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Effect of drift of the generalized Brownian motion process: an
example for the analytic Feynman integral
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Abstract. In the theory of the analytic Feynman integral, the integrand
is a functional of the standard Brownian motion process. In this note,
we present an example of a bounded functional which is not Feynman
integrable. The bounded functionals discussed in this note are defined in
sample paths of the generalized Brownian motion process.
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1. Introduction. The purpose of this note is to illustrate an effect of drift of
the generalized Brownian motion process (GBMP). To do this, we discuss the
theory of analytic Feynman integrals. Frankly speaking, in order to emphasize
an effect of drift of GBMPs, we present an example of a bounded functional
which is not analytic Feynman integrable on the function space Ca,b[0, T ]. The
function space Ca,b[0, T ] is a probability space induced by a GBMP.

Let W ≡ C0[0, T ] denote one-parameter Wiener space; this is the space of
all real-valued continuous functions x on [0, T ] with x(0) = 0. Let M denote
the class of all Wiener measurable subsets of C0[0, T ] and let m be the Wiener
measure. Then, as is well known, (C0[0, T ],M,m) is a complete measure space.
The coordinate process W on C0[0, T ] × [0, T ] defined by (x, t) W−→ Wt(x) =
x(t) is a standard Brownian motion process (SBMP).

Next, let H ≡ C ′
0[0, T ] be the class of absolutely continuous functions x

from [0, T ] to R for which x(0) = 0 and with Dx ≡ dx/dt ∈ L2[0, T ], and let
D be the non-existent Lebesgue measure on H. In the heuristic setting of [26],
the Feynman path integral of a functional F on H is
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fq∫

H

F (x)dm(x) =
∫

H

F (x)
1
Zq

exp
{

iq

2
‖x‖2H

}
D(x),

where D is the heuristic version of Lebesgue measure, q ∈ R\{0}, and Zq

is taken to be a normalization constant for which 1
Zq

exp{ iq
2 ‖x‖2H}D(x) is a

probability measure on H. As is widely known, there is no true measure D and
Zq is, in fact, infinite. To head towards a rigorous definition, let (H,W,m) be
the abstract Wiener space with H ↪→ W . For each λ > 0, let us use the usual
informal expression for Wiener measure with variance λ−1 given by

dmλ(x) =
1

Zλ
exp

{
− λ

2
‖x‖2H

}
D(x).

Then a heuristic calculation shows that∫

H

F (x)dmλ(x) =
∫

H

F (x)
1

Zλ
exp

{
− λ

2
‖x‖2H

}
D(x)

=
∫

H

F (x)
1

Zλ
exp

{
− 1

2

∥∥√
λx

∥∥2

H

}
D(x)

=
∫

H

F (λ−1/2x)
1
Z1

exp
{

− 1
2
‖x‖2H

}
D(x)

=
∫

H

F (λ−1/2x)dm(x).

Thus, we should expect that the Feynman path integral of F on W is given
by

fq∫

W

F (x)dm(x) = lim
λ→−iq

∫

W

F (λ−1/2x)dm(x),

where one must first assume that λ → ∫
W

F (λ−1/2x)dm(x) has an ‘analytic
continuation’ in the right-half complex plane and that the above limit exists
appropriately. This description illustrates the ‘analytic Feynman integral ’ on
the classical Wiener space C0[0, T ].

The concept of the ‘analytic Feynman integral ’ on the Wiener space C0[0, T ]
was introduced by Cameron in [1]. In [3], Cameron and Storvick introduced a
Banach algebra S of the analytic Feynman integrable functionals. The func-
tionals in S are defined as a stochastic Fourier transform of complex measures
on L2[0, T ], and are bounded on C0[0, T ]. Other classes of the analytic Feyn-
man integrable functionals on C0[0, T ] can be found in [2,19,22–24,27–29].
But the ‘analytic Feynman integral’ cannot be interpreted as the integration
in standard measure theory.

On the other hand, in [5–7,9,14,15], the authors defined the generalized an-
alytic Feynman integral and the generalized analytic Fourier–Feynman trans-
form on the function space Ca,b[0, T ], and studied their properties and related
topics. The function space Ca,b[0, T ], induced by a GBMP, was introduced
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by Yeh in [30], and was used extensively in [4,8,10–13,20]. There have also
been several attempts to construct financial mathematical theories using this
process, see [18,21,25].

A GBMP on a probability space (Ω,Σ, P ) and a time interval [0, T ] is
a Gaussian process Y ≡ {Yt}t∈[0,T ] such that Y0 = c almost surely for some
constant c ∈ R, and for any set {t0, t1, . . . , tn} ⊂ [0, T ] with 0 = t0 < t1 < · · · <
tn ≤ T and any Borel set B ⊂ R

n, the measure P (It1,...,tn,B) of the cylinder
set It1,...,tn,B of the form It1,...,tn,B =

{
ω ∈ Ω : (Yt1(ω), . . . , Ytn

(ω)) ∈ B
}

is
given by

⎛
⎝(2π)n

n∏
j=1

(
b(tj) − b(tj−1)

)
⎞
⎠

−1/2

×
∫

B

exp

⎧⎨
⎩−1

2

n∑
j=1

((ηj − a(tj)) − (ηj−1 − a(tj−1)))2

b(tj) − b(tj−1)

⎫⎬
⎭ dη1 · · · dηn

where η0 = c, a(t) is a continuous real-valued function on [0, T ], and b(t) is
an increasing continuous real-valued function on [0, T ]. Thus, the GBMP Y
is determined by the continuous functions a(·) and b(·). For more details, see
[30,31]. Note that when c = 0, a(t) ≡ 0, and b(t) = t on [0, T ], the GBMP
reduces to a SBMP.

In this note, we set c = a(0) = b(0) = 0. Then the function space Ca,b[0, T ]
induced by the GBMP Y determined by the a(·) and b(·) can be considered
as the space of continuous sample paths of Y , see [4–16,20], and one can see
that for each t ∈ [0, T ],

et(x) ∼ N
(
a(t), b(t)

)
,

where et : Ca,b[0, T ] × [0, T ] → R is the coordinate evaluation map given by
et(x) = x(t) and N(m,σ2) denotes the normal distribution with mean m and
variance σ2. We are obliged to point out that a SBMP is stationary in time
and is free of drift, whereas a GBMP is generally not stationary in time and
is subject to a drift a(t).

As mentioned above, the SBMP used in [1–3,19,22–24,27–29] is stationary
in time and is free of drift. However, the stochastic process used in this paper,
as well as in [4–16,18,20,21,25,30], is non-stationary in time and is subject to
a drift because

E[Ys(w)Yt(w)] = min{b(s), b(t)} + a(s)a(t),

see [31, Theorem 17.1]. It turns out, as noted in [5, Remark 3.1] and [14,
Remark 4.2], that the inclusion of a drift term a(t) makes establishing the ex-
istence of the generalized analytic Feynman integral of functionals on Ca,b[0, T ]
very difficult.

In this note, we present an example of a bounded functional which is not
generalized analytic Feynman integrable on the function space Ca,b[0, T ].
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2. The function space Ca,b[0, T ]. In this section, we first present a brief back-
ground and some well-known results about the function space Ca,b[0, T ] in-
duced by GBMP.

Let a(t) be an absolutely continuous real-valued function on [0, T ] with
a(0) = 0 and a′(t) ∈ L2[0, T ], and let b(t) be a strictly increasing, contin-
uously differentiable real-valued function with b(0) = 0 and b′(t) > 0 for
each t ∈ [0, T ]. The generalized Brownian motion process Y determined by
a(t) and b(t) is a Gaussian process with mean function a(t) and covariance
function r(s, t) = min{b(s), b(t)}. For more details, see [5,10,14,30,31]. By
[31, Theorem 14.2], the probability measure μ induced by Y , taking a sepa-
rable version, is supported by Ca,b[0, T ] (which is equivalent to the Banach
space of continuous functions x on [0, T ] with x(0) = 0 under the sup norm).
Hence, (Ca,b[0, T ],B(Ca,b[0, T ]), μ) is the function space induced by Y where
B(Ca,b[0, T ]) is the Borel σ-field of Ca,b[0, T ]. We then complete this func-
tion space to obtain the measure space (Ca,b[0, T ],W(Ca,b[0, T ]), μ) where
W(Ca,b[0, T ]) is the set of all Wiener measurable subsets of Ca,b[0, T ].

Remark 2.1. The function space Ca,b[0, T ] reduces to the Wiener space
C0[0, T ], considered in papers [1–3,19,22–24,27–29] if and only if a(t) ≡ 0
and b(t) = t for all t ∈ [0, T ].

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable provided
ρB is W(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-invariant measurable
set N is said to be a scale-invariant null set provided μ(ρN) = 0 for all ρ >
0. A property that holds except on a scale-invariant null set is said to hold
scale-invariant almost everywhere(s-a.e.). A functional F is said to be scale-
invariant measurable provided F is defined on a scale-invariant measurable set
and F (ρ · ) is W(Ca,b[0, T ])-measurable for every ρ > 0. If two functionals F
and G defined on Ca,b[0, T ] are equal s-a.e., we write F ≈ G. Note that the
relation “≈” is an equivalence relation.

Let L2
a,b[0, T ] (see [5,14]) be the space of functions on [0, T ] which are

Lebesgue measurable and square integrable with respect to the Lebesgue–
Stieltjes measures on [0, T ] induced by a(·) and b(·), i.e.

L2
a,b[0, T ] =

⎧⎨
⎩v :

T∫

0

v2(s)db(s) < +∞ and

T∫

0

v2(s)d|a|(s) < +∞
⎫⎬
⎭

where |a|(·) denotes the total variation function of a(·). Then L2
a,b[0, T ] is a

separable Hilbert space with inner product defined by

(u, v)a,b =

T∫

0

u(t)v(t)dm|a|,b(t) ≡
T∫

0

u(t)v(t)d[b(t) + |a|(t)],

where m|a|,b denotes the Lebesgue–Stieltjes measure induced by |a|(·) and b(·).
In particular, note that ‖u‖a,b ≡ √

(u, u)a,b = 0 if and only if u(t) = 0 a.e. on
[0, T ]. For more details, see [5,14].
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Let

C ′
a,b[0, T ] =

⎧⎨
⎩w ∈ Ca,b[0, T ] : w(t) =

t∫

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

⎫⎬
⎭ .

For w ∈ C ′
a,b[0, T ], with w(t) =

∫ t

0
z(s)db(s) for t ∈ [0, T ], let D : C ′

a,b[0, T ] →
L2

a,b[0, T ] be defined by the formula

Dw(t) = z(t) =
w′(t)
b′(t)

. (2.1)

Then C ′
a,b ≡ C ′

a,b[0, T ] with inner product

(w1, w2)C′
a,b

=

T∫

0

Dw1(t)Dw2(t)db(t)

is a separable Hilbert space.
One can see that L2

a,b[0, T ] and C ′
a,b[0, T ] are (topologically) homeomorphic

under the operator D given by Eq. (2.1). The inverse operator of D is given
by

(D−1z)(t) =

t∫

0

z(s)db(s), t ∈ [0, T ].

In this note, in addition to the conditions put on a(t) above, we now add
the condition

T∫

0

|a′(t)|2d|a|(t) < +∞. (2.2)

Then the function a : [0, T ] → R satisfies the condition (2.2) if and only if a(·)
is an element of C ′

a,b[0, T ]. Under the condition (2.2), we observe that for each
w ∈ C ′

a,b[0, T ] with Dw = z,

(w, a)C′
a,b

=

T∫

0

Dw(t)Da(t)db(t) =

T∫

0

z(t)da(t).

Let {en}∞
n=1 be a complete orthonormal set in (C ′

a,b[0, T ], ‖ · ‖C′
a,b

) such
that the Den’s are of bounded variation on [0, T ]. For w ∈ C ′

a,b[0, T ] and x ∈
Ca,b[0, T ], we define the Paley–Wiener–Zygmund (PWZ) stochastic integral
(w, x)∼ as follows:

(w, x)∼ = lim
n→∞

T∫

0

n∑
j=1

(w, ej)C′
a,b

Dej(t)dx(t)

if the limit exists. The limit in defining the PWZ stochastic integral (w, x)∼

is essentially independent of the choice of the complete orthonormal set. We
note that for each w ∈ C ′

a,b[0, T ], the PWZ stochastic integral (w, x)∼ exists
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for s-a.e. x ∈ Ca,b[0, T ]. If Dw = z ∈ L2
a,b[0, T ] is of bounded variation on

[0, T ], then the PWZ stochastic integral (w, x)∼ equals the Riemann–Stieltjes
integral

∫ T

0
z(t)dx(t). Furthermore, for each w ∈ C ′

a,b[0, T ], (w, x)∼ is a Gauss-
ian random variable with mean (w, a)C′

a,b
and variance ‖w‖2C′

a,b
. Also we note

that for w, x ∈ C ′
a,b[0, T ], (w, x)∼ = (w, x)C′

a,b
.

Next (see [5,14]), we state the definition of the generalized analytic Feyn-
man integral on the function space Ca,b[0, T ].

Definition 2.2. Let F : Ca,b[0, T ] → C be a scale-invariant measurable func-
tional such that for each λ > 0, the function space integral

J(λ) =
∫

Ca,b[0,T ]

F (λ−1/2x)dμ(x)

exists and is finite. If there exists a function J∗(λ) analytic in C+ such that
J∗(λ) = J(λ) for all λ > 0, then J∗(λ) is defined to be the analytic function
space integral of F over Ca,b[0, T ] with parameter λ, and for λ ∈ C+ we write

anλ∫

Ca,b[0,T ]

F (x)dμ(x) = J∗(λ).

Let q be a nonzero real number and let F be a functional such that the ana-
lytic function space integral

∫ anλ

Ca,b[0,T ]
F (x)dμ(x) exists for all λ ∈ C+. If the

following limit exists, we call it the generalized analytic Feynman integral of
F with parameter q and we write

anfq∫

Ca,b[0,T ]

F (x)dμ(x) = lim
λ→−iq
λ∈C+

anλ∫

Ca,b[0,T ]

F (x)dμ(x).

3. On the Fresnel-type class F(Ca,b[0, T ]). Let M(C ′
a,b[0, T ]) be the space

of complex-valued, countably additive (and hence finite) Borel measures on
C ′

a,b[0, T ]. M(C ′
a,b[0, T ]) is a Banach algebra under the total variation norm

and with convolution as multiplication.
We define the Fresnel-type class F(Ca,b[0, T ]) of functionals on Ca,b[0, T ] as

the space of all stochastic Fourier transforms of elements of M(C ′
a,b[0, T ]); that

is, F ∈ F(Ca,b[0, T ]) if and only if there exists a measure f in M(C ′
a,b[0, T ])

such that
F (x) =

∫

C′
a,b[0,T ]

exp{i(w, x)∼}df(w) (3.1)

for s-a.e. x ∈ Ca,b[0, T ]. More precisely, since we shall identify functionals
which coincide s-a.e. on Ca,b[0, T ], F(Ca,b[0, T ]) can be regarded as the space
of all s-equivalence classes of functionals of the form (3.1).

The Fresnel-type class F(Ca,b[0, T ]) is a Banach algebra with norm

‖F‖ = ‖f‖ =
∫

C′
a,b[0,T ]

d|f |(w).
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In fact, the correspondence f �→ F is injective, carries convolution into point-
wise multiplication, and is a Banach algebra isomorphism where f and F are
related by (3.1). For more details, see [4,6].

For each real q ∈ R\{0}, (−iq)1/2 denotes the principal square root of
−iq; that is, (−iq)1/2 is always chosen to have positive real part, so that
Re(−iq)−1/2 = Re(1/(−iq)1/2) > 0.

Theorem 3.1 below is a simple modification of the results [14, Eq. (4.3)] and
[17, Eqs. (40) and (49)]. The condition (3.2) below will guarantee the existence
of the right hand side of Eq. (3.3) below.

Theorem 3.1. Let q0 be a positive real number and let F ∈ F(Ca,b[0, T ]) be
given by Eq. (3.1) whose associated measure f satisfies the condition∫

C′
a,b[0,T ]

exp
{
(2q0)−1/2‖w‖C′

a,b
‖a‖C′

a,b

}
d|f |(w) < +∞. (3.2)

Then, for all real q with |q| > q0, the generalized analytic Feynman integral of
F exists and is given by the formula

anfq∫

Ca,b[0,T ]

F (x)dμ(x)

=
∫

C′
a,b[0,T ]

exp
{

− i

2q
‖w‖2C′

a,b
+ i(−iq)−1/2(w, a)C′

a,b

}
df(w). (3.3)

It is important to note that any functional F ∈ F(Ca,b[0, T ]) is bounded
on Ca,b[0, T ] since

|F (x)| =

∣∣∣∣∣∣∣
∫

C′
a,b[0,T ]

exp{i(w, x)∼}df(w)

∣∣∣∣∣∣∣
≤

∫

C′
a,b[0,T ]

∣∣ exp{i(w, x)∼}∣∣d|f |(w)

≤
∫

C′
a,b[0,T ]

d|f |(w) = ‖f‖ < +∞.

However, there is a functional F in F(Ca,b[0, T ]) which is not generalized
analytic Feynman integrable. For each n ∈ N, let

wn(t) = nb(t) =

t∫

0

ndb(s)

for t ∈ [0, T ]. Consider a measure l which is concentrated on the set {wn : n ∈
N} and l({wn}) = 1/n2 for each n ∈ N. Then l is an element of M(C ′

a,b[0, T ]).
Consider the functional F ∈ F(Ca,b[0, T ]) given by

F (x) =
∫

C′
a,b[0,T ]

exp{(w, x)∼}dl(w)
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for s-a.e. x ∈ Ca,b[0, T ]. In this case, by Eq. (3.3) above, we have that for a
positive real number q > 0,

anf−q∫

Ca,b[0,T ]

F (x)dμ(x) =
∫

C′
a,b[0,T ]

exp
{

i

2q
‖w‖2C′

a,b
+ i(iq)−1/2(w, a)C′

a,b

}
dl(w)

=
∞∑

n=1

exp
{

i

2q
‖wn‖2C′

a,b
+

(
1√
2q

+
i√
2q

)
(wn, a)C′

a,b

}
1
n2

=
∞∑

n=1

exp
{

i

2q
n2b(T ) +

(
1√
2q

+
i√
2q

)
na(T )

}
1
n2

. (3.4)

Then, we have

L ≡ lim
n→∞

∣∣ exp
{

i
2q (n + 1)2b(T ) +

(
1√
2q

+ i√
2q

)
(n + 1)a(T )

}
1

(n+1)2

∣∣∣∣ exp
{

i
2q n2b(T ) +

(
1√
2q

+ i√
2q

)
na(T )

}
1

n2

∣∣

= lim
n→∞

exp
{

1√
2q

(n + 1)a(T )
}

exp
{

1√
2q

na(T )
} = exp

{
1√
2q

a(T )
}

.

If a(T ) > 0, then L > 1 and so, by the d’Alembert ratio test, we see that the
series in the last expression of (3.4) diverges.

From this example, we see that the drift term a(t) of the GBMP plays a
prominent role in the existence of the generalized analytic Feynman integral
for the functionals of the GBMP. Also, it tells us that the concept of the
analytic Feynman integral is distinguished from the concept of the integration
in standard measure theory.
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