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Abstract.We denote byHd,g,r the Hilbert scheme of smooth curves, which
is the union of components whose general point corresponds to a smooth
irreducible and non-degenerate curve of degree d and genus g in P

r. In
this note, we show that any non-empty Hg,g,3 is irreducible without any
restriction on the genus g. This extends the result obtained earlier by
Iliev (Proc Am Math Soc 134:2823–2832, 2006).
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1. An overview, preliminaries, and basic set-up. Given non-negative integers
d, g and r ≥ 3, let Hd,g,r be the Hilbert scheme of smooth curves parametrizing
smooth irreducible and non-degenerate curves of degree d and genus g in P

r.
After Severi asserted that Hd,g,r is irreducible for d ≥ g + r in [14, Anhang

G, p. 368], the irreducibility of Hd,g,r has been widely studied by several au-
thors. Ein proved Severi’s claim for r = 3 and r = 4; cf. [6, Theorem 4] and [7,
Theorem 7]. Shortly after, Keem and Kim gave a different proof in the same
range d ≥ g+3 while they also proved the irreducibility of Hg+2,g,3 for g ≥ 5 as
well as Hg+1,g,3 for g ≥ 11; cf. [12, Theorem 1.5]. On the other hand, Severi’s
assertion turned out to be untrue for curves in higher dimensional projective
spaces Pr with r ≥ 6; cf. [11, Theorem 2.3]. Quite recently, Keem et al. proved
that the irreducibility of Hg+2,g,3 and Hg+1,g,3 even holds for any genus g as
long as they are non-empty; cf. [13, Proposition 2.1 & Proposition 3.2]. For
the case d = g, Hristo Iliev proved that Hg,g,3 is irreducible for g ≥ 13; cf.
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[10, Theorem 3.1]. However, the irreducibility of Hg,g,3 for lower genus g ≤ 12
has been left open. In this article, we prove that every non-empty Hg,g,3 is
irreducible without any restriction on the genus g.

Before proceeding, we recall several related results which are rather well
known; cf. [1] and [2]. Let Mg be the moduli space of smooth curves of genus
g. For any given isomorphism class [C] ∈ Mg corresponding to a smooth
irreducible curve C, there exist a neighborhood U ⊂ Mg of the class [C] and a
smooth connected variety M which is a finite ramified covering h : M → U , as
well as varieties C, Wr

d , and Gr
d proper over M with the following properties:

(1) ξ : C → M is a universal curve, i.e. for every p ∈ M, ξ−1(p) is a smooth
curve of genus g whose isomorphism class is h(p),

(2) Wr
d parametrizes the pairs (p, L) where L is a line bundle of degree d and

h0(L) ≥ r + 1 on ξ−1(p),
(3) Gr

d parametrizes the couples (p,D), where D is possibly an incomplete
linear series of degree d and dimension r on ξ−1(p) - which is usually
denoted by gr

d.

Let ˜G be the union of components of Gr
d whose general element (p,D)

corresponds to a very ample linear series D on the curve C = ξ−1(p). Note
that an open subset of Hd,g,r consisting of points corresponding to smooth
irreducible and non-degenerate curves is a PGL(r + 1)-bundle over an open
subset of ˜G. Hence the irreducibility of ˜G guarantees the irreducibility of Hd,g,r.
We also make a note of the following basic and well-known facts regarding the
scheme Gr

d ; cf. [2, Proposition 2.8] and [8, §2.a, p. 67].

Proposition 1.1. For non-negative integers d, g, and r, let ρ(d, g, r) := g−(r+
1)(g − d + r) be the Brill-Noether number.
(1) The dimension of any component of Gr

d is at least 3g−3+ρ(d, g, r) which
is denoted by λ(d, g, r).

(2) Suppose g > 1 and let X be a component of G2
d whose general element

(p,D) is such that D is a birationally very ample linear series on ξ−1(p).
Then

dim X = 3g − 3 + ρ(d, g, 2) = 3d + g − 9.

We recall that the family of plane curves of degree d in P
2 are naturally

parametrised by the projective space P
N , N = d(d+3)

2 . Let Σd,g ⊂ P
N be the

Severi variety of plane curves of degree d with geometric genus g. We also
recall that a general point of Σd,g corresponds to an irreducible plane curve
of degree d having δ := (d−1)(d−2)

2 − g nodes and no other singulariy. The
following theorem of Harris is fundamental; cf. [4, Theorem 10.7 and 10.12,
pp. 847-850] or [9].

Theorem 1.2. Σd,g is irreducible of dimension 3d + g − 1 = λ(d, g, 2) + dim
PGL(3).

Denoting by G′ ⊂ G2
d the union of components whose general element

(p,D) ∈ G′ is such that D is birationally very ample on C = ξ−1(p), we
remark that an open subset of the Severi variety Σd,g is a PGL(3)-bundle over
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an open subset of G′. Therefore, as an immediate consequence of Theorem 1.2,
the irreducibility of Σd,g implies the irreducibility of the locus G′ and vice
versa. We make a note of this simple observation as the following lemma.

Lemma 1.3. Let G′ ⊂ G2
d be the union of components whose general element

(p,D) is such that D is birationally very ample on C = ξ−1(p). Then G′ is
irreducible.

We will utilize the following upper bound of the dimension of an irreducible
component of Wr

d , which was proved and used effectively in [10].

Proposition 1.4. ([10, Proposition 2.1]) Let d, g and r ≥ 2 be positive integers
such that d ≤ g + r − 2 and let W be an irreducible component of Wr

d . For
a general elment (p, L) ∈ W, let b be the degree of the base locus of the line
bundle L = |D| on C = ξ−1(p). Assume further that for a general (p, L) ∈ W
the curve C = ξ−1(p) is not hyperelliptic. If the moving part of L = |D| is
(a) very ample and r ≥ 3, then dim W ≤ 3d + g + 1 − 5r − 2b;
(b) birationally very ample, then dim W ≤ 3d + g − 1 − 4r − 2b;
(c) compounded, then dim W ≤ 2g − 1 + d − 2r.

For notations and conventions, we usually follow those in [3] and [4]; e.g.,
(d, r) is the maximal possible arithmetic genus of an irreducible and non-
degenerate curve of degree d in P

r. Throughout we work over the field of
complex numbers.

2. Irreducibility of Hg,g,3. The main result of this article is the following
theorem.

Theorem 2.1. Every non-empty Hg,g,3 is irreducible.

We make a note of the following well-known facts - which are also very easy
to prove - when the genus of curves under consideration is relatively low.

Proposition 2.2. (1) Hg,g,3 = ∅ for 1 ≤ g ≤ 7
(2) H8,8,3 and H9,9,3 is irreducible of dimension 32, 36, respectively.

Proof. (1) If 1 ≤ g ≤ 7, one has g ≤ π(d, 3) < g by the Castelnuovo genus
bound, a contradiction.
(2) We refer [5, Theorem 5.2.1] for a detailed treatment.

�

Therefore we shall assume that g ≥ 10 for the rest of this section. The
following lemma is a crucial step toward the proof of the irreducibility of
Hg,g,3.

Lemma 2.3. Let G ⊂ G3
g be an irreducible component whose general element

(p,D) is a very ample linear series D on the curve C = ξ−1(p) and assume
g ≥ 10. Then

(1) D is complete and dim G = 4g − 15.
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(2) a general element of the component W∨ ⊂ W2
g−2 consisting of the residual

series (with respect to the canonical series on the corresponding curve) of
those elements in G is a base-point-free, complete, and birationally very
ample net.

Proof. By Proposition 1.1, we have

λ(g, g, 3) = 3g − 3 + ρ(g, g, 3) = 4g − 15 ≤ dim G.

We set r := h0(C, |D|) − 1 for a general (p,D) ∈ G.
Let W ⊂ Wr

g be the component containing the image of the natural rational

map G ι��� Wr
g with ι(D) = |D|. Since dimG ≤ dim W +dimG(3, r), it follows

by Proposition 1.4(a) that

λ(g, g, 3) = 4g − 15 ≤ dim G ≤ (4g + 1 − 5r) + 4(r − 3) = 4g − r − 11

and hence r ≤ 4.
Let W∨ ⊂ Wr−1

g−2 be the locus consisting of the residual series (with respect
to the canonical series on the corresponding curve) of those elements in W,
i.e. W∨ = {(p, ωC ⊗ L−1) : (p, L) ∈ W}.

(a) If a general element of W∨ is compounded, then by Proposition 1.4(c),

4g − 15 ≤ dim G ≤ dim W + dimG(3, r) = dim W∨ + 4(r − 3)
≤ (2g − 1 + (g − 2) − 2(r − 1)) + 4(r − 3)
= 3g + 2r − 13

implying 10 ≤ g ≤ 2r + 2 ≤ 10 and hence (g, r) = (10, 4). If (g, r) =
(10, 4), by the Castelnuovo genus bound one has g = 10 ≤ π(10, 4) = 9,
a contradiction. Therefore it follows that a general element of W∨ is not
compunded.

(b) Suppose that the moving part of a general element of W∨ is very ample
and let b be the degree of the base locus of a general element of W∨. By
Proposition 1.4(a), we have

4g − 15 ≤ dim G ≤ dim W + dimG(3, r) = dim W∨ + 4(r − 3)
≤ (3(g − 2) + g + 1 − 5(r − 1) − 2b) + 4(r − 3)
= 4g − r − 2b − 12,

implying r = 3 and b = 0. Therefore a general element of W∨ ⊂ Wr−1
g−2 is

a smooth plane curve C of degree g − 2 equipped with a base-point-free
and very ample g2g−2. However the equality g = pa(C) = (g−3)(g−4)

2 does
not have an integer solution.

(c) Thus the moving part of a general element (p, E) ∈ W∨ is birationally
very ample on C = ξ−1(p). Applying Proposition 1.4(b), we get

4g − 15 ≤ dim G ≤ dim W + dimG(3, r) = dim W∨ + 4(r − 3)
≤ (3(g − 2) + g − 1 − 4(r − 1) − 2b) + 4(r − 3)
= 4g − 15 − 2b,

implying b = 0, i.e. E is base-point-free, birationally very ample, and

dim W = dimW∨ = 4g − 4r − 3. (2.1)
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We finally claim that r = 3. Suppose that r = 4. By (2.1) we have dim W∨ =
4g − 19. We consider the following diagram.

W2
g−4 ×

M
W2

q−→ W2
g−2

⏐

⏐

�

π

W2
g−4

where q(E ′,OC(R + S)) = E ′ ⊗ OC(R + S) and π(E ′,OC(R + S)) = E ′. Since
a general element (p, E) ∈ W∨ ⊂ W3

g−2 ⊂ W2
g−2 is birationally very am-

ple and base-point-free (which can never be very ample by semi-continuity),
q−1(E) 	= ∅ for a general (p, E) ∈ W∨. Let Σ be a component of q−1(W∨) such
that q(Σ) = W∨. By the birationality of a general (p, E) ∈ W∨, we see that
dim q−1(E) = 0 and hence

dim Σ = dimW∨ = 4g − 19.

Setting Z := π(Σ) ⊂ W2
g−4, we have the following induced diagram:

W2
g−4 ×

M
W2 ⊃ Σ

q−→ W∨ ⊂ W3
g−2 ⊂ W2

g−2

⏐

⏐

�

π

W2
g−4 ⊃ Z

We now show that dimπ−1(E ′) = 0 for a general (p, E ′) ∈ Z. We choose
(p, E) ∈ W∨ and fix (p, E ′) ∈ Z such that (E ′,OC(R + S)) ∈ q−1(E) for
some R,S ∈ C = ξ−1(p), i.e. E ∼= E ′ ⊗ OC(R + S). Recall that by our initial
setting, ωC ⊗ E−1 = D ∈ W ⊂ W4

g is a very ample line bundle for a general
E ∈ W∨ ⊂ W3

g−2. We also note that the very ample, base-point-free and
complete linear system D = ωC ⊗ E−1 = ωC ⊗ E ′−1 ⊗ OC(−R − S) is a
subsystem of ωC ⊗E ′−1. Hence ωC ⊗E ′−1 is birationally very ample; otherwise
the isomorphism induced by the very ample D on C = ξ−1(p) factors non-
trivially through the morphism induced by ωC ⊗ E ′−1, which is an absurdity.
Therefore by noting that ωC ⊗E ′−1 = g5g+2, there are only finitely many choices
of OC(− ˜R − ˜S)’s such that ωC ⊗ E ′−1 ⊗ OC(− ˜R − ˜S) = g4g ∈ W ⊂ W4

g , i.e.
(E ′,OC( ˜R + ˜S)) ∈ Σ or equivalently E ′ ⊗ OC( ˜R + ˜S) ∈ W∨, which implies
dim π−1(E ′) = 0. By semi-continuity, we have dimπ−1(E ′) = 0 for a general
(p, E ′) ∈ Z and hence

dim Z = dim Σ = 4g − 19.
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The following three possibilities may occur.
(i) A general element of Z ⊂ W2

g−4 is compounded; by Proposition 1.4(c),

4g − 19 = dim Z ≤ (2g − 1 + (g − 4) − 2 · 2) = 3g − 9

which is impossible unless g = 10. However, a curve of genus 10 cannot
have a very ample g410 ∈ W ⊂ W4

g by exactly the same reason when we
were eliminating the possibility (g, r) = (10, 4) in (a).

(ii) An (general) element of Z ⊂ W2
g−4 is very ample; in this case, one has

pa(C) = (g−5)(g−6)
2 = g ≥ 10 and hence g = 10. On the other hand,

a smooth plane curve of degree g − 4 = 6 cannot have a very ample
g410 ∈ W ⊂ W4

g by the same reason as in (i) or (a).
(iii) A general element of Z ⊂ W2

g−4 is birationally very ample; by Proposi-
tion 1.4(b),

4g − 19 = dimZ ≤ (3(g − 4) + g − 1 − 4 · 2) = 4g − 21

which is a contradiction.
Therefore it finally follows that r = 3 and by (2.1), we have

dim G = dim W = dim W∨ = 4g − 15. (2.2)

�

Remark 2.4. As was mentioned earlier, Hrito Iliev proved the irreducibility of
Hg,g,3 for g ≥ 13; cf. [10, Theorem 3.1]. In doing so, he used the fact that G2

d

has a unique component whose general element is birationally very ample on
the correspoinding curve if ρ(d, g, 2) > 0; cf. [2, Theorem 1.1 & Proposition
2.1]. In our proof of Theorem 2.1 we use Lemma 1.3 as well as Lemma (2.3)
instead, which will take care of all the possible cases including the unknown
cases g ≤ 12.

The irreducibility of Hg,g,3 follows easily as an immediate consequence of
Lemma 2.3 together with Lemma 1.3.

Proof of Theorem 2.1. Retaining the same notations as before, let ˜G be the
union of irreducible components G of G3

g whose general element corresponds
to a pair (p,D) such that D is a very ample linear series on C := ξ−1(p). Let
a ˜W∨ be the union of the components W∨ of W2

g−2, where W∨ consists of the
residual series of elements in a component G of G̃. We also let G′ be the union
of irreducible components of G2

g−2 whose general element is a birationally very
ample and base-point-free linear series. We recall that, by Lemma 1.3 and
Proposition 1.1(2), G′ is irreducible and dimG′ = 3(g − 2) + g − 9 = 4g − 15.
By Lemma 2.3 (or (2.2)),

dim W∨ = dim G = 4g − 15 = dimG′. (2.3)

Since a general element of any component W∨ ⊂ ˜W∨ ⊂ W2
g−2 is a base-

point-free, birationally very ample, and complete net by Lemma 2.3, there is
a natural rational map ˜W∨ κ��� G′ with κ(|D|) = D which is clearly injective
on an open subset ˜W∨o of ˜W∨ consisting of those which are base-point-free,
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birationally very ample, and complete nets. Therefore the rational map κ is
dominant by (2.3). We also note that there is a natural rational map G′ ι��� ˜W∨

with ι(D) = |D|, which is an inverse to κ (wherever it is defined). Therefore
it follows that ˜W∨ is birationally equivalent to the irreducible locus G′, hence
˜W∨ is irreducible and so is ˜G. Since Hg,g,3 is a PGL(r + 1) bundle over an
open subset of ˜G, Hg,g,3 is irreducible. �
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