$. The main result of this article is the following theorem.

Theorem 2.1. Every non-empty $\mathcal{H}_{g,g,3}$ is irreducible.

We make a note of the following well-known facts - which are also very easy to prove - when the genus of curves under consideration is relatively low.

Proposition 2.2. (1) $\mathcal{H}_{g,g,3} = \emptyset$ for $1 \le g \le 7$ (2) $\mathcal{H}_{8,8,3}$ and $\mathcal{H}_{9,9,3}$ is irreducible of dimension 32, 36, respectively.

Proof. (1) If $1 \le g \le 7$, one has $g \le \pi(d,3) < g$ by the Castelnuovo genus bound, a contradiction.

(2) We refer [5, Theorem 5.2.1] for a detailed treatment.

Therefore we shall assume that $g \geq 10$ for the rest of this section. The following lemma is a crucial step toward the proof of the irreducibility of $\mathcal{H}_{g,g,3}$.

Lemma 2.3. Let $\mathcal{G} \subset \mathcal{G}_g^3$ be an irreducible component whose general element (p, \mathcal{D}) is a very ample linear series \mathcal{D} on the curve $C = \xi^{-1}(p)$ and assume $g \geq 10$. Then

(1) \mathcal{D} is complete and dim $\mathcal{G} = 4g - 15$.

(2) a general element of the component $\mathcal{W}^{\vee} \subset \mathcal{W}^2_{g-2}$ consisting of the residual series (with respect to the canonical series on the corresponding curve) of those elements in \mathcal{G} is a base-point-free, complete, and birationally very ample net.

Proof. By Proposition 1.1, we have

$$\lambda(g, g, 3) = 3g - 3 + \rho(g, g, 3) = 4g - 15 \le \dim \mathcal{G}.$$

We set $r := h^0(C, |\mathcal{D}|) - 1$ for a general $(p, \mathcal{D}) \in \mathcal{G}$.

Let $\mathcal{W} \subset \mathcal{W}_g^r$ be the component containing the image of the natural rational map $\mathcal{G} \xrightarrow{\iota} \mathcal{W}_g^r$ with $\iota(\mathcal{D}) = |\mathcal{D}|$. Since dim $\mathcal{G} \leq \dim \mathcal{W} + \dim \mathbb{G}(3, r)$, it follows by Proposition 1.4(a) that

 $\lambda(g, g, 3) = 4g - 15 \le \dim \mathcal{G} \le (4g + 1 - 5r) + 4(r - 3) = 4g - r - 11$ and hence $r \le 4$.

Let $\mathcal{W}^{\vee} \subset \mathcal{W}_{g-2}^{r-1}$ be the locus consisting of the residual series (with respect to the canonical series on the corresponding curve) of those elements in \mathcal{W} , i.e. $\mathcal{W}^{\vee} = \{(p, \omega_C \otimes L^{-1}) : (p, L) \in \mathcal{W}\}.$

(a) If a general element of \mathcal{W}^{\vee} is compounded, then by Proposition 1.4(c),

$$4g - 15 \le \dim \mathcal{G} \le \dim \mathcal{W} + \dim \mathbb{G}(3, r) = \dim \mathcal{W}^{\vee} + 4(r - 3)$$

$$\le (2g - 1 + (g - 2) - 2(r - 1)) + 4(r - 3)$$

$$= 3g + 2r - 13$$

implying $10 \leq g \leq 2r + 2 \leq 10$ and hence (g,r) = (10,4). If (g,r) = (10,4), by the Castelnuovo genus bound one has $g = 10 \leq \pi(10,4) = 9$, a contradiction. Therefore it follows that a general element of \mathcal{W}^{\vee} is not compunded.

(b) Suppose that the moving part of a general element of \mathcal{W}^{\vee} is very ample and let b be the degree of the base locus of a general element of \mathcal{W}^{\vee} . By Proposition 1.4(a), we have

$$\begin{aligned} 4g - 15 &\leq \dim \mathcal{G} \leq \dim \mathcal{W} + \dim \mathbb{G}(3, r) = \dim \mathcal{W}^{\vee} + 4(r - 3) \\ &\leq (3(g - 2) + g + 1 - 5(r - 1) - 2b) + 4(r - 3) \\ &= 4g - r - 2b - 12, \end{aligned}$$

implying r = 3 and b = 0. Therefore a general element of $\mathcal{W}^{\vee} \subset \mathcal{W}_{g-2}^{r-1}$ is a smooth plane curve C of degree g - 2 equipped with a base-point-free and very ample g_{g-2}^2 . However the equality $g = p_a(C) = \frac{(g-3)(g-4)}{2}$ does not have an integer solution.

(c) Thus the moving part of a general element $(p, \mathcal{E}) \in \mathcal{W}^{\vee}$ is birationally very ample on $C = \xi^{-1}(p)$. Applying Proposition 1.4(b), we get

$$\begin{aligned} 4g - 15 &\leq \dim \mathcal{G} \leq \dim \mathcal{W} + \dim \mathbb{G}(3, r) = \dim \mathcal{W}^{\vee} + 4(r - 3) \\ &\leq (3(g - 2) + g - 1 - 4(r - 1) - 2b) + 4(r - 3) \\ &= 4g - 15 - 2b, \end{aligned}$$

implying b = 0, i.e. \mathcal{E} is base-point-free, birationally very ample, and

$$\dim \mathcal{W} = \dim \mathcal{W}^{\vee} = 4g - 4r - 3. \tag{2.1}$$

We finally claim that r = 3. Suppose that r = 4. By (2.1) we have dim $\mathcal{W}^{\vee} = 4q - 19$. We consider the following diagram.

$$\mathcal{W}_{g-4}^2 \underset{\mathcal{M}}{\times} \mathcal{W}_2 \xrightarrow{q} \mathcal{W}_{g-2}^2$$

$$\downarrow^{\pi}$$

$$\mathcal{W}_{g-4}^2$$

where $q(\mathcal{E}', \mathcal{O}_C(R+S)) = \mathcal{E}' \otimes \mathcal{O}_C(R+S)$ and $\pi(\mathcal{E}', \mathcal{O}_C(R+S)) = \mathcal{E}'$. Since a general element $(p, \mathcal{E}) \in \mathcal{W}^{\vee} \subset \mathcal{W}^3_{g-2} \subset \mathcal{W}^2_{g-2}$ is birationally very ample and base-point-free (which can never be very ample by semi-continuity), $q^{-1}(\mathcal{E}) \neq \emptyset$ for a general $(p, \mathcal{E}) \in \mathcal{W}^{\vee}$. Let Σ be a component of $q^{-1}(\mathcal{W}^{\vee})$ such that $q(\Sigma) = \mathcal{W}^{\vee}$. By the birationality of a general $(p, \mathcal{E}) \in \mathcal{W}^{\vee}$, we see that $\dim q^{-1}(\mathcal{E}) = 0$ and hence

$$\dim \Sigma = \dim \mathcal{W}^{\vee} = 4g - 19.$$

Setting $\mathcal{Z} := \pi(\Sigma) \subset \mathcal{W}_{q-4}^2$, we have the following induced diagram:

$$\begin{split} \mathcal{W}_{g-4}^2 \underset{\mathcal{M}}{\times} \mathcal{W}_2 \supset \Sigma \overset{q}{\longrightarrow} \mathcal{W}^{\vee} \subset \mathcal{W}_{g-2}^3 \subset \mathcal{W}_{g-2}^2 \\ & \downarrow^{\pi} \\ \mathcal{W}_{g-4}^2 \supset \mathcal{Z} \end{split}$$

We now show that $\dim \pi^{-1}(\mathcal{E}') = 0$ for a general $(p, \mathcal{E}') \in \mathcal{Z}$. We choose $(p, \mathcal{E}) \in \mathcal{W}^{\vee}$ and fix $(p, \mathcal{E}') \in \mathcal{Z}$ such that $(\mathcal{E}', \mathcal{O}_C(R+S)) \in q^{-1}(\mathcal{E})$ for some $R, S \in C = \xi^{-1}(p)$, i.e. $\mathcal{E} \cong \mathcal{E}' \otimes \mathcal{O}_C(R+S)$. Recall that by our initial setting, $\omega_C \otimes \mathcal{E}^{-1} = \mathcal{D} \in \mathcal{W} \subset \mathcal{W}_g^4$ is a very ample line bundle for a general $\mathcal{E} \in \mathcal{W}^{\vee} \subset \mathcal{W}_{g-2}^3$. We also note that the very ample, base-point-free and complete linear system $\mathcal{D} = \omega_C \otimes \mathcal{E}^{-1} = \omega_C \otimes \mathcal{E}'^{-1} \otimes \mathcal{O}_C(-R-S)$ is a subsystem of $\omega_C \otimes \mathcal{E}'^{-1}$. Hence $\omega_C \otimes \mathcal{E}'^{-1}$ is birationally very ample; otherwise the isomorphism induced by the very ample \mathcal{D} on $C = \xi^{-1}(p)$ factors non-trivially through the morphism induced by $\omega_C \otimes \mathcal{E}'^{-1}$, which is an absurdity. Therefore by noting that $\omega_C \otimes \mathcal{E}'^{-1} \otimes \mathcal{O}_C(-\tilde{R} - \tilde{S}) = g_g^4 \in \mathcal{W} \subset \mathcal{W}_g^4$, i.e. $(\mathcal{E}', \mathcal{O}_C(\tilde{R} + \tilde{S})) \in \Sigma$ or equivalently $\mathcal{E}' \otimes \mathcal{O}_C(\tilde{R} + \tilde{S}) \in \mathcal{W}^{\vee}$, which implies $\dim \pi^{-1}(\mathcal{E}') = 0$. By semi-continuity, we have $\dim \pi^{-1}(\mathcal{E}') = 0$ for a general $(p, \mathcal{E}') \in \mathcal{Z}$ and hence

$$\dim \mathcal{Z} = \dim \Sigma = 4g - 19.$$

The following three possibilities may occur.

(i) A general element of $\mathcal{Z} \subset \mathcal{W}_{q-4}^2$ is compounded; by Proposition 1.4(c),

$$4g - 19 = \dim \mathcal{Z} \le (2g - 1 + (g - 4) - 2 \cdot 2) = 3g - 9$$

which is impossible unless g = 10. However, a curve of genus 10 cannot have a very ample $g_{10}^4 \in \mathcal{W} \subset \mathcal{W}_g^4$ by exactly the same reason when we were eliminating the possibility (g, r) = (10, 4) in (a).

- (ii) An (general) element of Z ⊂ W²_{g-4} is very ample; in this case, one has p_a(C) = (g-5)(g-6)/2 = g ≥ 10 and hence g = 10. On the other hand, a smooth plane curve of degree g − 4 = 6 cannot have a very ample g⁴₁₀ ∈ W ⊂ W⁴_g by the same reason as in (i) or (a).
- (iii) A general element of $\mathcal{Z} \subset \mathcal{W}_{g-4}^2$ is birationally very ample; by Proposition 1.4(b),

$$4g - 19 = \dim \mathcal{Z} \le (3(g - 4) + g - 1 - 4 \cdot 2) = 4g - 21$$

which is a contradiction.

Therefore it finally follows that r = 3 and by (2.1), we have

$$\dim \mathcal{G} = \dim \mathcal{W} = \dim \mathcal{W}^{\vee} = 4g - 15.$$
(2.2)

Remark 2.4. As was mentioned earlier, Hrito Iliev proved the irreducibility of $\mathcal{H}_{g,g,3}$ for $g \geq 13$; cf. [10, Theorem 3.1]. In doing so, he used the fact that \mathcal{G}_d^2 has a unique component whose general element is birationally very ample on the corresponding curve if $\rho(d, g, 2) > 0$; cf. [2, Theorem 1.1 & Proposition 2.1]. In our proof of Theorem 2.1 we use Lemma 1.3 as well as Lemma (2.3) instead, which will take care of all the possible cases including the unknown cases $g \leq 12$.

The irreducibility of $\mathcal{H}_{g,g,3}$ follows easily as an immediate consequence of Lemma 2.3 together with Lemma 1.3.

Proof of Theorem 2.1. Retaining the same notations as before, let $\tilde{\mathcal{G}}$ be the union of irreducible components \mathcal{G} of \mathcal{G}_g^3 whose general element corresponds to a pair (p, \mathcal{D}) such that \mathcal{D} is a very ample linear series on $C := \xi^{-1}(p)$. Let a $\widetilde{\mathcal{W}}^{\vee}$ be the union of the components \mathcal{W}^{\vee} of \mathcal{W}_{g-2}^2 , where \mathcal{W}^{\vee} consists of the residual series of elements in a component \mathcal{G} of $\tilde{\mathcal{G}}$. We also let \mathcal{G}' be the union of irreducible components of \mathcal{G}_{g-2}^2 whose general element is a birationally very ample and base-point-free linear series. We recall that, by Lemma 1.3 and Proposition 1.1(2), \mathcal{G}' is irreducible and dim $\mathcal{G}' = 3(g-2) + g - 9 = 4g - 15$. By Lemma 2.3 (or (2.2)),

$$\dim \mathcal{W}^{\vee} = \dim \mathcal{G} = 4g - 15 = \dim \mathcal{G}'. \tag{2.3}$$

Since a general element of any component $\mathcal{W}^{\vee} \subset \widetilde{\mathcal{W}}^{\vee} \subset \mathcal{W}_{g-2}^2$ is a basepoint-free, birationally very ample, and complete net by Lemma 2.3, there is a natural rational map $\widetilde{\mathcal{W}}^{\vee} \xrightarrow{-\kappa} \mathcal{G}'$ with $\kappa(|\mathcal{D}|) = \mathcal{D}$ which is clearly injective on an open subset $\widetilde{\mathcal{W}}^{\vee o}$ of $\widetilde{\mathcal{W}}^{\vee}$ consisting of those which are base-point-free, birationally very ample, and complete nets. Therefore the rational map κ is dominant by (2.3). We also note that there is a natural rational map $\mathcal{G}' \xrightarrow{\iota} \widetilde{\mathcal{W}}^{\vee}$ with $\iota(\mathcal{D}) = |\mathcal{D}|$, which is an inverse to κ (wherever it is defined). Therefore it follows that $\widetilde{\mathcal{W}}^{\vee}$ is birationally equivalent to the irreducible locus \mathcal{G}' , hence $\widetilde{\mathcal{W}}^{\vee}$ is irreducible and so is $\widetilde{\mathcal{G}}$. Since $\mathcal{H}_{g,g,3}$ is a $\mathbb{P}\mathrm{GL}(r+1)$ bundle over an open subset of $\widetilde{\mathcal{G}}$, $\mathcal{H}_{g,g,3}$ is irreducible.

References

- E. ARBARELLO AND M. CORNALBA, Su una congetura di Petri, Comment. Math. Helv. 56 (1981), 1–38.
- [2] E. ARBARELLO AND M. CORNALBA, A few remarks about the variety of irreducible plane curves of given degree and genus, Ann. Sei. École Norm. Sup. (4) 16 (1983), 467–483.
- [3] E. ARBARELLO, M. CORNALBA, P. GRIFFITHS, AND J. HARRIS, Geometry of Algebraic Curves Vol.I, Springer-Verlag, New York, 1985.
- [4] E. ARBARELLO, M. CORNALBA, P. GRIFFITHS, AND J. HARRIS, Geometry of Algebraic Curves Vol.II, Springer-Verlag, Heidelberg, 2011.
- [5] K. DASARATHA, The reducibility and dimension of Hilbert schemes of complex projective curves, undergraduate thesis, Harvard University, Department of Mathematics, available at http://www.math.harvard.edu/theses/senior/ dasaratha/dasaratha.
- [6] L. EIN, Hilbert scheme of smooth space curves, Ann. Scient. Ec. Norm. Sup. (4) 19 (1986) 469–478.
- [7] L. EIN, The irreducibility of the Hilbert scheme of complex space curves, In: Algebraic geometry, Bowdoin, 1985, Proc. Sympos. Pure Math., 46, Part 1, 83– 87, Amer. Math. Soc., 1987.
- [8] J. HARRIS, Curves in projective space, in "Sem.Math.Sup.,", Press Univ. Montréal, Montréal, 1982.
- [9] J. HARRIS, On the Severi problem, Invent. Math. 84 (1986), 445–461.
- [10] H. ILIEV, On the irreducibility of the Hilbert scheme of space curves, Proc. Amer. Math. Soc. 134 (2006), 2823–2832.
- [11] C. KEEM, Reducible Hilbert scheme of smooth curves with positive Brill-Noether number, Proc. Amer. Math. Soc. 122 (1994), 349–354.
- [12] C. KEEM AND S. KIM, Irreducibility of a subscheme of the Hilbert scheme of complex space curves, J. Algebra 145 (1992), 240–248.
- [13] C. KEEM, Y.-H. KIM, AND A.F. LOPEZ, Irreducibility and components rigid in moduli of the Hilbert Scheme of smooth curves, Preprint, arXiv:1605.00297 [math.AG], available at https://arxiv.org/abs/1605.00297.
- [14] F. SEVERI, Vorlesungen über algebraische Geometrie, Teubner, Leipzig, 1921.

CHANGHO KEEM AND YUN-HWAN KIM Department of Mathematics Seoul National University Seoul 151-742 South Korea e-mail: ckeem1@gmail.com

YUN-HWAN KIM e-mail: yunttang@snu.ac.kr

Received: 2 October 2016