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On discrete universality of the Riemann zeta-function
with respect to uniformly distributed shifts

Renata Macaitienė

Abstract. The Voronin universality theorem asserts that a wide class of
analytic functions can be approximated by shifts ζ(s + iτ), τ ∈ R, of the
Riemann zeta-function. In the paper, we obtain a universality theorem
on the approximation of analytic functions by discrete shifts ζ(s+ ixkh),
k ∈ N, h > 0, where {xk} ⊂ R is such that the sequence {axk} with every
real a �= 0 is uniformly distributed modulo 1, 1 ≤ xk ≤ k for all k ∈ N

and, for 1 ≤ k, m ≤ N , k �= m, the inequality |xk −xm| ≥ y−1
N holds with

yN > 0 satisfying yNxN � N .
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1. Introduction. It is well known [1,4,5,7,11,16,17] that the Riemann zeta-
function ζ(s), s = σ + it, is universal in the Voronin sense, that is, its shifts
ζ(s + iτ), τ ∈ R, approximate a wide class of analytic functions. For precise
statements of universality theorems, it is convenient to use the following nota-
tion. Denote by K the class of compact subsets of the strip D = {s ∈ C : 1

2 <
σ < 1} with connected complements, and by H0(K), K ∈ K, the class of con-
tinuous non-vanishing functions on K which are analytic in the interior of K.
Moreover, let measA and #B stand for the Lebesgue measure of a measurable
set A ⊂ R and the cardinality of a set B. Then the universality property of
continuous type for ζ(s) is described in the following theorem.

Theorem 1.1. Suppose that K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1
T

meas
{

τ ∈ [0, T ] : sup
s∈K

|ζ(s + iτ) − f(s)| < ε

}
> 0.
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Thus, the set of shifts ζ(s + iτ) approximating a given analytic function
f(s) ∈ H0(K) with an accuracy ε has a positive lower density.

If τ takes values from a discrete set, then analogues of Theorem 1.1 are
called discrete universality theorems for ζ(s). The simplest of them deals with
the set {kh : k ∈ N0}, N0 = N ∪ {0}, where h > 0 is a fixed number, i.e., τ
takes values from an arithmetic progression.

Theorem 1.2. Suppose that K ∈ K and f(s) ∈ H0(K). Then, for every h > 0
and ε > 0,

lim inf
N→∞

1
N + 1

#
{

0 ≤ k ≤ N : sup
s∈K

|ζ(s + ikh) − f(s)| < ε

}
> 0.

Theorem 1.1 is an improved version of the original Voronin theorem obtained
in [17]. The discrete universality for zeta-functions was proposed by A. Reich.
In [15] he obtained a theorem of such a kind for Dedekind zeta-functions. The-
orems 1.1 and 1.2 with a slightly different form of the set K were presented
in [1]. A proof of Theorem 1.1 can be found [7]. Theorem 1.2 was extended
in [3] for the sequence {kαh : k ∈ N0} with a fixed α, 0 < α < 1. For this,
the uniform distribution modulo 1 of the sequence {kα : k ∈ N0} was applied.
We recall that the sequence {zk : k ∈ N} ⊂ R is called uniformly distributed
modulo 1 if, for every I = [a, b) ⊂ [0, 1),

lim
n→∞

1
n

n∑
k=1

χI ({zk}) = length(I),

where χI is the indicator function of the interval I, and {u} denotes the frac-
tional part of u ∈ R.

The aim of this paper is a generalization of the mentioned theorem from
[3]. In what follows, we suppose that N → ∞. We consider the class X of
sequences {xk : k ∈ N} ⊂ R satisfying the following hypotheses:

1. {axk} is uniformly distributed modulo 1 for all real a �= 0;
2. 1 ≤ xk ≤ k for all k ∈ N;
3. for 1 ≤ k, m ≤ N , k �= m, the inequality

|xk − xm| ≥ 1
yN

holds with yN > 0 satisfying yNxN 
 N .

Theorem 1.3. Suppose that the sequence {xk : k ∈ N} ∈ X. Let K ∈ K and
f(s) ∈ H0(K). Then, for every h > 0 and ε > 0,

lim inf
N→∞

1
N

#
{

1 ≤ k ≤ N : sup
s∈K

|ζ(s + ixkh) − f(s)| < ε

}
> 0.

As it was noted above, the functions of the class H0(K), K ∈ K, can be
approximated by shifts ζ(s + ikαh) with 0 < α < 1 and h > 0 [3]. We observe
that the sequence {kα}, 0 < α < 1, is an element of the class X.
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Really, the sequence {akα} is uniformly distributed modulo 1 (Exercise 3.10
in [6]). Moreover, it is not difficult to see that, for 1 ≤ k ≤ N − 1,

(k + 1)α − kα ≥ α

2N1−α
.

Therefore, in this case, we can take yN = α
2N1−α . Thus, Theorem 5 of [3] is a

particular case of Theorem 1.3.
The properties of the sequence {kα}, 0 < α < 1, were also applied in [9],

where a joint discrete universality theorem for Dirichlet L-functions L(s, χ)
was obtained. Denote by P the set of all prime numbers. Assuming that the
set

{(h1 log p : p ∈ P), . . . , (hr log p : p ∈ P)},

h1 > 0, . . . , hr > 0, is linearly independent over the field of rational numbers,
it was proved [9] that if Kj ∈ K and fj(s) ∈ H0(Kj), j = 1, . . . , r, then, for
every ε > 0,

lim inf
N→∞

1
N

#

{
1 ≤ k ≤ N : sup

1≤j≤r
sup
s∈Kj

|L(s + ikαhj , χj) − fj(s)| < ε

}
> 0.

It is also known [6] that the sequence {akβ1 logβ2 k} with 0 < β1 < 1 and
β2 > 0 is uniformly distributed modulo 1 for all real a �= 0. In [10], a discrete
universality theorem for the periodic Hurwitz zeta-function

ζ(s, α; a) =
∞∑

m=0

am

(m + α)s
, σ > 1,

where a = {am} is a periodic sequence of complex numbers, and 0 < α < 1
is a fixed parameter, on the approximation of analytic functions by shifts
ζ(s + ihkβ1 logβ2 k, α; a) was proved. Properties of elementary functions show
that, for 2 ≤ k ≤ N − 1,

(k + 1)β1 logβ2(k + 1) − kβ1 logβ2 k ≥ c logβ2 N

N1−β1
.

with some c > 0. Therefore, {kβ1 logβ2 k} ∈ X with 0 < β1 < 1, β2 > 0.
We note that at the moment many universality theorems for various zeta-

functions are known. In our opinion, the above remarks suggest that the results
of [9,10], and of other works can be generalized in accordance with Theo-
rem 1.3. Recently, very interesting results in this direction were obtained by �L.
Pańkowski [14]. Among other important results, he proved the following joint
discrete universality theorem for Dirichlet L-functions. Assume that χ1, . . . , χn

are arbitrary Dirichlet characters, α1, . . . , αn ∈ R, a1, . . . , an non-negative real
numbers and, b1, . . . , bn such that

bj ∈
{
R if aj �∈ Z,
(−∞, 0] ∪ (1,+∞) if aj ∈ N,
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and aj �= ak or bj �= bk if k �= j. Let K ∈ K and f1, . . . , fn ∈ H0(K). Then, for
every ε > 0,

lim inf
N→∞

1
N

#
{

2 ≤ k≤N : max
1≤j≤n

max
s∈K

∣∣∣L(s + iαjk
aj logbj k, χ) − fj(s)

∣∣∣ <ε

}
> 0.

We observe that the author does not require that the characters χ1, . . . , χn

would be pairwise non-equivalent, that is, he proved joint universality theorems
for dependent L-functions.

2. Probabilistic model. Denote by B(X) the Borel σ-field of the space X.
Consider the set

Ω =
∏
p

γp,

where γp = {s ∈ C : |s| = 1} for all primes p. The infinite-dimensional torus
Ω, with the product topology and operation of pointwise multiplication, is
a compact topological Abelian group. Therefore, on (Ω,B(Ω)), the probabi-
lity Haar measure mH can be defined, and we obtain the probability space
(Ω,B(Ω),mH). Denote by ω(p) the projection of an element ω ∈ Ω to the
circle γp, and define

ζ(s, ω) =
∏
p

(
1 − ω(p)

ps

)−1

.

Then it is proved [7] that the infinite product over primes converges uniformly
on compact subsets of the strip D for almost all ω ∈ Ω. Therefore, denoting
by H(D) the space of analytic functions on D endowed with the topology of
uniform convergence on compacta, we have that ζ(s, ω) is the H(D)-valued
random element defined on the probability space (Ω,B(Ω),mH). Let Pζ be
the distribution of ζ(s, ω), i.e.,

Pζ(A) = mH (ω ∈ Ω : ζ(s, ω) ∈ A) , A ∈ B(H(D)).

The aim of this section is the following limit theorem.

Theorem 2.1. Suppose that {xk : k ∈ N} ∈ X. Then, for every h > 0,

PN (A)
def
=

1
N

# {1 ≤ k ≤ N : ζ(s + ixkh) ∈ A} , A ∈ B(H(D)),

converges weakly to Pζ as N → ∞.

The main ingredient of the proof of Theorem 2.1 is a limit theorem on the
torus Ω. Define

QN (A) =
1
N

#{1 ≤ k ≤ N : (p−ixkh : p ∈ P) ∈ A}, A ∈ B(Ω).

Lemma 2.2. Suppose that the sequence {axk} with every real a �= 0 is uniformly
distributed modulo 1. Then, for every h > 0, QN converges weakly to the Haar
measure mH as N → ∞.
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Proof. The Weyl criterion is a powerful tool for checking that a sequence is
uniformly distributed modulo 1. This criterion says [6] that a sequence {zk} is
uniformly distributed modulo 1 if and only if, for every m ∈ Z\{0},

lim
n→∞

1
n

∞∑
k=1

e2πizkm = 0.

To prove Lemma 2.2, we consider the Fourier transform gN (k), k = (kp : kp

∈ Z, p ∈ P). It is well known that

gN (k) =
∫
Ω

∏
p

ωkp(p)dQN =
1
N

N∑
k=1

∏
p

p−ixkkph

=
1
N

N∑
k=1

exp

{
−ixkh

∑
p

kp log p

}
, (2.1)

where only a finite number of integers kp are distinct from zero. Obviously, if
k = 0, then

gN (k) = 1. (2.2)

It is well known that the logarithms of prime numbers are linearly independent
over the field of rational numbers. Therefore, if k �= 0, then∑

p

kp log p �= 0.

Thus, by hypothesis 1 for the class X, we have that, in the case k �= 0, the
sequence {

− 1
2π

xkh
∑

p

kp log p

}

is uniformly distributed modulo 1. Hence, in view of the Weyl criterion,

lim
N→∞

1
N

N∑
k=1

exp

{
−ixkh

∑
p

kp log p

}
= 0.

This, (2.1), and (2.2) show that

lim
N→∞

gN (k) =
{

1 if k = 0,
0 if k �= 0. (2.3)

Since the right-hand side of (2.3) is the Fourier transform of the Haar measure
mH , the lemma follows by a continuity theorem for probability measures on
compact groups. �

The next step of the proof of Theorem 2.1 is a limit theorem for absolutely
convergent Dirichlet series. Let θ > 1

2 be a fixed number, and, for m,n ∈ N,

vn(m) = exp
{

−
(m

n

)θ
}

.
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Define

ζn(s) =
∞∑

m=1

vn(m)
ms

.

Then the series for ζn(s) is absolutely convergent for σ > 1
2 [7]. For A ∈

B(H(D)), define

PN,n(A) =
1
N

# {1 ≤ k ≤ N : ζn(s + ixkh) ∈ A} ,

and consider the weak convergence of PN,n as N → ∞.
We take the function un : Ω → H(D) defined by the formula

un(ω) =
∞∑

m=1

vn(m)ω(m)
ms

,

where ω(p) is extended to the set N by the formula

ω(m) =
∏
pl|m

pl+1
�m

ωl(p), m ∈ N.

Since the series for ζn(s) is absolutely convergent for σ > 1
2 , we have that the

function un is a continuous one. These remarks together with Lemma 2.2 and
standard arguments give the following limit theorem.

Lemma 2.3. Suppose that the sequence {axk} with every real a �= 0 is uniformly
distributed modulo 1. Then PN,n converges weakly to the measure P̂n = mHu−1

n

as N → ∞. The measure P̂n is defined by P̂n(A) = mH

(
u−1

n A
)
, A ∈ B(H(D)).

The most complicated part of the proof of Theorem 2.1 consists of the
arguments which allow to pass from ζn(s) to ζ(s). For this, other assumptions
on the class X will be applied. We start with discrete moments of the Riemann
zeta-function. First, we recall the Gallagher lemma which relates discrete and
continuous mean squares of continuous functions.

Lemma 2.4. Let T0 and T ≥ δ > 0 be real numbers, and T be a finite set in
the interval [T0 + δ

2 , T0 + T − δ
2 ]. Define

Nδ(x) =
∑
t∈T

|t−x|<δ

1,

and let S(x) be a complex-valued continuous function on [T0, T + T0] having a
continuous derivative on (T0, T + T0). Then

∑
t∈T

N−1
δ (t)|S(t)|2 ≤ 1

δ

T0+T∫
T0

|S(x)|2dx +

⎛
⎝

T0+T∫
T0

|S(x)|2dx

T0+T∫
T0

|S′(x)|2dx

⎞
⎠

1
2

.

The proof of the lemma can be found in [13, Lemma 1.4.].
Denote by ρ(g1, g2) the metric in H(D) which induces its topology of uni-

form convergence on compacta, see [7].
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Lemma 2.5. Suppose that {xk} ∈ X. Then, for every h > 0,

lim
n→∞

lim sup
N→∞

1
N

N∑
k=1

ρ (ζ(s + ixkh), ζn(s + ixkh)) = 0.

Proof. By hypothesis 3 of the class X, we find with δ = 1
yN

that

Nδ(xk) =
N∑

m=1

|xk−xm|< 1
yN

1 = 1.

Therefore, taking into account the well-known estimates, for a fixed σ ∈
(

1
2 , 1

)
,

T∫
1

|ζ(σ + it)|2 dt = O(T )

and
T∫

1

|ζ ′(σ + it)|2 dt = O(T ),

we find using Lemma 2.4 and hypotheses 2 and 3 of the class X, that, for
1
2 < σ < 1,

N∑
k=1

|ζ(σ + ixkh + it)|2 ≤ yN

h

xN h∫
x1h

|ζ(σ + iτ + it)|2dτ

+

⎛
⎝xN h∫

x1h

|ζ(σ + iτ + it)|2dτ

xN h∫
x1h

|ζ ′(σ + iτ + it)|2dτ

⎞
⎠

1
2


 yN

h (xNh + |t|) + xNh + |t| 
 yNxN + yN |t| 
 N (1 + |t|) . (2.4)

Now let K be an arbitrary compact subset of D. Then, using estimate (2.4) and
applying the contour integration, we find similarly to the proof of Theorem 4.1
of [8] that

lim
n→∞

lim sup
N→∞

1
N

N∑
k=1

sup
s∈K

|ζ(s + ixkh) − ζn(s + ixkh)| = 0.

This and the definition of the metric ρ prove the lemma. �

Proof of Theorem 2.1. On a certain probability space (Ω̂,F , μ), define the ran-
dom variable ηN by the formula

μ(ηN = xkh) =
1
N

, k = 1, . . . , N.

Let XN,n be the H(D)-valued random element given by

XN,n = XN,n(s) = ζn(s + iηN ),
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and let X̂n be the H(D)-valued random element with the distribution P̂n,
where P̂n is defined in Lemma 2.3. Then, using the convergence in distribution,
we have by Lemma 2.3 that

XN,n
D−−−−→

N→∞
X̂n, (2.5)

Next we consider the family of probability measures
{

P̂n : n ∈ N

}
, and

prove its tightness. Indeed, using the absolute convergence of the series for
ζn(s), we find that, for σ > 1

2 ,

sup
n∈N

lim sup
T→∞

1
T

T∫
1

|ζn(σ + it)|2 dt = sup
n∈N

∞∑
m=1

v2
n(m)
m2σ

≤
∞∑

m=1

1
m2σ

≤ C < ∞.

This, Lemma 2.4, and the Cauchy inequality yield the bound

sup
n∈N

lim sup
N→∞

1
N

N∑
k=1

|ζn(σ + ixkh)| ≤ C1 < ∞

for σ > 1
2 . Therefore, the integral Cauchy formula implies the bound

sup
n∈N

lim sup
N→∞

1
N

N∑
k=1

sup
s∈Kl

|ζn(s + ixkh)| ≤ Bl, (2.6)

where {Kl : l ∈ N} is a sequence of compact subsets of D such that

D =
∞⋃

l=1

Kl,

Kl ⊂ Kl+1, and if K ⊂ D is a compact, then K ⊂ Kl for some l. The sequence
{Kl} occurs in the definition of the metric ρ.

Let ε > 0 be an arbitrary fixed number, and Ml = Blε
−12l. Then, in view

of (2.6), we have that, for all n ∈ N,

lim sup
N→∞

μ

(
sup
s∈Kl

|XN,n(s)| > Ml

)

= lim sup
N→∞

1
N

#
{

1 ≤ k ≤ N : sup
s∈Kl

|ζn(s + ixkh)| > Ml

}

≤ lim sup
N→∞

1
NMl

N∑
k=1

sup
s∈Kl

|ζn(s + ixkh)| ≤ ε

2l

for l ∈ N. Therefore, by (2.5),

μ

(
sup
s∈Kl

∣∣∣X̂n(s)
∣∣∣ > Ml

)
≤ ε

2l
(2.7)

for all n ∈ N and l ∈ N. Now let

K = K(ε) =
{

g ∈ H(D) : sup
s∈Kl

|g(s)| ≤ Ml, l ∈ N

}
.
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Then the set K is compact in H(D), and, by (2.7),

μ (Xn(s) ∈ K) ≥ 1 − ε

for all n ∈ N. In other words, P̂n(K) ≥ 1 − ε for all n ∈ N. Thus, the tightness
of {P̂n} is proved.

The tightness of {P̂n} implies its relative compactness. Therefore, there
exists a sequence {P̂nl

} ⊂ {P̂n} such that Pnl
converges weakly to a certain

probability measure P on (H(D),B(H(D)) as l → ∞. In other words,

X̂nl

D−−−→
l→∞

P. (2.8)

Define one more H(D)-valued random element XN = XN (s) = ζ(s + iηN ).
Then, using Lemma 2.5, we obtain that, for every ε > 0,

lim
n→∞

lim sup
N→∞

μ (ρ (XN (s),XN,n(s)) ≥ ε)

≤ lim
n→∞

lim sup
N→∞

1
Nε

N∑
k=1

ρ (ζ(s + ixkh), ζn(s + ixkh)) = 0. (2.9)

Now an application of [2, Theorem 4.2] and (2.5), (2.8), and (2.9) lead to

XN
D−−−−→

N→∞
P. (2.10)

This means that PN converges weakly to P as N → ∞. On the other hand,
(2.10) shows that the limit measure P is independent on the sequence {Pnl

}.
Therefore,

X̂n
D−−−−→

n→∞
P,

i.e., P̂n converges weakly to P as n → ∞.
In [7], it was proved that

1
T

meas {τ ∈ [0, T ] : ζ(s + iτ) ∈ A} , A ∈ B(H(D)),

as T → ∞, also converges weakly to the limit measure P of P̂n, and that
P = Pζ . Therefore, PN converges weakly to Pζ as N → ∞. �

3. Proof of Theorem 1.3. We recall the Mergelyan theorem on the approxi-
mation of analytic functions by polynomials [12].

Lemma 3.1. Let K ⊂ D be a compact set with connected complement, and f(s)
be a continuous function on K which is analytic in the interior of K. Then,
for every ε > 0, there exists a polynomial p(s) such that

sup
s∈K

|g(s) − p(s)| < ε.

Proof of Theorem 1.3. By Lemma 3.1, there exists a polynomial p(s) such
that

sup
s∈K

∣∣∣f(s) − ep(s)
∣∣∣ <

ε

2
. (3.1)
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In [7], it is obtained that the support of the measure Pζ is the set {g ∈ H(D) :
g(s) �= 0 or g(s) ≡ 0}. Let

G =
{

g ∈ H(D) : sup
s∈K

∣∣∣g(s) − ep(s)
∣∣∣ <

ε

2

}
.

Since ep(s) �= 0, we have that G is an open neighborhood of an element of
the support of Pζ . Therefore, Pζ(G) > 0. Hence, in view of Theorem 2.1 and
Theorem 2.1 of [2],

lim inf
N→∞

1
N

# {1 ≤ k ≤ N : ζ(s + ixkh) ∈ G} ≥ Pζ(G) > 0.

This and the definition of the set G give the inequality

lim inf
N→∞

1
N

#
{

1 ≤ k ≤ N : sup
s∈K

∣∣∣ζ(s + ixkh) − ep(s)
∣∣∣ <

ε

2

}
> 0.

Combining this with (3.1) completes the proof of the theorem. �
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Šiauliai, LT 76351,
Lithuania
e-mail: renata.macaitiene@su.lt

Received: 14 July 2016

http://arxiv.org/abs/1604.04396

	On discrete universality of the Riemann zeta-function  with respect to uniformly distributed shifts
	Abstract
	1. Introduction
	2. Probabilistic model
	3. Proof of Theorem 1.3
	References




