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A rational reciprocity law over function fields

Yoshinori Hamahata

Abstract. In the classical case, reciprocity laws for power residue symbols
are called rational, which means that the power residue symbols only
assume the values ±1 and have entries in Z. We establish a rational
reciprocity law over function fields.
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1. Introduction. Let us recall the reciprocity laws for power residue symbols
in Z. For distinct odd primes p and q, let

(
p
q

)
k

be the k-th power residue
symbol. For the quadratic residue symbol, it is well known that

(
p

q

)

2

(
q

p

)

2

= (−1)(p−1)(q−1)/4.

Next, let p and q be distinct primes such that p ≡ 1 (mod 4) and q ≡ 1 (mod 4).
For such primes, there exist integers a, b, A, and B such that

p = a2 + b2, a ≡ 1 (mod 2), b ≡ 0 (mod 2),
q = A2 + B2, A ≡ 1 (mod 2), B ≡ 0 (mod 2).

Burde [3] proved that if
(

p
q

)
2

=
(

q
p

)
2

= 1, then

(
p

q

)

4

(
q

p

)

4

= (−1)
q−1
4

(
aB − bA

q

)

2

. (1.1)

For another proof for Burde’s reciprocity law, see [5,7,9,14].
Brown [2] posed the problem of finding an octic reciprocity law, which is

analogous to Burde’s reciprocity law, for distinct primes p and q such that
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p ≡ 1 (mod 8) and q ≡ 1 (mod 8). It is known that for such primes, there exist
integers c, d, C, and D such that

p = c2 + 2d2, c ≡ 1 (mod 2), d ≡ 0 (mod 2),
q = C2 + 2D2, C ≡ 1 (mod 2), D ≡ 0 (mod 2).

Williams [13] proved that if
(

p
q

)
4

=
(

q
p

)
4

= 1, then

(
p

q

)

8

(
q

p

)

8

=
(

aB − bA

q

)

4

(
cD − dC

q

)

2

. (1.2)

Note that Helou [5] gave another proof for Williams’ reciprocity law. The
reciprocity laws mentioned above are rational, which means that their power
residue symbols only assume the values ±1 and have entries in Z. For a sur-
vey on rational reciprocity laws, we refer to Lehmer [8]. For other types of
reciprocity laws, we refer to [10].

As in the classical case, we define the k-th power residue symbol in function
fields. Artin [1] established the quadratic reciprocity law, which was stated by
Dedekind [4]. Schmidt [12] proved a more general reciprocity law over function
fields. For the details of reciprocity laws over function fields, we refer to [11]. We
are interested in polynomial rational reciprocity laws, which means that their
power residue symbols only assume the values ±1 and have entries in Fq[T ].
Hsu [6] established a rational quartic reciprocity law, which is an analog of
Burde’s reciprocity law. In this paper, to generalize Hsu’s result, we establish
a rational reciprocity law for the 2n-th power residue symbol in function fields.
Our reciprocity law includes an analog of those of Burde and Williams.

The remainder of this paper is organized as follows. In Section 2, we review
the results on power residue symbols in function fields. In Section 3, we state
the main theorem (Theorem 3). Finally, in Section 4, we prove Theorem 3.

2. Power residue symbols. Let q be a power of an odd prime, and let Fq be
the finite field with q elements.

2.1. Power residue symbols. When discussing power residue symbols, we refer
to [11]. Let r be a positive integer. Take a positive divisor d of q2 −1. First, we
recall the definition of the d-th power residue symbol

(
a
P

)
qr,d

. Let P ∈ Fqr [T ]
be a monic irreducible element of degree 2k, and let a ∈ Fqr [T ]. If P does not
divide a, then let

(
a
P

)
qr,d

be the unique element of Fqr\{0} such that

a
q2k−1

d ≡
( a

P

)
qr,d

(mod P ).

If P divides a, then let
(

a
P

)
qr,d

= 0. When d = 2, this symbol is just like the
Legendre symbol in the classical case. When a ∈ Fqr ,

( a

P

)
qr,d

= a
qr−1

d deg P . (2.1)
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For a non-zero b = βQe1
1 Qe2

2 · · · Qer
r ∈ Fqr [T ] (β ∈ Fqr , Q1, Q2, . . . , Qr ∈ Fqr [T ]

distinct monic irreducible polynomials), we define

(a

b

)
qr,d

=
r∏

i=1

(
a

Qi

)ei

qr,d

.

2.2. Representations of irreducible polynomials. Let P and Q be distinct
monic irreducible polynomials in Fq[T ] such that their degrees are even. Then
P and Q decompose into the product of two distinct monic irreducible poly-
nomials in Fq2 [T ]; in particular,

P = P1P2, P1, P2 ∈ Fq2 [T ], deg P1 = deg P2 =
1
2

deg P,

Q = Q1Q2, Q1, Q2 ∈ Fq2 [T ], deg Q1 = deg Q2 =
1
2

deg Q.

Let σ ∈ Gal
(
Fq2(T )/Fq(T )

)
be the non-trivial automorphism. Set

A1 =
P1 + P2

2
, B1 =

P1 − P2

sgn(P1 − P2)
, A2 =

Q1 + Q2

2
, B2 =

Q1 − Q2

sgn(Q1 − Q2)
,

where sgn(P1 − P2) and sgn(Q1 − Q2) are the leading coefficients of P1 − P2

and Q1−Q2, respectively. Because σ(P1+P2) = P1+P2, σ(P1−P2) = P2−P1,
and σ(sgn(P1 −P2)) = sgn(P2 −P1), A1 and B1 belong to Fq[T ]; similarly, A2

and B2 belong to Fq[T ]. Let α = sgn(P1 − P2)/2 and β = sgn(Q1 − Q2)/2.
Then it holds that α, β ∈ Fq2\{0} and α2, β2 ∈ Fq\F2

q, where F
2
q is the set of

all square elements in Fq. Using these notations, it follows that

P1 = A1 + αB1, P2 = A1 − αB1, deg A1 =
1
2

deg P, deg B1 <
1
2

deg P,

(2.2)

Q1 = A2 + βB2, Q2 = A2 − βB2, deg A2 =
1
2

deg Q, deg B2 <
1
2

deg Q.

(2.3)

When q ≡ 3 (mod 4), −α2 and −β2 are square elements in Fq. Hence,
there exist γ, δ ∈ Fq such that −α2 = γ2 and −β2 = δ2. Let C1 = A1,D1 =
γB1, C2 = A2, and D2 = δB2. Then P and Q can be written as

P = C2
1 + D2

1, Q = C2
2 + D2

2, (2.4)

where C1,D1, C2,D2 ∈ Fq[T ] with deg C1 = deg P/2, deg D1 < deg P/2,
deg C2 = deg Q/2, and deg D2 < deg Q/2.

2.3. The rational quartic reciprocity law. We assume that
(

P
Q

)
q,2

= 1. Then

the quartic residue symbol
(

P
Q

)
q,4

is 1 or −1 depending on if x4 ≡ P (mod Q)

is or is not solvable in x ∈ Fq[T ]. Hsu [6] proved an analog of Burde’s reciprocity
law (1.1).
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Theorem 1 (The rational quartic reciprocity law [6]). Let P and Q be dis-
tinct monic irreducible polynomials in Fq[T ] of even degrees, and assume that(

P
Q

)
q,2

=
(

Q
P

)
q,2

= 1.

1. If q ≡ 1 (mod 4), then
(

P

Q

)

q,4

(
Q

P

)

q,4

= 1.

2. If q ≡ 3 (mod 4), we express P and Q as in (2.4). Then
(

P

Q

)

q,4

(
Q

P

)

q,4

=
(±C1D2 ± C2D1

P

)

q,2

=
(±C2D1 ± C1D2

Q

)

q,2

.

3. The main theorem. Let n ≥ 2 and assume that q2−1 is divisible by 2n. Let
P and Q be distinct monic irreducible polynomials in Fq[T ] of even degrees.

Furthermore, we assume that
(

P
Q

)
q,2n−1

= 1. Then the 2n-th power residue

symbol
(

P
Q

)
q,2n

is 1 or −1 according to whether x2n ≡ P (mod Q) is or is not

solvable in x ∈ Fq[T ].
To state the main theorem, we first need the following lemma.

Lemma 2. Decompose P and Q into the product of two distinct monic irre-
ducible polynomials in Fq2 [T ] as follows:

P = P1P2, P1, P2 ∈ Fq2 [T ], deg P1 = deg P2 =
1
2

deg P,

Q = Q1Q2, Q1, Q2 ∈ Fq2 [T ], deg Q1 = deg Q2 =
1
2

deg Q.

Then there exist E1, F1, E2, F2 ∈ Fq[T ], and α ∈ Fq2\{0} such that α2 ∈
Fq\F2

q,

P1 = E1 + αF1, P2 = E1 − αF1, deg E1 =
1
2

deg P, deg F1 <
1
2

deg P,

(3.1)

Q1 = E2 + αF2, Q2 = E2 − αF2, deg E2 =
1
2

deg Q, deg F2 <
1
2

deg Q.

(3.2)

Proof. We prove that for α, β ∈ Fq2\{0} in (2.2) and (2.3), there exists ε ∈
Fq\{0} such that β = εα. Because α ∈ Fq2\Fq, {1, α} is an Fq-basis of Fq2 .
Hence, there exist η, ε ∈ Fq such that β = η + εα. Raise both sides to the
second power. Noting that α2, β2 ∈ Fq, we conclude that η = 0.

Setting E1 = A1, F1 = B1, E2 = A2, and F2 = εB2 yields the desired
result. �

We now state the main theorem that is a rational reciprocity law for the
2n-th power residue symbol.
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Theorem 3. Let P and Q be distinct monic irreducible elements in Fq[T ] such

that their degrees are even, and assume that
(

P
Q

)
q,2n−1

=
(

Q
P

)
q,2n−1

= 1.

Then using the notations in (3.1) and (3.2), we have

(
P

Q

)

q,2n

(
Q

P

)

q,2n

=

(±E1F2 ± E2F1

P

)q−1

q,2n

(
F1

P

)q−1

q,2n

(
F1

P

)q−1

q,2n−1

· · ·
(
F1

P

)q−1

q,22

=

(±E2F1 ± E1F2

Q

)q−1

q,2n

(
F2

Q

)q−1

q,2n

(
F2

Q

)q−1

q,2n−1

· · ·
(
F2

Q

)q−1

q,22

.

When q ≡ 3 (mod 4), −α2 is a square element in Fq. Hence, there exists
γ ∈ Fq such that −α2 = γ2. Let G1 = E1,H1 = γF1, G2 = E2, and H2 = γF2.
Then P and Q can be written as

P = G2
1 + H2

1 , Q = G2
2 + H2

2 , (3.3)

where G1,H1, G2,H2 ∈ Fq[T ] with deg G1 = deg P/2, deg H1 < deg P/2,
deg G2 = deg Q/2, and deg H2 < deg Q/2. Noting that ±G1H2 ± G2H2 =

γ(±E1F2 ±E2F1) and
(

γ
P

)q−1 =
(

γ
Q

)q−1

= 1, we have the following theorem.

Theorem 4. Let P and Q be distinct monic irreducible elements in Fq[T ] such

that their degrees are even, and assume that
(

P
Q

)
q,2n−1

=
(

Q
P

)
q,2n−1

= 1. If

q ≡ 3 (mod 4), then, using the notations in (3.3), we have

(
P

Q

)

q,2n

(
Q

P

)

q,2n

=

(±G1H2 ± G2H1

P

)q−1

q,2n

(
H1

P

)q−1

q,2n

(
H1

P

)q−1

q,2n−1

· · ·
(
H1

P

)q−1

q,22

=

(±G2H1 ± G1H2

Q

)q−1

q,2n

(
H2

Q

)q−1

q,2n

(
H2

Q

)q−1

q,2n−1

· · ·
(
H2

Q

)q−1

q,22

.

Remark 5. 1. We can derive Theorem 1 from the Theorems 3 and 4.
2. The case when n = 3 for Theorems 3 and 4 is an analog of Williams’

reciprocity law (1.2).

4. Proof of Theorem 3. Because the finite field Fq[T ]/(P ) is isomorphic to
Fq2 [T ]/(Pi) via the map

Fq[T ]/(P ) → Fq2 [T ]/(Pi), a mod P �→ a mod Pi,

we have
(

Q
P

)
q,2n

=
(

Q
Pi

)
q2,2n

(i = 1, 2). Similarly,
(

P
Q

)
q,2n

=
(

P
Qi

)
q2,2n

(i = 1, 2). Hence, it holds that
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(
P

Q

)

q,2n

(
Q

P

)

q,2n
=

(
P

Q

)

q,2n

(
Q

P

)−1

q,2n
=

(
P

Q1

)

q2,2n

(
Q

P1

)−1

q2,2n

=
(

P1

Q1

)

q2,2n

(
P2

Q1

)

q2,2n

(
Q1

P1

)−1

q2,2n

(
Q2

P1

)−1

q2,2n

=
(

P1

Q1

)

q2,2n

(
Q1

P1

)−1

q2,2n

(
P2

Q1

)

q2,2n

(
Q1

P2

)−1

q2,2n(
Q1

P2

)

q2,2n

(
Q2

P1

)−1

q2,2n
.

We now use the following reciprocity law.

Theorem 6 (The d-th reciprocity law, cf. [11]). Let d be a positive integer
dividing q2 −1, and let P1 and Q1 be distinct monic irreducible polynomials in
Fq2 [T ]. Then

(
P1

Q1

)

q2,d

(
Q1

P1

)−1

q2,d

= (−1)
q2−1

d deg P1 deg Q1 .

Using Theorem 6,
(

P

Q

)

q,2n

(
Q

P

)

q,2n
=

(
Q1

P2

)

q2,2n

(
Q2

P1

)−1

q2,2n
=

(
Q1

σ(P1)

)

q2,2n

(
σ(Q1)

P1

)−1

q2,2n
.

Note that (
Q1

σ(P1)

)

q2,2n
= σ(

(
σ(Q1)

P1

)

q2,2n
) =

(
σ(Q1)

P1

)q

q2,2n
.

Hence, (
P

Q

)

q,2n

(
Q

P

)

q,2n
=

(
Q2

P1

)q−1

q2,2n
.

Because

Q2F1 ≡ (E2 − αF2)F1 ≡ E1F2 + E2F1 (mod P1),

we have
(

Q2

P1

)

q2,2n
=

(
Q2F1

P1

)

q2,2n

(
F 2n−1
1

P1

)

q2,2n

=
(

E1F2 + E2F1

P

)

q,2n

(
F1

P

)2n−1

q,2n
.

Noting that 2n − 1 = 1 + 2 + · · · + 2n−1, we obtain
(

Q2

P1

)

q2,2n
=

(
E1F2 + E2F2

P

)

q,2n

(
F1

P

)

q,2n

(
F1

P

)

q,2n−1

· · ·
(

F1

P

)

q,2

.

Next, we prove the following lemma.
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Lemma 7. Let the assumptions be as in Theorem 3. For F1 and F2 in (3.1)
and (3.2),

(
F1

P

)

q,2

=
(

F2

Q

)

q,2

= 1.

Proof. Let c = sgn(P1 − P2). Then
(

F1

P

)

q,2

=
( c

P

)
q2,2

(
P1 − P2

P

)

q2,2

=
( c

P

)
q2,2

(
P1 − P2

P1

)

q2,2

(
P1 − P2

P2

)

q2,2

=
( c

P

)
q2,2

(−1
P

)

q2,2

(
P2

P1

)

q2,2

(
P1

P2

)

q2,2

.

By (2.1) and Theorem 6, this becomes 1. Similarly,
(

F2
Q

)
q,2

= 1. �

Using Lemma 7, it follows that
(
P

Q

)

q,2n

(
Q

P

)

q,2n

=

(
E1F2 + E2F1

P

)q−1

q,2n

(
F1

P

)q−1

q,2n

(
F1

P

)q−1

q,2n−1

· · ·
(
F1

P

)q−1

q,22

.

(4.1)

Also, we have
(

P

Q

)

q,2n

(
Q

P

)

q,2n
=

(
P

Q2

)

q2,2n

(
Q

P1

)−1

q2,2n
=

(
Q1

P1

)q−1

q2,2n
.

Because

Q1F1 ≡ (E2 + αF2)F1 ≡ E2F1 − E1F2 (mod P1),

a similar computation yields
(
P

Q

)

q,2n

(
Q

P

)

q,2n

=

(
E2F1 − E1F2

P

)q−1

q,2n

(
F1

P

)q−1

q,2n

(
F1

P

)q−1

q,2n−1

· · ·
(
F1

P

)q−1

q,22

.

(4.2)

Because
(−1

P

)q−1

q,2n
= 1, using (4.1) and (4.2), we have

(
P

Q

)

q,2n

(
Q

P

)

q,2n

=

(±E1F2 ± E2F1

P

)q−1

q,2n

(
F1

P

)q−1

q,2n

(
F1

P

)q−1

q,2n−1

· · ·
(
F1

P

)q−1

q,22

.

By symmetry of P and Q,
(
P

Q

)

q,2n

(
Q

P

)

q,2n

=

(±E2F1 ± E1F2

Q

)q−1

q,2n

(
F2

Q

)q−1

q,2n

(
F2

Q

)q−1

q,2n−1

· · ·
(
F2

Q

)q−1

q,22

.

�
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