
Arch. Math. 108 (2017), 85–97
c© 2016 Springer International Publishing

0003-889X/17/010085-13

published online August 27, 2016
DOI 10.1007/s00013-016-0961-8 Archiv der Mathematik

Higher integrability for nonlinear parabolic equations
of p-Laplacian type
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Abstract. In this paper we give a new alternative proof of the local higher
integrability in Orlicz spaces of the gradient for weak solutions of quasi-
linear parabolic equations of p-Laplacian type

ut − div
(|∇u|p−2 ∇u

)
= div

(|f |p−2f
)

in Ω × (0, T ]

for any p > 0. Moreover, we point out that our results are homogeneous
regularity estimates in Orlicz spaces and improve the known results for
such equations by using some new techniques. Actually, our results can
be extended to the global estimates and cover a more general class of
degenerate/singular parabolic problems of p-Laplacian type.
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1. Introduction. Assume that p > 1. We are concerned with the following
quasilinear parabolic equation of p-Laplacian type

ut − div
(
|∇u|p−2 ∇u

)
= div

(|f |p−2f
)

in Ω
T

= Ω × (0, T ], (1.1)

where Ω is an open bounded domain in R
n and f = (f1, ..., fn) is a given vector

field. Actually, our results can cover a more general class of degenerate/singular
parabolic problems of p-Laplacian type

ut − div a (∇u, z) = div
(|f |p−2f

)
in ΩT . (1.2)

In the elliptic case

div
(
|∇u|p−2 ∇u

)
= div(|f |p−2f) in Ω (1.3)
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and the general case, W 1,q regularity has been extensively studied by many
authors with different assumptions on the coefficients and domains (see [1,
7,11,12,14,15,17]). Moreover, in [8] we have extended W 1,q regularity in the
setting of the general Orlicz spaces

|f |p ∈ Lφ(Ω) ⇒ |∇u|p ∈ Lφ(Ω)

with the estimate ∫

Ω

φ(|∇u|p)dx ≤ C

∫

Ω

φ(|f |p)dx (1.4)

for weak solutions of (1.3) and the general case with u = 0 on ∂Ω. We would
like to point out that if φ(t) = tq for q ≥ 1, then (1.4) can be reduced to the
classical Lq estimates.

Different from the elliptic case (1.3), (1.1) is not homogeneous even if f ≡
0, which is one of the most common difficulties. Kinnunen and Lewis [13]
obtained a reverse Hölder-inequality of the gradient for (1.1) and the general
case. Moreover, Acerbi and Mingione [2] obtained Lq

loc(q ≥ 1) estimates for
(1.1) and the general case

|f |p ∈ Lq
loc(ΩT ) ⇒ |∇u|p ∈ Lq

loc(ΩT ) for any q ≥ 1

with the estimate
⎛

⎝
∫

Q1

|∇u|pqdz

⎞

⎠

1
q

≤ C(n, p, q)

⎡

⎢
⎣
∫

Q2

|∇u|pdz +

⎛

⎝
∫

Q2

|f |pq + 1dz

⎞

⎠

1
q

⎤

⎥
⎦

d

, (1.5)

where Qr = Br × (−r2, r2] and

1 ≤ d :=
{

p/2 for p ≥ 2,
2p/[p(n + 2) − 2n] for 2n/(n + 2) < p < 2.

(1.6)

Furthermore, Byun, Ok, and Ryu [6] proved the global Lq estimtes for (1.2)

|f |p ∈ Lq(ΩT ) ⇒ |∇u|p ∈ Lq(ΩT ) for any q ≥ 1

with the estimate
∫

ΩT

|∇u|pqdz ≤ C

⎛

⎝
∫

ΩT

|f |pqdz + 1

⎞

⎠

d

.

Moreover, we [23] proved the following results in Orlicz spaces for weak solu-
tions of (1.1)

|f |p ∈ Lφ
loc(ΩT ) ⇒ |∇u|p ∈ Lφ

loc(ΩT ) (1.7)

with the estimate

∫

Q1

φ(|∇u|p)dz≤C(n, p, φ)

⎧
⎪⎨

⎪⎩
φ

⎡

⎢
⎣

⎛

⎝
∫

Q2

|∇u|p + |f |pdz + 1

⎞

⎠

d
⎤

⎥
⎦+

∫

Q2

φ (|f |p) dz

⎫
⎪⎬

⎪⎭
.

(1.8)
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We would like to point out that if φ(t) = tq for q ≥ 1, then (1.8) can be
reduced to Lq estimates (1.5).

In this paper we shall give a new alternative proof of (1.7) for weak solu-
tions of (1.1). Actually, we shall prove the following homogeneous regularity
estimates in Orlicz spaces for weak solutions of (1.1)

∥
∥|∇u|p∥∥

Lφ(Q1)
≤ C(n, p, φ)

[
‖u‖p

Lp(Q2)
+ ‖u‖2

L2(Q2)
+ ‖ |f |p ‖Lφ(Q2)

]
. (1.9)

Especially when φ(t) = tq for q ≥ 1, then (1.9) can be reduced to the classical
Lq estimtes

⎛

⎝
∫

Q1

|∇u|pqdz

⎞

⎠

1
q

≤ C(n, p, q)

⎡

⎢
⎣
∫

Q2

|u|p + |u|2 dz +

⎛

⎝
∫

Q2

|f |pqdz

⎞

⎠

1
q

⎤

⎥
⎦ .

As usual, the solutions of (1.1) are taken in a weak sense.

Definition 1.1. Assume that f ∈ Lp
loc(ΩT ). A function u ∈ Lp

loc(0, T ;W 1,p
loc (Ω))∩

L∞
loc(0, T ;L2

loc(Ω)) is a local weak solution of (1.1) in ΩT if for any compact
subset K of Ω and for any subinterval [t1, t2] of (0, T ]

∫

K
uϕdx

∣
∣
∣
t2

t1
+

t2∫

t1

∫

K

{
−uϕt + |∇u|p−2 ∇u · ∇ϕ

}
dxdt = −

t2∫

t1

∫

K
|f |p−2f · ∇ϕdxdt

for any ϕ ∈ W 1,2
loc (0, T ;L2(K)) ∩ Lp

loc(0, T ;W 1,p
0 (K)).

Orlicz spaces have been studied as the generalization of Sobolev spaces
since they were introduced by Orlicz [18] (see [3,4,9,16,22,23]). The theory
of Orlicz spaces plays a crucial role in many fields of mathematics including
geometry, probability, stochastic, Fourier analysis, and PDE (see [19]).

We denote Φ by

Φ =
{
φ : [0,+∞) −→ [0,+∞)

∣
∣ φ is increasing and convex

}
. (1.10)

Moreover, a function φ ∈ Φ is said to be a Young function if

lim
t→0+

φ(t)/t = lim
t→+∞ t/φ(t) = 0.

Definition 1.2. A Young function φ is said to satisfy the Δ2 condition, denoted
by φ ∈ Δ2, if there exists a positive constant K such that

φ(2t) ≤ Kφ(t) for every t > 0.

Moreover, a Young function φ is said to satisfy the ∇2 condition, denoted by
φ ∈ ∇2, if there exists a number a > 1 such that

φ(t) ≤ φ(at)
2a

for every t > 0.

Remark 1.3. Let φ be a Young function. Then φ ∈ Δ2 ∩∇2 if and only if there
exist constants A2 ≥ A1 > 0 and α1 ≥ α2 > 1 such that

A1

(s

t

)α2 ≤ φ(s)
φ(t)

≤ A2

(s

t

)α1

for 0 < t ≤ s. (1.11)
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Definition 1.4. Let φ be a Young function. Then the Orlicz class Kφ(Ω) is the
set of all measurable functions g : Ω → R satisfying

∫

Ω

φ(|g|) dx < ∞.

The Orlicz space Lφ(Ω) is the linear hull of Kφ(Ω). Moreover, we define the
Luxemburg norm

‖g‖Lφ(Ω) = inf

⎧
⎨

⎩
λ > 0 :

∫

Ω

φ

( |g|
λ

)
dx ≤ 1

⎫
⎬

⎭
. (1.12)

Let us state the main result of this work.

Theorem 1.5. Assume that p > 1 and φ ∈ Δ2 ∩ ∇2. Let u be a local weak
solution of (1.1) in ΩT and |f |p ∈ Lφ

loc(ΩT ). Then we have

|∇u|p ∈ Lφ
loc(ΩT )

with the estimate (1.9).

Remark 1.6. We remark that the Δ2 ∩ ∇2 condition is optimal (see [21]).

2. Proof of the main result. In this section, we shall finish the proof of the
main result, Theorem 1.5. We first give the following local Lp estimate and
comparison result.

Lemma 2.1. Assume that u is a local weak solution of (1.1) in ΩT and v is the
weak solution of

{
vt − div

(|∇v|p−2∇v
)

= 0 in Q2,
v = u on ∂pQ2

(2.1)

with Q2 ⊂ ΩT . Then we have

1. ∫

Q1

|∇u|pdz ≤ C

⎛

⎝
∫

Q2

|u|p + |u|2dz +
∫

Q2

|f |pdz

⎞

⎠ . (2.2)

2. ∫

Q2

|∇v|pdz ≤ C

⎛

⎝
∫

Q2

|∇u|pdz +
∫

Q2

|f |pdz

⎞

⎠ . (2.3)

Proof. 1. We may as well select the test function ϕ = ζpu, where ζ(x, t) ∈
C∞

0 (Rn+1) is a cut-off function satisfying

0 ≤ ζ ≤ 1, ζ ≡ 1 in Q1, ζ ≡ 0 in R
n/Q2, and |ζt| + |∇ζ| ≤ C.

Then by Definition 1.1, we have
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1
2

∫

B2

|u(x, 4)|2 ζp(x, 4)dx +
∫

Q2

ζp |∇u|p dz

=
p

2

∫

Q2

ζp−1ζtu
2dz − p

∫

Q2

ζp−1u |∇u|p−2 ∇u · ∇ζdz

−
∫

Q2

ζp |f |p−2 f · ∇u + pζp−1u |f |p−2 f · ∇ζdz.

Using Young’s inequality with τ > 0 and the definition of ζ, we deduce that
∫

Q2

ζp |∇u|p dz ≤ 2τ

∫

Q2

ζp |∇u|p + C(τ)
∫

Q2

|u|2 + |u|p + |f |p dz,

which finishes the proof of (2.2) by choosing τ = 1/4.
2. Noting that u and v are the weak solutions of (1.1) and (2.1), respectively,

we may as well select the test function ϕ = v − u. Then a direct calculation
shows the resulting expression as

I1 = I2 + I3,

where

I1 =
1
2

∫

B2

|v(x, 4) − u(x, 4)|2dx +
∫

Q2

|∇v|pdz ≥
∫

Q2

|∇v|pdz,

I2 =
∫

Q2

|∇v|p−2∇v · ∇udz +
∫

Q2

|∇u|p−2∇u · ∇v − |∇u|pdz,

I3 =
∫

Q2

|f |p−2f · ∇v − |f |p−2f · ∇udz.

Estimate of I2 and I3. Using Young’s inequality with τ > 0 and the definition
of ζ, we deduce that

|I2| ≤ 2τ

∫

Q2

|∇v|p dz + C(τ)
∫

Q2

|∇u|p dz

and

|I3| ≤ τ

∫

Q2

|∇v|p dz + C(τ)
∫

Q2

|∇u|p + |f |p dz for any τ > 0.

Combining the estimates of Ii (1 ≤ i ≤ 3), we deduce that
∫

Q2

|∇v|pdz ≤ 3τ

∫

Q2

|∇v|pdz + C

∫

Q2

|∇u|p + |f |p dz.

Selecting τ = 1/4, we deduce that (2.3) is true. This finishes our proof. �

In this work we shall use the Hardy–Littlewood maximal function which
controls the local behavior of a function.
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Definition 2.2. Let h be a locally integrable function. The Hardy–Littlewood
maximal function Mh(z) is defined as

Mh(z) = sup
r>0

∫
−

Qr(z)

|h(y, s)|dyds.

Moreover, if h is not defined outside ΩT , then Mh(z) = M (h χΩT
) (z).

Lemma 2.3 (see [16]) Let φ ∈ Δ2 ∩ ∇2 and g ∈ Lφ(ΩT ). Then we have

1.
∫

ΩT

φ(|g|)dz =

∞∫

0

|{z ∈ ΩT : |g| > λ}| d [φ(λ)].

2.
∫

ΩT

φ (|g|) dz ≤
∫

ΩT

φ (M (|g|)) dz ≤ C(n, φ)
∫

ΩT

φ (|g|) dz.

We will use the following the modified Vitali covering lemma.

Lemma 2.4 (see [5,20]) Assume that C and D are measurable sets with C ⊂
D ⊂ Q1 ⊂ R

n+1 and

|C| < ε|Q1| for ε > 0,

and for all z ∈ Q1 and for all r ∈ (0, 1] with |C ∩ Qr(z)| ≥ ε|Qr(z)|,
Qr(z) ∩ Q1 ⊂ D.

Then we have

|C| ≤ 10n+2ε|D|.
Next, we shall prove the following important result.

Lemma 2.5. For any ε > 0, there exists a small δ = δ(ε) > 0 such that if u is
a local weak solution of (1.1) in ΩT with Q2 ⊂ ΩT ,

∫
−
Q2

|∇u|pdz ≤ 1 and
∫
−
Q2

|f |pdz ≤ δ, (2.4)

then there exist a weak solution v of (2.1) and N0 > 1 such that
∫
−
Q2

|∇(u − v)|pdz ≤ ε (2.5)

and
sup
Q 3

2

|∇v|p ≤ N0. (2.6)

Proof. Actually, the conclusion (2.6) follows from (2.4), (2.5), and [10, Chapter
8, Theorem 5.1 and 5.2]. Noting that both u and v are the weak solutions of
(1.1) and (2.1), respectively, we may as well select the test function ϕ = v −u.
Then a direct calculation shows the resulting expression as

I1 + I2 = I3,
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where

I1 =
d

dt

∫

Q2

|v − u|2
2

dz =
∫

B2

|v(x, 4) − u(x, 4)|2
2

dx ≥ 0,

I2 =
∫

Q2

[|∇v|p−2∇v − |∇u|p−2∇u
] · ∇(v − u)dz,

I3 =
∫

Q2

|f |p−2f · ∇(v − u)dz.

Estimate of I2. We divide into two cases.

Case 1 p ≥ 2. Using the elementary inequality
[|ξ|p−2ξ − |η|p−2η

] · (ξ − η) ≥ C(p)|ξ − η|p for every ξ, η ∈ R
n,

we have

I2 ≥ C

∫

Q2

|∇(u − v)|pdz.

Case 2 1 < p < 2. Using the elementary inequality

|ξ − η|p ≤ C(p)τ (p−2)/p
[|ξ|p−2ξ − |η|p−2η

] · (ξ − η) + τ |η|p
for every ξ, η ∈ R

n and τ ∈ (0, 1),

we have

I2 + τ2/p

∫

Q2

|∇u|pdz ≥ C(τ)
∫

Q2

|∇(u − v)|pdz.

Estimate of I3. Using Young’s inequality with τ , we have

I3 ≤ τ

∫

Q2

|∇(u − v)|pdz + C(τ)
∫

Q2

|f |pdz.

Combining all the estimates of Ii (1 ≤ i ≤ 3), we obtain

C(τ)
∫

Q2

|∇(u − v)|pdz ≤ τ

∫

Q2

|∇(u − v)|pdz + τ2/p

∫

Q2

|∇u|pdz + C(τ)
∫

Q2

|f |pdz.

Selecting a small constant τ > 0 such that 0 < δ 
 τ < 1, and then using
(2.4), we conclude that

∫
−
Q2

|∇(u − v)|pdz ≤ Cτ2/p + C(τ)δ = ε

by selecting δ satisfying the last inequality above. This completes our proof.
�

Furthermore, we shall give the following result.
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Lemma 2.6. There is a constant N1 > 1 so that for any ε > 0, there exists a
small δ = δ(ε) > 0 such that if u is a local weak solution of (1.1) in ΩT with
Q4 ⊂ ΩT and

Q1 ∩ {z ∈ Q1 : M (|∇u|p) (z) ≤ 1} ∩ {z ∈ Q1 : M (|f |p) (z) ≤ δ} �= φ, (2.7)

then we have
|{z ∈ Q1 : M (|∇u|p) (z) > N1}| < ε |Q1| . (2.8)

Proof. From (2.7), there exists z1 ∈ Q1 satisfying

M (|∇u|p) (z1) ≤ 1 and M (|f |p) (z1) ≤ δ, (2.9)

which implies that
∫
−
Q2

|∇u|pdz ≤
(

3
2

)n+2 ∫
−

Q3(z1)

|∇u|pdz ≤
(

3
2

)n+2

and
∫
−
Q2

|f |pdz ≤
(

3
2

)n+2

δ,

since Q2 ⊂ Q3(z1) ⊂ Q4 ⊂ ΩT . Thus, using Lemma 2.5, for any η > 0 there
exists δ = δ(η) > 0 and a corresponding weak solution v of (2.1) such that

∫
−
Q2

|∇u − ∇v|pdz ≤ η and sup
Q 3

2

|∇v|p ≤ N0. (2.10)

Now we shall prove that
{
z ∈ Q1 : |∇u|p(z) > N1 =: max{2pN0, 8n+2}}

⊂ {z ∈ Q1 : |∇u − ∇v|p(z) > N0} . (2.11)

Let z2 ∈ {z ∈ Q1 : M (|∇u − ∇v|p) (z) ≤ N0}. Then we divide into two cases.

Case 1 r ≤ 1
2 . Then we have Qr(z2) ⊂ Q 3

2
. From (2.10) we have

∫
−

Qr(z2)

|∇u|pdz ≤ 2p−1

∫
−

Qr(z2)

|∇u − ∇v|p + |∇v|pdz

≤ 2p−1N0 + 2p−1N0 =: 2pN0.

Case 2 r > 1
2 . Then we have z1, z2 ∈ Q1 ⊂ Q4r(z2) ⊂ Q8r(z1). From (2.9) we

find that ∫
−

Qr(z2)

|∇u|pdz ≤ 8n+2

∫
−

Q8r(z1)

|∇u|pdz ≤ 8n+2.

Thus, from Cases 1 and 2 we conclude that the desired result (2.11) is true.
Finally, (2.10) and (2.11) imply that

|{z ∈ Q1 : M (|∇u|p) (z) > N1}| ≤ |{z ∈ Q1 : M (|∇u − ∇v|p) (z) > N0}|
≤ C

∫

Q1

|∇u − ∇v|pdz < Cη = ε
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by choosing η small enough satisfying the last inequality. Thus we complete
the proof. �

Moreover, we can obtain the following result by a scaling and normalization
argument.

Lemma 2.7. There is a constant N1 > 1 so that for any ε > 0 and r ≤ 1, there
exists a small δ = δ(ε) > 0 such that if u is a local weak solution of (1.1) in
ΩT with Q4r ⊂ Q4 ⊂ ΩT and

|{z ∈ Qr : M (|∇u|p) (z) > λN1}| ≥ ε |Qr| for any λ > 0, (2.12)

then we have

Qr ⊂ {z ∈ Qr : M (|∇u|p) (z) > λ} ∪ {z ∈ Qr : M (|f |p) (z) > λδ} . (2.13)

Proof. We divide into three cases.

Case 1 r = 1 and λ = 1. The result can follow directly from Lemma 2.6.

Case 2 0 < r < 1 and λ = 1. We rescale by defining

w(x, t) =
1
r
u(rx, r2t) and g(z) = f(rx, r2t).

Then w is a local weak solution of

wt − div
(
|∇w|p−2 ∇w

)
= div

(
|g|p−2 g

)
in Ω′

T ⊃ Q4,

where 1
r ΩT = 1

r Ω × (
0, 1

r2 T
)

= Ω′
T . Therefore, we can get the result directly

from Lemma 2.6.

Case 3 0 < r ≤ 1 and λ > 0. We can get the desired result if we consider

1
λ

ut − 1
λ

div
(
|∇u|p−2 ∇u

)
=

1
λ

div
(
|f |p−2 f

)
in ΩT .

Thus, we finish the proof. �

Next, we shall prove the following important result.

Lemma 2.8. Assume that u, δ,N1 satisfy the same conditions as those in Lemma
2.7. Assume further

∣
∣
∣
∣

{
z ∈ Q1 :

1
λ0

M (|∇u|p) (z) > N1

}∣∣
∣
∣ < ε |Q1| for any λ0 > 0. (2.14)

Then for any λ ≥ 1 we have
∣
∣
∣
∣

{
z ∈ Q1 :

1
λ0

M (|∇u|p) (z) > λN1

}∣∣
∣
∣

≤ 10n+2ε

(∣∣
∣
∣

{
z ∈ Q1 :

1
λ0

M (|∇u|p) (z) > λ

}∣∣
∣
∣

+
∣
∣
∣
∣

{
z ∈ Q1 :

1
λ0

M (|f |p) (z) > λδ

}∣∣
∣
∣

)
.
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Proof. Without loss of generality, we may as well assume that λ0 = 1. If not,
we can replace |∇u|p, |f |p by |∇u|p

λ0
, |f |p

λ0
. Define

C = {z ∈ Q1 : M (|∇u|p) (z) > λN1}
and

D = {z ∈ Q1 : M (|∇u|p) (z) > λ} ∪ {z ∈ Q1 : M (|f |p) (z) > λδ}
for any λ ≥ 1. Then C ⊂ D ⊂ Q1 and

|C| ≤ |{z ∈ Q1 : M (|∇u|p) (z) > N1}| < ε |Q1|
in view of (2.14). Furthermore, from Lemmas 2.4 and 2.7 we find that

|C| ≤ 10n+2ε |D| ,
which finishes our proof. �

Finally, we are set to prove the main result, Theorem 1.5.

Proof. Let

λ0 =
1
δ

(
‖u‖p

Lp(Q2)
+ ‖u‖2

L2(Q2)
+ ‖ |f |p ‖Lφ(Q2)

)
for some small δ ∈ (0, 1).

(2.15)

It follows from Lemma 2.1 that
∫

Q1

1
λ0

|∇u|pdz ≤ C

⎧
⎨

⎩

∫

Q2

1
λ0

(|u|p + |u|2) dz +
∫

Q2

1
λ0

|f |pdz

⎫
⎬

⎭
. (2.16)

Moreover, if g ∈ Lφ(Q1), then from (1.11) we find that
∫

Q1

1
λ0

|g|dz =
∫

{
z∈Q1:

1
λ0

|g|≤1
}

1
λ0

|g|dz +
∫

{
z∈Q1:

1
λ0

|g|≥1
}

( |g|
λ0

)α2

dz

≤ |Q1| +
1

A1φ(1)

∫

Q1

φ

(
1
λ0

|g|
)

dz. (2.17)

Furthermore, from (2.15), (2.16) and (2.17) we have
∫
−
Q1

1

λ0
|∇u|pdz ≤ C

λ0

⎛

⎝
∫

Q2

|u|p + |u|2dz +

∫

Q2

|f |pdz

⎞

⎠

≤ Cδ + Cδ

⎡

⎣1 +

∫

Q2

φ

(
|f |p

‖u‖p
Lp(Q2)

+ ‖u‖p

L2(Q2)
+ ‖ |f |p ‖Lφ(Q2)

)

dz

⎤

⎦

≤ Cδ ≤ ε (2.18)

by taking δ sufficiently small satisfying the last inequality. Furthermore, from
(1.12) and (2.18) we find that

∣
∣
∣
∣

{
z ∈ Q1 :

1
λ0

M (|∇u|p) > N1

}∣∣
∣
∣ ≤ 1

N1

∫

Q1

1
λ0

|∇u|pdz < ε |Q1|
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and
∫

Q1

φ

(
1
λ0

|f |p
)

dz ≤ C

∫

Q1

φ

(
|f |p

‖u‖p
Lp(Q2)

+ ‖u‖p
L2(Q2)

+ ‖ |f |p ‖Lφ(Q2)

)

dz ≤ C.

(2.19)

Moreover, from Lemmas 2.3 and 2.8 we compute
∫

Q1

φ

(
1
λ0

M (|∇u|p)
)

dz

=

⎧
⎨

⎩

1∫

0

+

∞∫

1

⎫
⎬

⎭

∣
∣
∣
∣

{
z ∈ Q1 :

1
λ0

M (|∇u|p) (z) > λN1

}∣∣
∣
∣ d [φ(λN1)]

≤ C1 +

∞∫

1

∣
∣
∣
∣

{
z ∈ Q1 :

1
λ0

M (|∇u|p) (z) > λN1

}∣∣
∣
∣ d [φ(λN1)]

≤ C1 + 10n+2ε

∞∫

0

∣
∣
∣
∣

{
z ∈ Q1 :

1
λ0

M (|∇u|p) (z) > λ

}∣∣
∣
∣ d [φ(λN1)]

+10n+2ε

∞∫

0

∣
∣
∣
∣

{
z ∈ Q1 :

1
λ0

M (|f |p) (z) > λδ

}∣∣
∣
∣ d [φ(λN1)]

≤ C1 + C2ε

∫

Q1

φ

(
1
λ0

M (|∇u|p)
)

dz + C3

∫

Q1

φ

(
1
λ0

M (|f |p)
)

dz

≤ C1 + C2ε

∫

Q1

φ

(
1
λ0

M (|∇u|p)
)

dz + C4

∫

Q1

φ

(
1
λ0

|f |p
)

dz,

where C2 = C2(n, φ,N1) and C4 = C4(n, φ, ε,N1). Then choosing a suitable
ε such that C2ε < 1

2 , thereby determining δ with 0 < δ < 1, from (2.19) we
obtain

∫

Q1

φ

(
1
λ0

M (|∇u|p)
)

dz ≤ C.

Thus, from the fact that |∇u|p(z) ≤ M (|∇u|p) (z), we have
∫

Q1

φ

(
1
λ0

|∇u|p
)

dz ≤ C.

Finally, from (1.12) and (2.15) we obtain
∥
∥|∇u|p∥∥

Lφ(Q1)
≤ C

[
‖u‖p

Lp(Q2)
+ ‖u‖2

L2(Q2)
+ ‖ |f |p ‖Lφ(Q2)

]
,

which finishes the proof. �
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