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On discrete universality of the Riemann zeta-function
with respect to uniformly distributed shifts

RENATA MACAITIENE

Abstract. The Voronin universality theorem asserts that a wide class of
analytic functions can be approximated by shifts (s +i7), 7 € R, of the
Riemann zeta-function. In the paper, we obtain a universality theorem
on the approximation of analytic functions by discrete shifts ((s + izgh),
k € N, h > 0, where {zx} C R is such that the sequence {az} with every
real a # 0 is uniformly distributed modulo 1, 1 < zy < k for all k € N
and, for 1 < k, m < N, k # m, the inequality |z —zm| > yy' holds with
yn > 0 satisfying yvxny < N.
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1. Introduction. It is well known [1,4,5,7,11,16,17] that the Riemann zeta-
function ((s), s = o + it, is universal in the Voronin sense, that is, its shifts
C(s+it), T € R, approximate a wide class of analytic functions. For precise
statements of universality theorems, it is convenient to use the following nota-
tion. Denote by K the class of compact subsets of the strip D = {s € C: % <
o < 1} with connected complements, and by Hy(K), K € K, the class of con-
tinuous non-vanishing functions on K which are analytic in the interior of K.
Moreover, let measA and # B stand for the Lebesgue measure of a measurable
set A C R and the cardinality of a set B. Then the universality property of
continuous type for ((s) is described in the following theorem.

Theorem 1.1. Suppose that K € K and f(s) € Ho(K). Then, for every e > 0,

1
liminf — meas {7’ €10, 7] : sup [C(s+iT) — f(s)] < e} > 0.
T—oo T seK
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Thus, the set of shifts {(s + i7) approximating a given analytic function
f(s) € Hy(K) with an accuracy e has a positive lower density.

If 7 takes values from a discrete set, then analogues of Theorem 1.1 are
called discrete universality theorems for {(s). The simplest of them deals with
the set {kh : k € Ng}, Ng = NU {0}, where h > 0 is a fixed number, i.e., 7
takes values from an arithmetic progression.

Theorem 1.2. Suppose that K € K and f(s) € Ho(K). Then, for every h >0
and € > 0,

1
im i <k< : ; — .
1}\1{1:1ng+1#{0_1€_]\[ SSEEK(S—sz‘h) f(s)|<e}>0

Theorem 1.1 is an improved version of the original Voronin theorem obtained
in [17]. The discrete universality for zeta-functions was proposed by A. Reich.
In [15] he obtained a theorem of such a kind for Dedekind zeta-functions. The-
orems 1.1 and 1.2 with a slightly different form of the set K were presented
in [1]. A proof of Theorem 1.1 can be found [7]. Theorem 1.2 was extended
in [3] for the sequence {k“h : k € Ny} with a fixed a, 0 < o < 1. For this,
the uniform distribution modulo 1 of the sequence {k* : k € No} was applied.
We recall that the sequence {z; : £ € N} C R is called uniformly distributed
modulo 1 if, for every I = [a,b) C [0, 1),

1l
Jom ; X1 ({z}) = length(1),

where x7 is the indicator function of the interval I, and {u} denotes the frac-
tional part of u € R.

The aim of this paper is a generalization of the mentioned theorem from
[3]. In what follows, we suppose that N — oo. We consider the class X of
sequences {z : k € N} C R satisfying the following hypotheses:

1. {axy} is uniformly distributed modulo 1 for all real a # 0;
2. 1<z <kforal k € N;
3. for 1 <k, m < N, k # m, the inequality

1
Tk — | > —
YN
holds with yy > 0 satisfying yyxny < V.

Theorem 1.3. Suppose that the sequence {x) : k € N} € X. Let K € K and
f(s) € Hy(K). Then, for every h >0 and € > 0,

1
liminf —# {1 <k <N :sup|C(s+izxph)— f(s)] < e} > 0.
N—oo N sEK

As it was noted above, the functions of the class Hy(K), K € K, can be
approximated by shifts (s + ik®h) with 0 < o < 1 and h > 0 [3]. We observe
that the sequence {k®}, 0 < o < 1, is an element of the class X.
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Really, the sequence {ak®} is uniformly distributed modulo 1 (Exercise 3.10
in [6]). Moreover, it is not difficult to see that, for 1 <k < N —1,

(k+1)% — ko > 2]{%
Therefore, in this case, we can take yy = 5x7=s. Thus, Theorem 5 of [3] is a
particular case of Theorem 1.3.

The properties of the sequence {k“}, 0 < o < 1, were also applied in [9],
where a joint discrete universality theorem for Dirichlet L-functions L(s,x)
was obtained. Denote by P the set of all prime numbers. Assuming that the
set

{(h1logp: p€P),...,(h-logp: p€P)},

hy >0, ..., h,. > 0, is linearly independent over the field of rational numbers,
it was proved (9] that if K; € IC and f;(s) € Ho(K;), j = 1,...,r, then, for
every € > 0,

1
lgninfﬁ# {1 <EkE<N: sup sup |L(s+ik“hj,x;) — fi(s)] < e} > 0.

1<j<rsekK;

It is also known [6] that the sequence {ak?t log™ k} with 0 < 3, < 1 and
(B2 > 0 is uniformly distributed modulo 1 for all real a # 0. In [10], a discrete
universality theorem for the periodic Hurwitz zeta-function

4(870[;0'):2(771@_'_77”4&)57 O'>1,

m=0

where a = {a,,} is a periodic sequence of complex numbers, and 0 < a < 1
is a fixed parameter, on the approximation of analytic functions by shifts
C(s + ihk5 logﬁ 2 k, a; a) was proved. Properties of elementary functions show
that, for 2 < k< N — 1,

clog® N

B1 B2 _ 1B B2 ehs Ay
(k+1)7 log™(k+ 1) — kPt log™ k > NiA

with some ¢ > 0. Therefore, {k% logﬂ"’ k}eXwith0< p <1, 82 >0.

We note that at the moment many universality theorems for various zeta-
functions are known. In our opinion, the above remarks suggest that the results
of [9,10], and of other works can be generalized in accordance with Theo-
rem 1.3. Recently, very interesting results in this direction were obtained by L.
Parikowski [14]. Among other important results, he proved the following joint

discrete universality theorem for Dirichlet L-functions. Assume that x1,..., Xn
are arbitrary Dirichlet characters, a1, ...,a, € R, aq,...,a, non-negative real
numbers and, by, ..., b, such that

= R if aj ¢ Z,
J (—00,0]U (1,400) ifa; €N,
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and aj # ap or bj # by if k# j. Let K € K and fi1,..., f, € Ho(K). Then, for

every € > 0,
<e} > 0.

We observe that the author does not require that the characters xi1,...,xn
would be pairwise non-equivalent, that is, he proved joint universality theorems
for dependent L-functions.

_ < k< . iy J _ f
1}\1}1 inf —# {2 k<N 1I£lja<Xn Isneax L(s + za]k log™ k, X) J (5)

2. Probabilistic model. Denote by B(X) the Borel o-field of the space X.
Consider the set
Q= H Tp>
p

where 7, = {s € C: |s| = 1} for all primes p. The infinite-dimensional torus
Q, with the product topology and operation of pointwise multiplication, is
a compact topological Abelian group. Therefore, on (€2, B(2)), the probabi-
lity Haar measure my can be defined, and we obtain the probability space
(2, B(2),mp). Denote by w(p) the projection of an element w € Q to the

circle 7,, and define
wip)) ™
C(s,w) = H (1 - S) .
» p

Then it is proved [7] that the infinite product over primes converges uniformly
on compact subsets of the strip D for almost all w € Q. Therefore, denoting
by H(D) the space of analytic functions on D endowed with the topology of
uniform convergence on compacta, we have that {(s,w) is the H(D)-valued
random element defined on the probability space (Q, B(Q2), my). Let P; be
the distribution of ((s,w), i.e.,

Pr(A)=mp(weQ:{(s,w) € A), AeB(H(D)).
The aim of this section is the following limit theorem.

Theorem 2.1. Suppose that {xy, : k € N} € X. Then, for every h > 0,

def 1
N
converges weakly to Pe as N — oo.

Py (A) #{1<k<N:((s+izph) € A}, Ae B(H(D)),

The main ingredient of the proof of Theorem 2.1 is a limit theorem on the
torus 2. Define

Qn(A) = %#{1 <k<N:(p™h:peP)e A}, AcBE).

Lemma 2.2. Suppose that the sequence {axy} with every real a # 0 is uniformly
distributed modulo 1. Then, for every h > 0, QN converges weakly to the Haar
measure myg as N — oo.
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Proof. The Weyl criterion is a powerful tool for checking that a sequence is
uniformly distributed modulo 1. This criterion says [6] that a sequence {z;} is
uniformly distributed modulo 1 if and only if, for every m € Z\{0},

1 o0
lim — E e2miEm — (),
n—oo N
k=1

To prove Lemma 2.2, we consider the Fourier transform gy (k), k = (kp © kp
€ Z, p € P). It is well known that

1Y _
i = [Tl = 3T
Q P

k=1 p

N
1
= NZeXp{—ixkthp logp} , (2.1)
k=1 P
where only a finite number of integers k, are distinct from zero. Obviously, if
k =0, then
on (k) = 1. (2.2)

It is well known that the logarithms of prime numbers are linearly independent
over the field of rational numbers. Therefore, if k # 0, then

kalogp #0.
P

Thus, by hypothesis 1 for the class X, we have that, in the case k # 0, the
sequence

1
{—%xkh; kp logp}

is uniformly distributed modulo 1. Hence, in view of the Weyl criterion,

N
. 1 .
J\}gr})oﬁ E exp{—mkh E kplogp} =0.
k=1 p
This, (2.1), and (2.2) show that

| {1 i k=0,
NlinoogN(k){o itk #0. (2:3)

Since the right-hand side of (2.3) is the Fourier transform of the Haar measure
my, the lemma follows by a continuity theorem for probability measures on
compact groups. O

The next step of the proof of Theorem 2.1 is a limit theorem for absolutely
convergent Dirichlet series. Let 6 > % be a fixed number, and, for m,n € N,

v (m) :exp{— (’:)0}
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Define
zoo: Un(m)
Cn(s) :m:l ms :

Then the series for (,(s) is absolutely convergent for ¢ > % [7]. For A €
B(H(D)), define

Prn(A) = 5# (L SE < N: Guls +imeh) € A,

and consider the weak convergence of Py, as N — oo.
We take the function u, : Q@ — H(D) defined by the formula

Z U (m)w(m)

Up (W) = e

)
m=1

where w(p) is extended to the set N by the formula
w(m) = H Wl(p), meN.

p'|m
p'tHm
Since the series for ¢,(s) is absolutely convergent for o > %, we have that the
function u,, is a continuous one. These remarks together with Lemma 2.2 and
standard arguments give the following limit theorem.

Lemma 2.3. Suppose that the sequence {axy} with every real a # 0 is uniformly
distributed modulo 1. Then Py, converges weakly to the measure P, = mHu;1

as N — oo. The measure P, is defined by ﬁn(A) =my (u,'A), A € B(H(D)).

The most complicated part of the proof of Theorem 2.1 consists of the
arguments which allow to pass from (,(s) to {(s). For this, other assumptions
on the class X will be applied. We start with discrete moments of the Riemann
zeta-function. First, we recall the Gallagher lemma which relates discrete and
continuous mean squares of continuous functions.

Lemma 2.4. Let Ty and T > § > 0 be real numbers, and T be a finite set in
the interval [Ty + 3, Ty + T — §]. Define

Ns(z)= > 1,

teT
[t—z| <o

and let S(x) be a complex-valued continuous function on [Ty, T + Ty] having a
continuous derivative on (To, T + Tpy). Then

To+T To+T To+T 3
1
SN OISO <5 [ Is@Pde+ ([ S@Pd [ 5@
teT To To To

The proof of the lemma can be found in [13, Lemma 1.4.].
Denote by p(g1,92) the metric in H(D) which induces its topology of uni-
form convergence on compacta, see [7].
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Lemma 2.5. Suppose that {x} € X. Then, for every h > 0,
N

lim lim sup % Z p (C(s +ixgh), Cu(s +ixrh)) = 0.

n—0 N_oo =1

Proof. By hypothesis 3 of the class X, we find with § = yiN that

N

Ns(xp) = Z 1=1.

m=1

Tp—Tm | <
|z —zml N

Therefore, taking into account the well-known estimates, for a fixed o € (%, 1),

T
/|g(a +it)?dt = O(T)
and
/ (o + i) dt = O(T),

we find using Lemma 2.4 and hypotheses 2 and 3 of the class X, that, for
1

s<o<l1

2 k)

a:Nh

N
> [¢(o +izph 4+ it) 2 < 2 / 1¢(o + it +it) 2T
k=1

Zlh

zNh :ENh %
T |§(U+i7+it)|2dr/|§'(a+i7’+it)|2d7'
:Elh
mlh

< W (znh+|t) + anh+ |t < yvey +ynlt] < N(@+[E). (24)
Now let K be an arbitrary compact subset of D. Then, using estimate (2.4) and

applying the contour integration, we find similarly to the proof of Theorem 4.1
of [8] that

N
1
lim limsup — Z sup |((s + izrh) — Cn(s +ixzih)| = 0.

n—o0 N—-co Ly SEK

This and the definition of the metric p prove the lemma. O

Proof of Theorem 2.1. On a certain probability space (ﬁ, F, i), define the ran-

dom variable ny by the formula
1
p(ny = zih) = N’ k=1,...,N.
Let Xy, be the H(D)-valued random element given by

XN,n — XN,n<s) = Cn(s + Z’77N)7
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and let X, be the H(D)-valued random element with the distribution P,,
where P, is defined in Lemma 2.3. Then, using the convergence in distribution,
we have by Lemma 2.3 that

Xy ——— X, (2.5)

~

Next we consider the family of probability measures {Pn :neN }, and

prove its tightness. Indeed, using the absolute convergence of the series for
Cn(s), we find that, for o > 3,

(oo}
1
sup lim sup — /|Cn (o +it)|” dt—supz m) < Z < C < oo.

neN T—oo nEN mQU m—1 m2°

This, Lemma 2.4, and the Cauchy inequality yield the bound
N

suphmsuprKn (0 +izph)| < Cp < 0
neN N—-oo =1

for o > % Therefore, the integral Cauchy formula implies the bound

N

sup lim sup — Z sup | (s +izph)| < By, (2.6)
neEN N—oo 1 SE€K;

where {K; : | € N} is a sequence of compact subsets of D such that

D:Dm
=1

K; C Kj41, and if K C D is a compact, then K C K for some [. The sequence
{K,} occurs in the definition of the metric p.

Let € > 0 be an arbitrary fixed number, and M; = Bje~'2!. Then, in view
of (2.6), we have that, for all n € N,

lim sup p <sup | XN n(s)| > Ml>
N —o00 seK;

1
= limsup —# {1 <k < N:sup |C(s+izgh)| > Ml}
N —o00 N seK;

€

Z sup |Cn(s +izgh)| < =
N —o00 SEK[ 2
for I € N. Therefore, by (2.5),
N €
1 (sup Xn(s)’ > Ml) < ol (2.7)
seK;

for all n € N and [ € N. Now let

K=K(e) = {geH(D): Ss;u};{) lg(s)| < M, 1 GN}.
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Then the set K is compact in H (D), and, by (2.7),
w(Xp(s) e K)>1—c¢

for all n € N. In other words, ﬁn(K) > 1—e for all n € N. Thus, the tightness
of {P,} is proved.
The tightness of {P } 1mphes its relative compactness. Therefore, there

exists a sequence {Pm} C {P,} such that P, converges weakly to a certain
probability measure P on (H(D),B(H(D)) as | — oco. In other words,

an 2.p (2.8)

l—o00
Define one more H(D)-valued random element Xy = Xn(s) = ((s + inn).
Then, using Lemma 2.5, we obtain that, for every € > 0,
hm limsup p (p (Xn(8), Xnn(s)) > €)
n—oo N

—00
N

< lim hmsup—z,o (s +izkh), Co(s +ixgh)) = 0. (2.9)

1T Neeo k=1
Now an application of [2, Theorem 4.2] and (2.5), (2.8), and (2.9) lead to
Xy —2— P. (2.10)

This means that Py converges weakly to P as N — oo. On the other hand,
(2.10) shows that the limit measure P is independent on the sequence {P,, }.
Therefore,

X, -2 p

~

i.e., P, converges weakly to P as n — oo.
In [7], it was proved that

1 meas {7 €[0,T]:{(s+ir) e A}, AeB(H(D)),

T
as T — oo, also converges weakly to the limit measure P of ﬁn, and that
P = P¢. Therefore, Py converges weakly to Pr as N — oo. O

3. Proof of Theorem 1.3. We recall the Mergelyan theorem on the approxi-
mation of analytic functions by polynomials [12].

Lemma 3.1. Let K C D be a compact set with connected complement, and f(s)
be a continuous function on K which is analytic in the interior of K. Then,
for every e > 0, there exists a polynomial p(s) such that

sup [g(s) —p(s)| <e.

seK
Proof of Theorem 1.3. By Lemma 3.1, there exists a polynomial p(s) such
that

sup ‘f — eP(5)
seK

< % (3.1)
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In [7], it is obtained that the support of the measure P is the set {g € H(D) :
g(s) £ 0or g(s) =0}. Let
<<
5 ("

G= {g € H(D) : sup ‘g(s) — el
seEK

Since eP(*) #£ 0, we have that G is an open neighborhood of an element of

the support of P. Therefore, P:(G) > 0. Hence, in view of Theorem 2.1 and

Theorem 2.1 of [2],

I%ninf%#{l < k< N:C(s+ixph) € G} > P(G) > 0.

This and the definition of the set G give the inequality

1 €
im i _ < k< .S 1 _ oP(s) — .
1}\rfrllng#{1_k_N Sbél[}? C(s+ixph) —e <2}>O
Combining this with (3.1) completes the proof of the theorem. O
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