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Essential dimension of algebraic groups, including bad
characteristic
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Abstract. We give upper bounds on the essential dimension of (quasi-)
simple algebraic groups over an algebraically closed field that hold in all
characteristics. The results depend on showing that certain representa-
tions are generically free. In particular, aside from the cases of spin and
half-spin groups, we prove that the essential dimension of a simple alge-
braic group G of rank at least two is at most dimG − 2(rankG) − 1. It
is known that the essential dimension of spin and half-spin groups grows
exponentially in the rank. In most cases, our bounds are as good as or
better than those known in characteristic zero and the proofs are shorter.
We also compute the generic stabilizer of an adjoint group on its Lie
algebra.
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1. Introduction. The essential dimension of an algebraic group G is the mini-
mal transcendence degree of the field of definition of a versal G-torsor. (Al-
though inaccurate, one can think of it as the number of parameters needed to
specify a G-torsor.) This invariant captures deep information about algebraic
structures with automorphism group G, and it is difficult to calculate. For
example, the fact that ed(PGL2) = ed(PGL3) = 2 corresponds to the classical
fact that division algebras of dimension 22 or 32 over their center are cyclic,
and it is an open problem whether the essential dimension of PGLp is 2 for
primes p ≥ 5 [1, Problem 6.2], although it is known that ed(PGLn) is not O(n)
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[31]. Therefore, the bulk of known results on essential dimension provides up-
per or lower bounds, as in [4,12,18,26], etc. (see [32,33], or [38] for a survey
of the current state of the art.) In this paper, we provide upper bounds on
ed(G) for every simple algebraic group G over an algebraically closed field k,
regardless of the characteristic of k. Our bounds are in some cases as good as
(Theorem 1.4) or better (Theorems 1.1 and 1.3) than the bounds known in
characteristic zero, and have shorter proofs. One summary consequence of our
results is the following.

Theorem 1.1. Let G be a simple algebraic group over an algebraically closed
field. Then

ed(G) ≤ dim G − 2(rank G) − 1,

G ∼= PGL2 or G ∼= Spinn or HSpinn for some n.

For the excluded cases, ed(PGL2) = 2 (Example 6.3). For spin and half-spin
groups, essential dimension grows exponentially in n [9] whereas the dimension,(
n
2

)
, is quadratic in n. Specifically, ed(Spinn) > dim Spinn for all n ≥ 19 and

ed(HSpinn) > dim HSpinn for n divisible by 4 and ≥20.

Adjoint groups. Under the additional hypotheses that G is adjoint and
char k = 0, it is well known that an adjoint semisimple group G acts generically
freely on Lie(G) ⊕ Lie(G)1 and consequently ed(G) ≤ dim G, as was pointed
out in [9, Remark 3-11]. In this setting, the stronger bound in Theorem 1.1
was proved in [24]. Dropping the hypothesis on char k but still assuming G
is adjoint, the bound ed(G) ≤ dim G − 2(rank G) was recently proved in [7,
Cor. 10].

Theorem 1.1 for adjoint groups includes the following bounds, where we
write T adj

n for an adjoint group of type Tn:

ed(Eadj
6 ) ≤ 65, ed(Eadj

7 ) ≤ 118, ed(E8) ≤ 231,

and ed(Dadj
n ) ≤ 2n2 − 3n − 1 for n ≥ 4. (1.2)

(The adjoint group Dadj
n is sometimes denoted by PSO2n.) These bounds agree

with those in [24] for characteristic 0. (The number 112 given there for Eadj
7

was a typo.)
We remark that the essential dimension of SO2n+1 (adjoint of type Bn) is

2n if char k �= 2 [37] and is n + 1 if char k = 2 [5]. For SO2n (of type Dn), the
essential dimension is 2n − 1 if char k �= 2 and is n or n + 1 if char k = 2.

Groups of type C. We give the following upper bound for adjoint groups of
type Cn, which improves on the bound 2n2−3n−1 given in [24] in characteristic
zero.

Theorem 1.3. Over an algebraically closed field k and for n ≥ 4

ed(GL2n /μ2) ≤ ed(PSp2n) ≤
{

2n2 − 3n − 4 if char k � |n or n = 4
2n2 − 3n − 6 if char k | n and n > 4.

1 By, e.g., [39, Lemma 3.3(b)]. For analogous statements in prime characteristic, see Sec-
tion 9.
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The interesting case of Theorem 1.3 is when n is even; in the special case
where n is odd, the natural map PGL2 ×SOn ↪→ PSp2n gives a surjection
H1(k,PGL2) × H1(k,SOn) → H1(k,PSp2n), and ed(PSp2n) = n + 1 for n
odd, cf. [28, p. 302].

It is known that ed(GL8 /μ2) = 8 if char k �= 2 [4, Cor. 1.4] and is ≤10
if char k = 2 [3, Cor. 1.4], somewhat better than the bound ≤16 provided by
Theorem 1.3.

Groups of type A. The essential p-dimension of GLn /μm and of SLn /μm

have been studied in [3,4,11]. Here and in (6.7) we give upper bounds for the
essential dimension (without the p).

Theorem 1.4. Over an algebraically closed field and for m dividing n ≥ 4, we
have

ed(PGLn) ≤ n2 − 3n + 1 and ed(SLn /μm) ≤ n2 − 3n + n/m + 1.

If m = 1, then ed(SLn) = 0. If m = n, then SLn /μm = PGLn. Our bound
for PGLn agrees with the one given by [24] in char k = 0; we remove this
hypothesis. A better bound on ed(PGLn) is known for n odd [27]. See [32,
§10] or [38, §7.6] for discussions of many more results on upper bounds for
PGLn. If m = 2, then (applying Lemma 6.4) the bound in Theorem 1.3 is
better by about a factor of 2.

Exceptional groups. Concerning exceptional groups, a series of papers [24,25,
29,30] have led to the following upper bounds for exceptional groups:

ed(F4) ≤ 7, ed(Esc
6 ) ≤ 8, and ed(Esc

7 ) ≤ 11 if char k �= 2, 3.

(Here F4, Esc
6 , and Esc

7 denote simple and simply connected groups of types
F4, E6, and E7; the displayed upper bounds are meant to be compared with
the dimensions of 52, 78, and 133, respectively. These upper bounds are close
to the known lower bounds of 5, 4, and 8 for char k �= 2, 3.) The proofs of
these upper bounds for F4 and Esc

7 are technical and detailed calculations.
The following weaker bounds have the advantage of simple proofs and holding
for fields of characteristic 2 and 3.

Theorem 1.5. Over an algebraically closed field, we have

ed(F4) ≤ 19, ed(Esc
6 ) ≤ 20, and ed(Esc

7 ) ≤ 49.

The proofs of most of the theorems above rely on computations of the
(scheme-theoretic) stabilizer of a generic element in a representation of NG(T )
for T a maximal torus in G. The proof of Theorem 1.3 uses the computation
of a generic stabilizer in the action of Sp on L(λ2). Using the same technique,
we calculate the generic stabilizer of an adjoint group G acting on its Lie
algebra. In particular, this stabilizer is connected unless char k = 2. In the final
section, we give upper bounds on essential dimension for small spin and half-
spin groups, completing the list of upper bounds on ed(G) for G simple over
an algebraically closed field. (An algebraic group over an algebraically closed
field is simple—sometimes called quasi-simple—if it has no proper connected
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normal subgroups and is perfect. In particular, a simple algebraic group can
have a finite center.)

2. Generically free actions. Let G be an affine group scheme of finite type
over a field k, which we assume as algebraically closed. (If G is additionally
smooth, then we say that G is an algebraic group.) We put G◦ for the identity
component of G. If G acts on a variety X, the stabilizer Gx of an element
x ∈ X(k) is a sub-group-scheme of G with points

Gx(R) = {g ∈ G(R) | gx = x}
for every k-algebra R. The Statement “for generic x” means that there is a
dense open subset U of X such that the property holds for all x ∈ U .

Suppose G acts on a variety X in the sense that there is a map of k-
schemes G × X → X satisfying the axioms of a group action. We say that
G acts generically freely on X if there is a nonempty open subset U of X
such that for every u ∈ U the stabilizer Gu is the trivial group scheme 1. It is
equivalent to require that Gu(k) = 1 and Lie(Gu) = 0. Indeed, if Lie(Gu) = 0,
then Gu is finite étale and (since k is algebraically closed) Gu(k) = 1 implies
that Gu = 1.

Example 2.1. For T a diagonalizable group scheme (e.g., a split torus) acting
linearly on a vector space V , the stabilizer Tv of a generic vector v ∈ V is
∩ω∈Ω ker ω where Ω ⊂ T ∗ is the set of weights of V , i.e., Tv is the kernel of the
action. (By the duality between diagonalizable group schemes and finitely gen-
erated abelian groups, this is a statement about group schemes.) In particular,
T acts generically freely on V if and only if Ω spans T ∗.

Similarly, the stabilizer T[v] of a generic element [v] ∈ P(V ) is ∩ω,ω′ ker(ω−
ω′), so T acts generically freely on P(V ) iff the set of differences ω − ω′ span
T ∗.

For other groups G, we have the following well-known lemma, see for ex-
ample [16, Lemma 2.2].

Lemma 2.2. Suppose G is connected and X is irreducible. If there is a field
K ⊇ k and an element x0 ∈ X(K) such that Gx0 is finite étale, then there is
an n ≥ 1 and a nonempty open U ⊆ X such that, for every algebraically closed
field E ⊇ k and every u ∈ U(E), Gu is finite étale and |Gu(E)| = n. �

Note that finding some x0 with Gx0 = 1 does not imply that G acts gener-
ically freely on X; it is common that such an x0 will exist in cases where Gx is
finite étale but �=1 for generic x. This was pointed out already in [2]; see [21]
for more discussion and examples.

Nonetheless, Lemma 2.2 may be used to prove that an action is generically
free as follows. Suppose G, X, and the action of G on X can be defined over
a countable algebraically closed field F and that X is unirational, i.e., there
is an F -defined dominant rational map φ : A

d ��� X for some d. Adjoin
d indeterminates a1, . . . , ad to F and calculate Gx0 for x0 = φ(a1, . . . , ad).
As F is countable, for K an uncountable algebraically closed field containing
F , the elements of A

d(K) with algebraically independent coordinates are the
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complement of countably many closed subsets, so they are dense. Therefore,
modifying φ by an F -automorphism of A

d, the calculation of Gx0 implicitly
also calculates Gx for x in a dense subset. In particular, if Gx0 = 1, then the
lemma gives that G acts generically freely on X.

Groups whose identity component is a torus. Suppose that G is an algebraic
group whose identity component is a torus T . As k is assumed algebraically
closed, the component group G/T is a finite constant group. We are interested
in representations V of G such that G acts generically freely on V or P(V ).
Evidently, it is necessary that T acts faithfully on V or P(V ), respectively.

Lemma 2.3. Let G be an algebraic group with identity component a torus T .
Suppose that G acts linearly on a vector space V such that

1. every weight of V has multiplicity 1, and
2. for Ω the set of weights of V, G/T acts faithfully on the kernel of the map

ψ : ⊕ω∈ΩZ 
→ T ∗ given by (nω) 
→ ∑
ω nωω.

If T acts faithfully on V (resp., P(V )), then G acts generically freely on V
(resp., P(V )).

We give a concrete proof. Alternatively, one could adapt the proof of [34,
Lemma 3.3].

Proof. As G is the extension of a finite constant group by a torus, it and the
representation V are defined over the algebraic closure of the prime field in k.
Put K for the algebraic closure of the field obtained by adjoining independent
indeterminates cχ to k for each weight χ of V . Fix elements vχ ∈ V generating
the χ weight space for each χ and put v :=

∑
χ cχvχ ∈ V ⊗ K.

If T acts faithfully on P(V ), put S := G[v]. Otherwise T acts faithfully on V ,
and we put S := Gv. By the discussion following Lemma 2.2, it suffices to show
that S = 1. Now, Lie(S) is contained in the subalgebra of Lie(G) = Lie(T )
stabilizing [v], resp. v, which is zero by hypothesis, so S is finite étale. As
S ∩ T = 1 by Example 2.1, the map G → G/T restricts to an isomorphism
from S to its image.

For sake of contradiction, suppose there exists an s ∈ S(K) mapping to a
non-identity element w in (G/T )(K). Pick n ∈ G(k) with the same image w,
so s = nt for some t ∈ T (K). Now nvχ = mχvwχ for some mχ ∈ k×, and we
have an equation

sv = ntv =
∑

χ

cχχ(t)mχvwχ,

hence χ(t) = δ(s)cwχ/(cχmχ) for all χ, where δ(s) := sv/v ∈ K×. As S is
finite étale, the homomorphism δ : S → Gm has image the a-th roots of unity
for some a, hence δ(s) ∈ k×.

By hypothesis, there exist χ1, . . . , χr ∈ Ω and nonzero z1, . . . , zr ∈ Z such
that

∑
ziχi = 0 in T ∗, yet the tuple (zχ) ∈ ⊕χ∈ΩZ is not fixed by w where
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zχ = zi if χ = χi and zχ = 0 otherwise. As
∑

ziχi = 0, we have

1 =
∏

i

(
δ(s)cwχi

cχi
mχi

)zi

, (2.4)

an equation in K, where δ(s) and the mχi
belong to k×. But the indeterminates

appearing in the numerator correspond to the tuple (zw·χ) whereas those in
the denominator correspond to (zχ), so the equality (2.4) is impossible and
S(K) = 1. �

Example 2.5. Suppose there is an element −1 ∈ (G/T )(k) that acts by −1 on
T ∗. Then we may partition Ω\ {0} as P

∐ −P for some set P . If |P | > dim T ,
then −1 acts nontrivially on ker ψ. Indeed, there are nπ ∈ Z for π ∈ P , not
all zero, so that

∑
nππ = 0 in T ∗, which provides an element of kerψ that is

moved by −1.

The group AGL1. The following result will be used for groups of type C.
Let k be an algebraically closed field of characteristic p ≥ 0. Let X be the

variety of monic polynomials of degree n over k. Of course, X is isomorphic to
affine space A

n and can also be identified with A
n/Sn (where the coordinates

are just the roots of the polynomial). Let X0 be the subvariety of X such that
the coefficient of xn−1 is 0 (i.e., the sum of the roots of f is 0). Let G = AGL1,
the group with k-points {( c b

0 1 ) | c ∈ k×, b ∈ k}, so G is a semidirect product
Gm � Ga and is isomorphic to a Borel subgroup of PGL2. An element g ∈ G
acts on A

1 by y 
→ cy + b and we can extend this to an action on X (by acting
on each root of f). Note that G preserves X0 if and only if p divides n. In any
case Gm does act on X0.

Lemma 2.6. If p does not divide n > 2, then Gm acts generically freely on X0.
If p divides n and n > 4, then G acts generically freely on X0.

Proof. We just give the proof of the group of k-points. The proof for the Lie
algebra is identical.

Note that if c = (0, c) ∈ k× and f has distinct roots, then c fixes f implies
that cn(n−1) = 1 since c preserves the discriminant of f . In particular, there
are only finitely many possibilities for c.

Note that the dimension of the fixed point space of multiplication by c on
X has dimension at most n/2 and so the fixed point space on X0 is a proper
subvariety (because n > 2) and has codimension at least 2 if n > 4.

If p does not divide n, then we see that there are only finitely many elements
of k× which have a fixed space which intersects the open subvariety of X0

consisting of elements with nonzero discriminant. Thus, the finite union of
these fixed spaces is contained in a proper subvariety of X0 whence for a
generic point the stabilizer is trivial.

Now suppose that p divides n. Then translation by b has a fixed space
of dimension n/p ≤ n/2 on X and so similarly the fixed space on X0 has
codimension at least 2 for n > 4.



Vol. 107 (2016) Essential dimension of algebraic groups 107

There is precisely one conjugacy class of nontrivial unipotent elements in
G and this class has dimension 1. Thus the union of all fixed spaces of non-
trivial unipotent elements of G is contained in a hypersurface for n > 4. Any
semisimple element of G is conjugate to an element of k× (i.e., to an element
of the form (0, c)), and so there are only finitely many such conjugacy classes
which have fixed points on the locus of polynomials with nonzero discriminant.
Again, since each class is 1-dimensional and each fixed space has codimension
greater than 1, we see that the union of all fixed spaces is contained in a
hypersurface of X0 for n > 4. �

If n = 4 and p = 2, then any f ∈ X0 is fixed by a translation and so the
action is not generically free.

3. Essential dimension. The essential dimension of an affine group scheme G
over a field k can be defined as follows. For each extension K of k, write
H1(K,G) for the cohomology set relative to the fppf (= faithfully flat and
finitely presented) site as defined in, for example, [45]. For each x ∈ H1(K,G),
we define ed(x) to be the minimum transcendence degree of K0 over k for
k ⊇ K0 ⊇ K such that x is in the image of H1(K0, G) → H1(K,G). The
essential dimension of G, denoted ed(G), is defined to be max ed(x) as x
varies over all extensions K of k and all x ∈ H1(K,G).

If V is a representation of G on which G acts generically freely, then
ed(G) ≤ dim V −dim G, see, e.g., [32, Prop. 3.13]. We can decrease this bound
somewhat by employing the following.

Lemma 3.1. Suppose V is a representation of an algebraic group G. If there is
a G-equivariant dominant rational map V ��� X for a G-variety X on which
G acts generically freely, then ed(G) ≤ dim X − dim G.

Proof. Certainly, G must act generically freely on V . In the language of [14] or
[32, p. 424], then V is a versal and generically free G-variety and the natural
map V ��� X is a G-compression. Therefore, referring to [32, Prop. 3.11], we
find that ed(G) ≤ dim X − dim G. �
4. The short root representation. Let G be an adjoint simple algebraic group
and put V for the Weyl module with highest weight the highest short root.
Fixing a maximal torus T in G, the weights of this representation are 0 (with
some multiplicity) and the short roots Ω (each with multiplicity 1), and we
put V for V modulo the zero weight space. It is a module for NG(T ).

Proposition 4.1. Suppose k is algebraically closed. If G is of type An (n ≥ 2),
Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, or F4, then NG(T ) acts generically freely
on P(V ) and

ed(NG(T )) ≤ |Ω| − dim T − 1.

The inequality in the proposition is reminiscent of the one in [24, Th. 1.3].

Example 4.2. The group PGLn is adjoint of type An−1, and we identify it
with the quotient of GLn by the invertible scalar matrices. We may choose
T ⊂ PGLn to be the image of the diagonal matrices, and NG(T ) is the image
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of the monomial matrices. The representation V is the space of matrices, with
zeros on the diagonal, on which NG(T ) acts by conjugation.

With this notation, for type A1, the stabilizer in NG(T ) of a generic element
v :=

(
0 x
y 0

)
of V is Z/2, with nontrivial element the image of v itself. So type

A1 is a genuine exclusion from the proposition.

Proof of Proposition 4.1. It suffices to prove that NG(T ) acts generically freely,
for then the inequality follows by Lemma 3.1. We apply Lemma 2.3.

For every short root α, there is a short root β such that 〈β, α〉 = ±1. (If
α is simple, take β to be simple and adjacent to α in the Dynkin diagram.
Otherwise, α is in the Weyl orbit of a simple root.) Thus, the kernel of T →
PGL(V ) is contained in the kernel of β −sα(β) = ±α. As the lattice generated
by the short roots α is the root lattice T ∗, it follows that T acts generically
freely on P(V ).

So it suffices to verify Lemma 2.3(2). Fix w �= 1 in the Weyl group; we find
short roots χ1, . . . , χr such that

∑
χi = 0 and the set {χi} is not w-invariant.

If w = −1, then take χ1, χ2 to be non-orthogonal short simple roots. They
generate an A2 subsystem and we set χ3 := −χ1 − χ2. (Alternatively, apply
Example 2.5.) This proves the claim for type F4: the kernel of the G/T -action
on kerψ is a normal subgroup of the Weyl group not containing −1, and
therefore it is trivial.

If G has type A, D, or E, then all roots are short. As w �= ±1, there is a
short simple root χ1 such that w(χ1) �= ±χ1. (Indeed, otherwise there would
be simple roots α, α′ such that w(α) = α, w(α′) = −α′, yet α and α′ are
adjacent in the Dynkin diagram.) Take χ2 = −χ1.

For type Cn (n ≥ 3), as in [6] we may view the root lattice Z[Φ] as contained
in a copy of Z

n with basis ε1, . . . , εn. If the kernel of the G/T -action on ker ψ
does not contain −1, it contains the group H isomorphic to (Z/2)n−1 consisting
of those elements that send εi 
→ −εi for an even number of indexes i and fix
the others. Taking χ1 = ε1 − ε2, χ2 = ε2 − ε3, and χ3 = −χ1 − χ2 gives a set
{χi} not stabilized by H. �

5. Groups of type C: proof of Theorem 1.3. Let G be the adjoint group of
type Cn for n > 3 over an algebraically closed field k of characteristic p. Let
W := L(ω2) be the irreducible module for G with highest weight ω2 where
ω2 is the second fundamental dominant weight (as numbered in [6]). We view
W as the unique irreducible nontrivial G-composition factor of Y := ∧2(V )
where V is the natural module for Sp2n. We recall that Y = W ⊕ k if p does
not divide n. If p divides n, then Y is uniserial of length 3 with 1-dimensional
socle and radical. Any element in Y has characteristic polynomial f2 where f
has degree n, and the radical Y0 of Y is the set of elements with the roots of
f summing to 0. (Note that aside from characteristic 2, Y0 are the elements of
trace 0 in Y .)

In particular, dimW = 2n2 − n − 1 if p does not divide n, and dimW =
2n2 − n − 2 if p does divide n.

As in [20], we view Y as the set of skew adjoint operators on V with respect
to the alternating form defining Sp2n with G acting as conjugation on Y .
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Proposition 5.1. If n > 3 and (n, p) �= (4, 2), then G acts generically freely on
W ⊕ W and on P(W ) × P(W ).

Proof. Any element y ∈ Y is conjugate to an element of the form diag(A,A�)
acting on a direct sum of totally singular subspaces. A generic element of Y
is thus an element where A is semisimple regular. Writing V = V1 ⊥ · · · ⊥ Vn

where the Vi are 2-dimensional nonsingular spaces on which y acts as a scalar,
we see that a generic point of Y has stabilizer (as a group scheme) Sp×n

2 =
SL×n

2 in Sp2n (and by [20], this is precisely the intersection of two generic
conjugates of Sp2n in SL2n). The same argument shows that this is true for a
generic point of Y0.

In particular, if p does not divide n, the same is true for W = Y0. It follows
by Lemma 2.6 that for generic w ∈ W , gw = cw for g ∈ G and c ∈ k× implies
that c = 1. Thus, the stabilizer of a generic point in P(W ) still has stabilizer
Sp×n

2 = SL×n
2 .

If p does divide n, then W = Y0/k where we identify k with the scalar
matrices in Y . We claim that (for n > 4) the generic stabilizer is still Sp×n

2 =
SL×n

2 on P(W ). Again, this follows by Lemma 2.6 since if gw = cw + b with
b, c ∈ k and g ∈ G, then for w generic, b = 0 and c = 1.

It is straightforward to see that the same is true for W , because for a generic
point anything stabilizing y modulo scalars must stabilize y (see Lemma 2.6).
Thus, in all cases, the generic stabilizer of a point in P(W )×P(W ) is the same
as for Y ⊕ Y .

Consider GL2n acting on Y ⊕Y ⊕Y . The stabilizer of a generic point of Y is
clearly a conjugate of Sp2n. It follows from [20] that the stabilizer of a generic
element of Y ⊕ Y ⊕ Y is central. (The result is only stated for the algebraic
group but precisely the same proof holds for the group scheme.) Thus, the
same holds for Sp2n acting on Y ⊕Y and so also on P(W )× P(W ). The result
follows. �

We can now improve and extend Lemire’s bound for ed(PSp2n) from [24,
Cor. 1.4] both numerically and to fields of all characteristics.

Proof of Theorem 1.3. For the first inequality, the group GL2n /μ2 has an open
orbit on ∧2(k2n), and the stabilizer of a generic element is PSp2n. Conse-
quently, the induced map H1(K,PSp2n) → H1(K,GL2n /μ2) is surjective for
every field K, see [15, Th. 9.3] or [42, §III.2.1]. (Alternatively, the domain
classifies pairs (A, σ) where A is a central simple algebra of degree 2n and
exponent 2 and σ is a symplectic involution [23, 29.22], and the codomain
classifies central simple algebras of degree 2n and exponent 2. The map is the
forgetful one (A, σ) 
→ A.) Thus ed(GL2n /μ2) ≤ ed(PSp2n).

For the second inequality, assume that n ≥ 4 and if n = 4, then p �= 2. As
PSpn acts generically freely on P(W ) × P(W ), ed(G) ≤ 2(dim P(W )) − dim G
by Lemma 3.1. Theorem 1.3 follows because dim P(W ) = 2n2 − n − δ where
δ = 3 if p divides n and 2 otherwise.

If n = 4 and p = 2, G still acts generically freely on Y0⊕Y0. Indeed, arguing
as above we see that G acts generically freely on P(Y0) × P(Y0) and the result
follows in this case. �
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6. Groups of type A: proof of Theorem 1.4. For the proofs of Theorems 1.1,
1.4, and 1.5, we use the fact that ed(NG(T )) ≥ ed(G) because for every field
K ⊇ k, the natural map H1(K,NG(T )) → H1(K,G) is surjective (which
in turn holds by [42, §III.2.2, Lemma 1] because for K separably closed, all
maximal K-tori in G are G(K)-conjugate).

Let T be a maximal torus in G := PGLn for some n ≥ 4. The representation
V of NG(T ) from Section 4 may be identified with the space of n-by-n matrices
with zeros on the diagonal. It decomposes as V = ⊕n

i=1Wi, where Wi is the
subspace of matrices whose nonzero entries all lie in the i-th row; NG(T )
permutes the Wi’s.

Lemma 6.1. If n ≥ 4, then NG(T ) acts generically freely on X := P(W1) ×
P(W2) × · · · × P(Wn).

Proof. Each element of the maximal torus T is the image of a diagonal matrix
t := diag(t1, . . . , tn) under the surjection GLn → PGLn. The kernel of the
action of T on P(Wi) are the elements such that tit

−1
j are equal for all j �= i.

Thus the kernel of the action on X is the subgroup of elements with ti = tj for
all i, j, so T acts faithfully on X. For generic x ∈ X, the identity component
of NG(T )x is contained in Tx, so Lie(NG(T )x) ⊆ Lie(T )x = 0, i.e., NG(T )x is
finite étale.

To show that the (concrete) group S of k-points of NG(T )x is trivial, it
suffices to check 1 �= s ∈ S that

dim sT + dim Xs < dim X (6.2)

(compare, for example, [16, 10.2, 10.5]). As s �= 1, it permutes the Wi’s non-
trivially. If s moves more than two of the Wi’s, then

dim X − dim Xs ≥ 2 dim P(Wi) = 2(n − 2).

But of course dim sT ≤ n − 1, verifying (6.2) for n ≥ 4.
If s interchanges only two of the Wi’s, i.e., it is a transposition, then dimX−

dim Xs = n−2, but dim sT = 1 < n−2, and again (6.2) has been verified. �
Example 6.3. ed(PGL2) = 2, regardless of char k, so type A1 is a genuine excep-
tion to Theorems 1.1 and 1.4 (as dim PGL2 −2(rank PGL2) − 1 = 0). Indeed,
H1(k,G) classifies quaternion algebras over k, i.e., the subgroup Z/2 × μ2

of PGL2 gives a surjection in flat cohomology H1(k, Z/2) × H1(k, μ2) →
H1(k,PGL2), so ed(PGL2) ≤ 2. On the other hand, the connecting homo-
morphism H1(K,PGL2) → H2(K,μ2), which sends a quaternion algebra to
its class in the 2-torsion of the Brauer group of K, is nonzero for some extension
K, and therefore also ed(PGL2) ≥ 2.

Entirely parallel comments apply to PGL3, in which case the surjectivity
H1(k, Z/3)×H1(k, μ3) → H1(k,PGL3) is due to Wedderburn [23, 19.2]. Thus
ed(PGL3) = 2 and PGL3 is a genuine exception to Theorem 1.4.

The proof of Theorem 1.4 requires a couple more lemmas.

Lemma 6.4. Suppose 1 → A → B → C → 1 is an exact sequence of group
schemes over k. If H1(K,C) = 0 for every K ⊇ k, then ed(B) ≤ ed(A) ≤
ed(B) + dim C.
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Proof. For every K, the sequence

C(K) → H1(K,A) → H1(K,B) → 1 (6.5)

is exact. From here the argument is standard. The surjectivity of the middle
arrow gives the first inequality. For the second, take α ∈ H1(K,A). There is a
field K0 lying between k and K such that trdegk K0 ≤ ed(B) and an element
α0 ∈ H1(K0, A) whose image in H1(K,B) agrees with that of α. Thus, there
is a c ∈ C(K) such that c · resK/K0(α0) = α. There is a field K1 lying between
k and K such that trdegk K1 ≤ dim C such that c belongs to C(K1) ⊆ C(K).
In summary,

ed(α) ≤ trdegk(K1K0) ≤ trdegk K1 + trdegk K0 ≤ ed(B) + dim C.

As this holds for every K and every α ∈ H1(K,A), the conclusion follows. �
Lemma 6.4 applies, for example, to A = SLn /μm, B = GLn /μm, and

C = Gm. In that case, one can tease out whether ed(SLn /μm) = ed(GLn /μm)
or ed(GLn /μm) + 1 by arguing as in [11].

Lemma 6.6. Suppose m divides n ≥ 2. Then

ed(GLn /μm) ≤ ed(PGLn) + n/m − 1.

We omit the proof, which is the same as that for [4, Lemma 7.1] apart from
cosmetic details.

Proof of Theorem 1.4. In view of Lemmas 6.1 and 3.1, we find that

ed(PGLn) ≤ ed(NG(T )) ≤ dim X − dim NG(T ) = n2 − 3n + 1.

Therefore Lemma 6.6 gives

ed(GLn /μm) ≤ n2 − 3n + n/m, (6.7)

and Lemma 6.4 gives the required bound on ed(SLn /μm). �
Lemma 6.8. Suppose m divides n, and write n = n′q where n′ and m have the
same prime factors and gcd(n′, q) = 1. Then H1(K,GLn /μm) =
H1(K,GLn′ /μm) for every extension K of k and ed(GLn /μm) =
ed(GLn′ /μm).

Proof. The set H1(K,GLn /μm) is in bijection with the isomorphism classes
of central simple K-algebras A of degree n and exponent dividing m. As n′ and
q are coprime, every such algebra can be written uniquely as A′ ⊗ B where A′

has degree n′ and B has degree q [19, 4.5.16]. However, B is split as its expo-
nent must divide gcd(q, exp A), i.e., A ∼= Mq(A′). That is, H1(K,GLn /μm) =
H1(K,GLn′ /μm). As this holds for every extension K of k, the claim on es-
sential dimension follows. �
Remark 6.9. One can eliminate m from the bound appearing in Theorem 1.4
to obtain

ed(SLn /μm) ≤ n2 − 3n + 1 + n/4 for m dividing n ≥ 4.

To check this, assume m < 4. If m = 1, ed(SLn) = 0. If m = 2, then Theo-
rem 1.3 gives a stronger bound.
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If m = 3, then write n = n′q for n′ = 3a for some a ≥ 1 as in Lemma 6.8.
If a = 1, then n ≥ 6 and ed(GLn /μ3) = ed(PGL3) = 2 by Lemma 6.8, which
is less than n2 −3n+n/4. If a > 1, then ed(GLn /μ3) ≤ ed(PGLn′)+n′/3−1;
as n′ is odd and ≥ 9, [27] gives ed(PGLn′) ≤ 1

2 (n′ − 1)(n′ − 2), whence the
claim.

Remark 6.10. Here is another way to obtain an upper bound on ed(SLn /μm);
it is amusing because it requires char k = p to be nonzero. Fix an integer e ≥ 1
and ε = ±1, and set m := gcd(pe + ε, n). We will show that

ed(SLn /μm) ≤ n2 − n + 1. (6.11)

To see this, consider the GLn-module V := W ⊗ W [e] or W ∗ ⊗ W [e], where
W is the natural module kn, [e] denotes the e-th Frobenius twist, and where
we take the first option if ε = +1 and the second option if ε = −1. A scalar
matrix x ∈ GLn acts on V as xpe+ε, and therefore the action of SLn on V gives
a faithful representation of G := SLn /μm. We consider the action of NG(T )
on V for T a maximal torus in G, and apply Lemma 2.3 to see that NG(T )
acts generically freely on V and so obtain (6.11).

7. Minuscule representations of Esc
6 and Esc

7 : proof of Theorem 1.5. The
smallest nontrivial irreducible representations of G = Esc

6 or Esc
7 over C have

dimension 27 or 56 respectively. For each of these, the weights are a single orbit
Ω under the Weyl group and occur with multiplicity 1. (The highest weight
is minuscule in the sense of [6, §VI.1, Exercises 23, 24].) Put V for the Weyl
module of G with the same highest weight over the field k, as defined in [22].
It has the same weights as the corresponding module over C (and in particular
is irreducible).

Proposition 7.1. Let T be a maximal torus in a simply connected group G of
type Esc

6 or Esc
7 over an algebraically closed field k. Then NG(T ) acts generi-

cally freely on V .

Proof. We apply Lemma 2.3. The map G → GL(V ) is injective, so T acts
faithfully on V . It suffices to verify Lemma 2.3(2).

One can list explicitly the weights Ω of V and find X = {χ1, . . . , χ6} ⊂ Ω
with

∑
χi = 0 and χi �= ±χj for i �= j. It suffices, therefore, to check for

every minimal normal subgroup H of the Weyl group not containing −1, that
HX �= X. For this, it is enough to observe that H has no fixed lines on the
vector space C[Φ] generated by the roots Φ (because Z[Ω] = Z[Φ], so H fixes no
element of Ω) and that H has no orbits of size 2, 3, . . . , 6 (because its maximal
subgroups have index greater than 6).

For E6, H has order 25920 with largest maximal subgroups of index 27.
For E7, H is isomorphic to Sp6(F2) with largest maximal subgroups of index
28. The description of these Weyl groups from [6, Ch. IV, §4, Exercises 2 and
3] make it obvious that H does not preserve any line in C[Φ]. �
Proof of Theorem 1.5. The group F4 has 24 short roots, so by Proposition 4.1,
we have

ed(F4) ≤ ed(NG(T )) ≤ 24 − 4 − 1 = 19.
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For Esc
7 , we apply instead Proposition 7.1 to obtain the desired upper bound.

The group Esc
6 has a subgroup F4 × μ3 such that the map in cohomology

H1(K,F4 ×μ3) → H1(K,Esc
6 ) is surjective for every extension K ⊇ k, see [15,

9.12], hence ed(Esc
6 ) ≤ ed(F4) + 1. �

8. Proof of Theorem 1.1.

Proof. Suppose first that G has type An−1, i.e., G ∼= SLn /μm. Assume m > 1
for otherwise ed(G) = 0. It is claimed that ed(G) ≤ n2−2n. As ed(PGL3) = 2,
we may assume n ≥ 4. Combining Theorem 1.4 with the fact that 1+n/m ≤ n
gives the claim.

Now suppose that G is adjoint. If G is one of the types covered by Propo-
sition 4.1, then we are done by combining that proposition with the inequality
ed(G) ≤ ed(NG(T )). Type B was already addressed in the Introduction. For
type G2, the essential dimension is 3 because H1(K,G2) is in bijection with
the set of 3-Pfister quadratic forms over K for every field K containing k [23,
26.19].

Now suppose that G is neither type A nor adjoint. If G has type B, then G is
a spin group, so there is nothing to prove. If G has type C, then G = Sp2n and
ed(G) = 0. If G has type D, then the only remaining case to consider is G =
SO2n for n ≥ 4 and then ed(G) ≤ 2n−1 < 2n2−3n−1 = dim G−2(rank G)−1.
The two remaining cases are the simply connected groups of type E6 and E7

for which we refer to Theorem 1.5. �

9. Generic stabilizer for the adjoint action. As a complement to the above re-
sults, we now calculate the stabilizer in a simple algebraic group G of a generic
element in Lie(Ad(G)). (Note that, in case G = SL2, we are discussing the ac-
tion on Lie(PGL2), not on Lie(SL2), and the two Lie algebras are distinct if
char k = 2.) We include this calculation here because the methods are similar
to the previous results. The results are complementary, in the sense that pre-
viously we considered NG(T ) acting on representations with no zero weights,
and in this section we consider NG(T ) acting on Lie(Ad(T )), for which zero is
the only weight. The main result, Proposition 9.2, is used in [17].

After a preliminary result, we will calculate the stabilizer of a generic ele-
ment of the adjoint representation. Let Φ be an irreducible root system, and
put W for its Weyl group and Q for its root lattice. For each prime p, tensoring
Q with the finite field Fp gives a homomorphism

ρp : 〈W,−1〉 → GLrank Q(Fp).

Lemma 9.1. The kernel of ρp is (Z/2)n if Φ has type Bn for some n ≥ 2 and
p = 2. Otherwise, ker ρp = 〈−1〉 if p = 2 and ker ρp = 1 for p �= 2.

Proof. If p �= 2, ker ρp = 1 by an old theorem of Minkowski (see [35] and also
[43, Lemma 1.1]). So we may assume that p = 2. It also follows by a similar
argument that ker ρ2 is a 2-group [43, Lemma 1.1’]. Clearly −1 ∈ ker ρ2. Thus,
the result follows immediately for G of type An for n �= 3, G2, or En since the
only normal 2-subgroups in these cases are the subgroup of order 2 containing
−1. It is straightforward to check the result for the groups A3 = D3 and C3.
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Note that the root lattice of Dn−1 is a direct summand of Dn, n > 3, and any
normal 2-subgroup of the Weyl group of Dn of order greater than 2 intersects
the Weyl group of Dn−1 in a subgroup of order greater than 2. Thus, the result
for D3 implies the result for all Dn. Similarly, the result for C3 implies the
result for Cn, n > 3.

Finally, suppose Φ has type Bn for some n ≥ 2 and p = 2. Viewing Z
n as

having basis εi for 1 ≤ i ≤ n, we can embed Φ in Z
n by setting the simple

roots to be αi = εi − εi+1 for 1 ≤ i < n and αn = εn as in [6]. The Weyl group
W is isomorphic to (Z/2)n

�Sn, where (Z/2)n consists of all possible sign flips
of the εi and Sn acts by permuting the εi. The subgroup (Z/2)n obviously
acts trivially on Q ⊗ F2 (since there is a basis of eigenvectors for Q for this
subgroup of exponent 2). In fact, (Z/2)n is precisely the kernel of the action
of W on Q ⊗ F2, as it is easy to check for n < 5 and is clear for n ≥ 5. �

Proposition 9.2. Let G be a simple algebraic group. The action of G on Lie
(Ad(G)) has stabilizer in general position S, with identity component S◦ a
maximal torus in G. Moreover, S = S◦ unless char k = 2 and

1. G has type Bn for n ≥ 2; in this case S/S◦ ∼= (Z/2)n.
2. G has type A1, Cn for n ≥ 3, Dn for n ≥ 4 even, E7, E8, F4, or G2; in

this case S/S◦ ∼= Z/2 and the nontrivial element acts on S◦ by inversion.

Proof. Suppose first that G = Ad(G) and fix a maximal torus T of G. As G is
adjoint, the Lie algebra Lie(T ) is a Cartan subalgebra of Lie(G), and the nat-
ural map G×Lie(T ) → Lie(G) is dominant [13, XIII.5.1, XIV.3.18]. Therefore,
it suffices to verify that the stabilizer S in G of a generic vector t in Lie(T )
is as claimed. The subgroup of G transporting t in Lie(T ) is the normalizer
NG(T ) [13, XIII.6.1(d)(viii)], hence S is the centralizer of t in NG(T ), and it
follows that S◦ = T and S/S◦ is isomorphic to the group of elements w of the
Weyl group fixing t, compare [44, Lemma 3.7]. As G is adjoint, the element
t is determined by its action on Lie(G), i.e., by the values of the roots on t;
in particular, w(t) = t if and only if w acts trivially on Q ⊗ k. Lemma 9.1
completes the proof for G adjoint.

In case G is not adjoint, the representation factors through the central
isogeny G → Ad(G), and Gt is the inverse image of the generic stabilizer in
Ad(G). �

To summarize the proof, the identity component of CG(t) is T by [13],
so CG(t) is contained in NG(T ) and is determined by its image in the Weyl
group NG(T )/T this statement is included in [44]. What is added here is the
calculation of the component group CG(t)/T , and in particular that it need
not be connected.

One can also compute the generic stabilizer for the action of G on the
projective space P(Lie(G)) of Lie(G) by the same argument. If p = 2, since
PGLn(F2) = GLn(F2), we see that the generic stabilizers for P(Lie(G)) and
Lie(G) are the same. If p is odd, an easy argument shows that a generic stabi-
lizer is a maximal torus if −1 is not in the Weyl group and is just a maximal
torus extended by −1 if −1 is in the Weyl group. (Clearly, −1 does act by
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−1 on Lie(T ), T a maximal torus.) In any case, the connected component of
the stabilizer of a generic line in Lie(G) is contained in the normalizer of a
maximal torus, as we know from [13].

Corollary 9.3. Suppose V is a faithful representation of an algebraic group G
over an algebraically closed field k. If

1. G is connected reductive and char k �= 2 or
2. G is simple of type Bn, Cn, or Dn,

then ed(G) ≤ dim V .

If one assumes that char k = 0, then the conclusion holds with milder
hypotheses on G. This follows easily from the main result in [10], see [8,
Lemma 13.9]. We use an entirely different argument.

Proof. Pick a maximal torus T in G. If char k �= 2, put t for the Lie algebra of
the image of T in Ad(G). By Lemma 9.1, the stabilizer in NG(T ) of a generic
element of t is T . Thus, NG(T ) acts generically freely on V ⊕ t and the claim
on ed(G) follows because dim t ≤ dim T .

If char k = 2 and G has type Bn with n ≥ 2, the Weyl group W :=
NG(T )/T is a semi-direct of (Z/2)n and Sn. In particular, W embeds in
AGLn(F2), the F2-points of the group of affine transformations of A

n
F2

. Clearly,
AGLn embeds in GLn+1 = PGLn+1. Thus, W acts faithfully, hence generically
freely on P

n, NG(T ) acts generically freely on V ⊕P
n, and the claim on ed(G)

follows from Lemma 3.1. Since the Weyl groups of Cn and Dn equal or embed
in the Weyl group of Bn, the same is true for those groups. For type B1 = A1,
S2 injects into GL2(F2) = PGL2(F2). �

While the corollary gives cheap upper bounds on ed(G), it is not sufficient
to deduce Theorem 1.1 even in the coarse sense of big-O notation and in good
characteristic: the minimal faithful representations of SLn /μm are too big for
3 ≤ m < n, being at least cubic in n whereas the dimension of the group is
n2 − 1.

The hypotheses in the corollary could be relaxed, but we ignore this because
the rest of this article already proves stronger bounds on ed(G). We include
(1) here because it follows so easily from the results of this section, and we
include the case (2) because we will use it for spin and half-spin groups in the
next section.

Action of G on Lie(G) ⊕ Lie(G). In case k = C, it is well-known that an
adjoint simple group G acts generically freely on Lie(G) ⊕ Lie(G). However,
we have also the following:

Example 9.4. Maintaining the notation of Example 4.2, the Lie algebra pgl2
of PGL2 may be identified with the Lie algebra gl2 of 2-by-2 matrices, modulo
the scalar matrices. Write T for the (image of the) diagonal matrices in PGL2.
A generic element v ∈ pgl2 is the image of some ( x y

z w ). The normalizer of
[v] ∈ P(pgl2) in NG(T ) is Z/2, with nontrivial element the image g of

(
0 y

−z 0

)
,

which satisfies gv = −v. If char k = 2, the same calculation shows that the
normalizer of v ∈ pgl2 is Z/2.
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The subgroup of PGL2 mapping a generic element of Lie(T ) into Lie(T )
is NG(T ), as was already used in the proof of Proposition 9.2. Therefore, the
stabilizer in G of a generic element of P(pgl2) ⊕ P(pgl2) equals the stabilizer
in NG(T ) of a generic element of P(pgl2), i.e., Z/2.

Moreover, if char k = 2, the stabilizer in PGL2 of a generic element in
pgl2 ⊕ pgl2 is Z/2.

We note that this is the only such example.

Proposition 9.5. Let G be an adjoint simple group. Then G acts generically
freely on P(Lie(G)) × P(Lie(G)) unless G has type A1. If G has type A1 and
char k �= 2, then G acts generically freely on Lie(G) ⊕ Lie(G).

Proof. Pick a maximal torus T in G. The stabilizer in G of a generic element of
P(Lie(G))×P(Lie(G)) is contained in the intersection of two generic conjugates
of NG(T ). If G is not of type A1, then this intersection is 1 as in the proof of
[7, Cor. 10]. If G is of type A1 and char k �= 2, then we apply the preceding
example. �

Note that if p �= 2 and we consider the action of G on Lie(G), then a
generic stabilizer is a maximal torus and it is elementary to see that two
generic conjugates of a maximal torus intersect trivially.

10. Groups of type B and D. We have not yet discussed upper bounds for
the simply connected groups Spinn for n ≥ 7 of type B� for � ≥ 3 or D� for
� ≥ 4. Also, for Spinn with n divisible by 4 and at least 12, there is a quotient
Spinn /μ2 that is distinct from SOn; it is denoted HSpinn and is known as a
half-spin group.

The group G = Spinn with n > 14 or HSpinn with n > 16 acts generically
freely on a (half) spin representation or the sum of a half spin representation
and the vector representation Spinn → SOn by [2,36] if char k = 0 and [17] for
all characteristics. This gives an upper bound on ed(G), which is an equality
if char k �= 2, see [9,17].

We now give bounds for HSpin12 and HSpin16.

Lemma 10.1. For T a maximal torus in G := HSpinn for n divisible by 4 and
n ≥ 12, the group NG(T ) acts generically freely on the half-spin representation
of G.

Proof. Apply Lemma 2.3. The representation V is minuscule and T acts faith-
fully because G does so. The element −1 of the Weyl group acts nontrivially
on kerψ by Example 2.5 because 1

2 dim V = 2n/2−2 > n/2 = dimT . As −1 is
contained in every nontrivial normal subgroup of the Weyl group, the proof is
complete. �
Corollary 10.2. Over every algebraically closed field,

ed(HSpin12) ≤ 26 and ed(HSpin16) ≤ 120.

The remaining groups are Spinn with 7 ≤ n ≤ 14. In case char k �= 2, the
precise essential dimension is known by Rost, see [15,40,41]. The same meth-
ods, combined with the calculations of the generic stabilizers from [17], will
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provide upper bounds for ed(Spinn) in case char k = 2. But these methods
require detailed arguments, so for our purposes we note simply that Spinn

acts faithfully on the spin representation for n odd and on the direct sum
of the vector representation and a half-spin representation for n even; Corol-
lary 9.3 then provides an upper bound on ed(Spinn). This completes the task
of giving an upper bound on ed(G) for every simple algebraic group G over an
algebraically closed field k.
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