
Arch. Math. 106 (2016), 285–293
c© 2016 Springer International Publishing

0003-889X/16/030285-9

published online February 6, 2016
DOI 10.1007/s00013-016-0876-4 Archiv der Mathematik

On Hamiltonian minimal submanifolds in the space of oriented
geodesics in real space forms

Nikos Georgiou and Guillermo A. Lobos

Abstract. We prove that a deformation of a hypersurface in an (n +
1)-dimensional real space form S

n+1
p,1 induces a Hamiltonian variation

of the normal congruence in the space L(Sn+1
p,1 ) of oriented geodesics.

As an application, we show that every Hamiltonian minimal submani-
fold in L(Sn+1) (resp. L(Hn+1)) with respect to the (para-)Kähler Ein-
stein structure is locally the normal congruence of a hypersurface Σ in
S
n+1 (resp. H

n+1) that is a critical point of the functional W(Σ) =
∫
Σ

(
Πn

i=1|ε + k2
i |

)1/2
, where ki denote the principal curvatures of Σ and

ε ∈ {−1, 1}. In addition, for n = 2, we prove that every Hamiltonian mini-
mal surface in L(S3) (resp. L(H3)), with respect to the (para-)Kähler con-
formally flat structure, is the normal congruence of a surface in S

3 (resp.

H
3) that is a critical point of the functional W ′(Σ) =

∫
Σ

√
H2 − K + 1

(resp. W ′(Σ) =
∫
Σ

√
H2 − K − 1 ), where H and K denote, respectively,

the mean and Gaussian curvature of Σ.
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1. Introduction. The space L(M) of oriented geodesics of a pseudo-Riema-
nnian manifold (M, g) has been of great interest for the last three decades and
has been studied by different authors (see for example [1,2,5–8,14,15]). When
(M, g) is a Riemannian symmetric space of rank one, Alekseevsky et al. have
described in [1] all possible metrics defined on L(M) that are invariant under
the isometry group of g.

In the case where (M, g) is a real (n + 1)-dimensional space form S
n+1
p,1

of signature (p, n + 1 − p) with constant sectional curvature one, Anciaux has
shown in [2] that L(Sn+1

p,1 ) admits a Kähler or a para-Kähler structure (G, J,Ω),
where J is the complex or paracomplex structure and Ω is the symplectic
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structure such that the metric G is Einstein and is invariant under the isometry
group of g. In the same work, for n = 2, Anciaux has proved that L(M)
admits an extra Kähler or para-Kähler structure (G′, J′,Ω), where J

′ is the
complex or paracomplex structure, such that the invariant metric G′ is of
neutral signature, locally conformally flat, and is invariant under the isometry
group of g.

The submanifold theory of L(M) gives interesting information about the
submanifold theory of M . For example, the normal congruence (or image under
the Gauss map, understood to be a map into the space of oriented geodesics
L(M)) of a one-parameter family of parallel hypersurfaces in M is a Lagrangian
submanifold (the induced symplectic structure vanishes identically) of the cor-
responding space of geodesics (see for example [2]). In particular, the normal
congruence L(Σ) of a Weingarten surface Σ in S

3
p,1 (its principal curvatures

are functionally related) is flat with respect to the metric G′ induced on L(Σ)
[2].

Let (M,J, g, ω) be a (para-)Kähler manifold, and let φ : Σ → M be a
Lagrangian immersion. A normal vector field X is called Hamiltonian if X =
J∇u, where J is the (para-)complex structure and ∇u is the gradient of u ∈
C∞(Σ) with respect to the non-degenerate induced metric φ∗g. We say that a
variation (φt) of φ is a Hamiltonian variation if its velocity X = ∂t|t=0φt is a
Hamiltonian vector field with the additional condition that the function u is
compactly supported. The Lagrangian immersion φ is said to be Hamiltonian
minimal or H-minimal if it is a critical point of the volume functional with
respect to Hamiltonian variations. The first variation formula of the volume
functional implies that a Hamiltonian minimal submanifold is characterised
by the equation divJH = 0, where H denotes the mean curvature vector of
φ and div is the divergence operator with respect to the induced metric [11].
Further study of H-minimal submanifolds can be found at the following articles
[4,9,10,12].

Palmer showed in [13] that a smooth variation of a hypersurface in the
sphere S

n+1 induces a Hamiltonian variation of the Gauss map in L(Sn+1).
An analogous result for the 3-dimensional Euclidean space E

3 has been shown
by Anciaux et al. in [3]. Following similar computations as those performed
in [13], we prove that any smooth variation of a hypersurface in the real
space form S

n+1
p,1 induces a Hamiltonian variation in the symplectic manifold

(L±(Sn+1
p,1 ),Ω). In particular, we prove the following:

Theorem 1.1. Let φt, t ∈ (−ε, ε), be a smooth one-parameter deformation of
an immersion φ := φt=0 of the n-dimensional oriented manifold Σ in the real
space form S

n+1
p,1 . Then the corresponding Gauss maps Φt form a Hamiltonian

variation with respect to the symplectic manifold (L±(Sn+1
p,1 ),Ω).

It has been proved in [3] that every Hamiltonian minimal surface in L(E3)
(resp. L(E3

1), where E
3
1 denotes the Lorentzian 3-space) is the Gauss map of

a surface S in E
3 (resp. E

3
1) that is a critical point of the functional F =∫

S

√
H2 − KdA, where H and K denote the mean curvature and the Gauss

curvature, respectively. In this article, we extend this result for the case of the
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space L(Sn+1
p,1 ) of oriented geodesics in an (n+1)-dimensional real space form.

In particular, we consider the (para-)Kähler–Einstein structure (G, J,Ω) and
the locally conformally flat (para-)Kähler structure (G′, J′,Ω) both endowed
on L(Sn+1

p,1 ). Then, as an application of Theorem 1.1, we prove the following:

Theorem 1.2. Let φ : Σn → S
n+1
p,1 be a real diagonalizable hypersurface in S

n+1
p,1

and let Φ be the Gauss map of φ. Then, away of umbilic points, we have the
following statements:

(i) The Gauss map Φ is a Hamiltonian minimal submanifold with respect to
the (para-)Kähler Einstein structure (G, J) if and only if the immersion
φ is a critical point of the functional

W(φ) =
∫

Σ

√
Πn

i=1|ε + k2
i | dV,

where k1, . . . , kn are the principal curvatures of φ and ε denotes the length
of the normal vector field of φ.

(ii) For n = 2, the Gauss map Φ is a Hamiltonian minimal surface in
(L±(S3

p,1), G
′, J′) if and only if the surface φ is a critical point of the

functional

W ′(φ) =
∫

Σ

|k1 − k2| dA,

where k1, k2 denote the principal curvatures of φ.

2. Preliminaries. For n ≥ 1, consider the Euclidean space R
n+2 endowed with

the canonical pseudo-Riemannian metric of signature (p, n + 2 − p), where
0 ≤ p ≤ n + 2:

〈·, ·〉p = −
p∑

i=1

dx2
i +

n+2∑

i=p+1

dx2
i .

Define the (n + 1)-dimensional real space form

S
n+1
p,1 = {x ∈ R

n+2| 〈x, x〉p = 1},

and let ι : S
n+1
p,1 ↪→ (Rn+2, 〈·, ·〉p) be the canonical inclusion. The induced

metric ι∗ 〈., .〉p has signature (p, n+1−p) and is of constant sectional curvature
K = 1.

Following the notations of [2], we denote by L+(Sn+1
p,1 ) (resp. L−(Sn+1

p,1 ))
the set of spacelike (resp. timelike) oriented geodesics of Sn+1

p,1 , that is,

L±(Sn+1
p,1 ) = {x ∧ y ∈ Λ2(Rn+2) | y ∈ TxS

n+1
p,1 , 〈y, y〉p = ε},

where ε = 1 (resp. ε = −1) corresponds to L+(Sn+1
p,1 ) (resp. L−(Sn+1

p,1 )). If
Λ2(Rn+2) is equipped with the flat pseudo-Riemannian metric:

〈〈x1 ∧ y1, x2 ∧ y2〉〉 = 〈x1, x2〉p 〈y1, y2〉p − 〈x1, y2〉p 〈x2, y1〉p ,

we denote by G the metric 〈〈·, ·〉〉 induced by the inclusion map i : L±(Sn+1
p,1 ) ↪→

Λ2(Rn+2). On the other hand, in L±(Sn+1
p,1 ) a complex (paracomplex) structure

J can be defined as follows:
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Let J be the canonical complex (paracomplex) structure in the oriented
plane x∧y ∈ L±(Sn+1

p,1 ) defined by Jx = y and Jy = −εx. Thus, J2 = −εId. A
tangent vector to i(L±(Sn+1

p,1 )) at the point x ∧ y is of the form x ∧ X + y ∧ Y ,
where X,Y ∈ (x ∧ y)⊥ in Λ2(Rn+2). The complex (paracomplex) structure J

is defined by:

J(x ∧ X + y ∧ Y ) := (Jx) ∧ X + (Jy) ∧ Y = y ∧ X + εx ∧ Y.

The metric G and the (para-)complex structure J are invariant under the
natural action of the isometry group of Sn+1

p,1 . For n ≥ 3, it has been shown in
[1] that G is the unique invariant metric under the natural action of SO(n +
2 − p, p).

The 2-form Ω defined by Ω(·, ·) = εG(J·, ·) is a symplectic structure on
L±(Sn+1

p,1 ) and in particular:

Proposition 2.1 [2]. The quadraple (L+(Sn+1
p,1 ), G, J,Ω) is a 2n-dimensional

Kähler manifold with signature (2p, 2n − 2p), while (L−(Sn+1
p,1 ), G, J,Ω) is a

2n-dimensional para-Kähler manifold. In both cases, the metric G is Einstein
with constant scalar curvature S = 2εn2.

We now consider the case of L±(S3
p,1) ⊂ Λ2(R4). The orthogonal (x ∧ y)⊥

of an oriented plane x ∧ y ∈ L±(S3
p,1) is also a plane in R

4 and is oriented
in such a way that its orientation is combatible with the orientation of the
plane x ∧ y. Then, it is possible to define a canonical complex or paracomplex
structure J ′, depending of whether the metric 〈〈., .〉〉 induced on (x ∧ y)⊥ is
positive or indefinite. In this case, we may define a complex or paracomplex
structure J

′ on L±(S3
p,1) by

J
′(x ∧ X + y ∧ Y ) := x ∧ (J ′X) + y ∧ (J ′Y ).

The pseudo-Riemannian metric G′ on L±(S3
p,1) is given by:

G′(·, ·) := Ω(·, J ′·) = −εG(·, J ◦ J
′·).

Furthermore,

Proposition 2.2 [2]. The quadraples (L±(S3
p,1), G

′, J′,Ω) are 4-dimensional
(para-)Kähler manifolds. The metric G′ is of neutral signature (2, 2), scalar
flat, locally conformally flat, and is invariant under the natural action of
SO(4 − p, p).

Let φ : Σn → S
n+1
p,1 be an immersion of an n-dimensional orientable mani-

fold into the real space form S
n+1
p,1 , and let N be the unit normal vector of

the hypersurface S = φ(Σ). The set S̄ of geodesics that are orthogonal to S,
oriented in the direction of N , is called the normal congruence or the Gauss
map of S. Then,

Proposition 2.3 [2]. Let φ be an immersion of an orientable manifold Σn in
S

n+1
p,1 with unit normal vector field N . Then the Gauss map of S = φ(Σ) is

the image of the map Φ : Σn → L±(Sn+1
p,1 ) defined by Φ = φ ∧ N . When Φ

is an immersion, it is Lagrangian. Conversely, let Φ : Σn → L±(Sn+1
p,1 ) be an
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immersion of a simply connected n-manifold. Then S̄ := Φ(Σ) is the Gauss
map of an immersed hypersurface of Sn+1

p,1 if and only if Φ is Lagrangian.

3. Hamiltonian minimal submanifolds. Throughout the article, the induced
metric of a hypersurface in S

n+1
p,1 and the induced metric of a Lagrangian

submanifold in L±(Sn+1
p,1 ) is assumed to be non-degenerate.

3.1. Hamiltonian variations in L±(Sn+1
p,1 ). Consider the 2n-dimensional sym-

plectic manifold (L±(Sn+1
p,1 ),Ω), where L±(Sn+1

p,1 ) denotes the space of oriented
geodesics in the real space form S

n+1
p,1 . Then we prove our first main result:

Proof of Theorem 1.1 Let φt : Σn → S
n+1
p,1 , where t ∈ (−t0, t0) for some t0 > 0,

be a smooth variation of an immersion φ := φ0 : Σn → S
n+1
p,1 of an oriented

n-dimensional manifold Σ in S
n+1
p,1 . Let St := φt(Σ) be the hypersurfaces of

S
n+1
p,1 and S := φ(Σ).

We denote by Nt the 1-parameter family of vector fields such that N0 = N
and 〈Nt, φt〉p = 0. Following the notation of [13], there exist a smooth function
f on S and a smooth section Y of the tangent bundle TS such that

φ̇ = fN + Y,

where φ̇ = ∂tφt|t=0. Differentiate the expression 〈Nt, φt〉p = 0 with respect to
t at t = 0, we have

〈
Ṅ , φ

〉
p

= −〈
N, φ̇

〉
p
.

Then it yields
〈
Ṅ , φ

〉
p

= −εf,

where ε =
〈
N,N

〉
p
. For Xt ∈ TSt, where X0 := X ∈ TS, we also differentiate

with respect to t the expression 〈Nt,Xt〉p = 0 at t = 0, and we obtain
〈
Ṅ ,X

〉
p

= −εdf(X) + 〈dN(Y ),X〉p ,

which finally gives
Ṅ = −ε∇f + dN(Y ) − εfφ.

Let Φ : Σn → L±(Sn+1
p,1 ) : x 
→ φ(x)∧N(x) be the Gauss map of the immersion

φ : Σn → S
n+1
p,1 . If X̄ := dΦ(X), from [2], we have that

X̄ = X ∧ N + AX ∧ φ.

Let Φ̇ = ∂tΦt|t=0 be the velocity of the variation Φt and write Φ̇ = Φ̇� + Φ̇⊥,
where Φ̇� and Φ̇⊥ denote the tangential and the normal component of Φ̇
respectively. Then,

G(Φ̇, JX̄) = G(Y ∧ N + ε∇f ∧ φ − dN(Y ) ∧ φ, J(X ∧ N + AX ∧ φ))
= −df(X),

which implies that
Φ̇⊥ = −J∇f,

and this completes the proof of the Theorem. �
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3.2. Applications. A real diagonalizable immersion is a smooth immersion φ
of a hypersurface Σn into the (n+1)-dimensional real space form S

n+1
p,1 such

that, locally, the shape operator A can be diagonalized, that is, there exists a
local orthonormal frame (e1, . . . , en) and real functions k1, . . . , kn where A =
diag(k1, . . . , kn). In this case, each vector field ei is called a principal direction
with corresponding principal curvature ki.

Remark 3.1. Note that in the Riemannian case every hypersurface is real di-
agonalizable, away from umbilic points.

We are now in position to prove our second result:
Proof of Theorem 1.2 Consider a smooth immersion of φ of the n-dimensional
manifold Σ in S

n+1
p,1 and let Φ : Σn → L±(Sn+1

p,1 ) be the corresponding Gauss
map. The fact that φ is real diagonalizable implies the existence of an or-
thonormal frame (e1, . . . , en), with respect to the induced metric φ∗g, such
that

Aei = kiei, i = 1, . . . , n,

where A denotes the shape operator of φ. Let (φt)t∈(−t0,t0) be a smooth vari-
ation of φ and (Φt) be the corresponding variation of the Gauss map Φ. Real
diagonalizability implies that the minimal polynomial of A is the product of
distinct linear factors. Using the fact that the variation (Φt) is at least C1-
smooth, it is possible to obtain a positive real number t1 < t0 such that φt is
real diagonalizable for every t ∈ (−t1, t1). We may extend all extrinsic geomet-
ric quantities such as the shape operator A, the principal directions ei, and
the principal curvatures ki to the 1-parameter family of immersions (φt).

(i) From [2], the induced metric Φ∗
t G is given by Φ∗

t G = εφ∗
t g + φ∗

t g(A.,A.),
and thus

Φ∗
t G = diag(ε1(ε + k2

1), . . . , εn(ε + k2
n)),

where εi = g(ei, ei). For every sufficiently small t > 0, the volume of
every Gauss map Φt, with respect to the metric G, is

Vol(Φt) =
∫

Σ

√
|det Φ∗

t G|dV = W(φt). (1)

If φ is a critical point of the functional W, we have

∂t(Vol(Φt)) = 0,

for any Hamiltonian variation of Φ. Therefore, Φ is a Hamiltonian min-
imal submanifold with respect to the Kähler Einstein structure (G, J).
The converse follows directly from (1).

(ii) Assume that n = 2. From [2], in terms of the orthonormal frame (e1, e2),
the induced metric Φ∗G′ is

Φ∗G′ =
(

0 ε2(k2 − k1)
ε2(k2 − k1) 0

)

,
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where ε2 = φ∗g(e2, e2). Then, the volume of every Gauss map Φt, with
respect to the metric G′, is

Vol′(Φt) =
∫

Σ

√
|det Φ∗

t G|dV = W ′(φt), (2)

and thus the second statement of the Theorem follows by a similar argu-
ment as the proof of the first statement. �

Let φ : Σn → S
n+1
p,1 be a hypersurface and N denotes the unit normal vector

field. For θ ∈ R, consider the immersion φθ := cos ε(θ)φ+sin ε(θ)N , where ε :=
|N |2 and (cos ε(θ), sin ε(θ)) = (cos θ, cos θ) if ε = 1 while for ε = −1 we have
(cos ε(θ), sin ε(θ)) = (cosh θ, cosh θ). The images φθ(Σ) and φ(Σ) are called
parallel hypersurfaces. It is important to mention that parallel hypersurfaces
have the same Gauss map [2].

Looking more carefully the relations (1) and (2), we obtain the following
symmetry for the functionals W and W ′:

Corollary 3.2. If φ1 and φ2 are parallel smooth real diagonalizable immersions
of the n-manifold Σ in S

n+1
p,1 , then W(φ1) = W(φ2). In the case where n = 2,

we also have that W ′(φ1) = W ′(φ2).

Using the Einstein (para-)Kähler structure (L±(S3
p,1), G, J), we obtain the

following Corollary:

Corollary 3.3. Let φ : Σn → S
n+1
p,1 be a real diagonalizable hypersurface and

let k1, . . . kn be the principal curvatures. If Φ is the Gauss map of φ, then the
function

∑n
i=1 tan ε−1(ki) is harmonic with respect to the induced metric Φ∗G

if and only if φ is a critical point of the functional
∫
Σ

√
Πn

i=1|ε + k2
i |.

Proof. Let Φ be the Gauss map of φ and consider the Einstein (para-)Kähler
structure (G, J). Then, from [2], we know that the mean curvature 	H of Φ is
given by

	H =
ε

n
J∇

(
n∑

i=1

tan ε−1(ki)

)

,

where ∇ denotes the Levi–Civita connection of the induced metric Φ∗G. Then
the Corollary follows by the following relation

div(nJ 	H) = Δ

(
n∑

i=1

tan ε−1(ki)

)

,

where div and Δ denote the divergence operator and the Laplacian of Φ∗G. �
Using the Remark 3.1, we obtain the following two Corollaries:

Corollary 3.4. Let φ : Σn → S
n+1 (resp. in the hyperbolic space Hn+1) be a hy-

persurface in the sphere S
n+1. Then the Gauss map Φ is a Hamiltonian mini-

mal submanifold in the (para-)Kähler Einstein structure (G, J) if and only if the
hypersurface φ is a critical point of the functional W(φ) =

∫
Σ

√
Πn

i=1(1 + k2
i )

(resp. W(φ) =
∫
Σ

√
Πn

i=1|1 − k2
i |), where k1, . . . , kn are the principal curva-

tures of φ.
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Corollary 3.5. Let φ : Σ → S
3 (resp. in the hyperbolic space H3) be a surface in

the sphere S
3. Then the Gauss map Φ is a Hamiltonian minimal submanifold

with respect to the Kähler, conformally flat structure (G′, J′) if and only if
the surface φ is a critical point of the functional W ′(φ) =

∫
Σ

√
H2 − K + 1

(resp. W ′(φ) =
∫
Σ

√
H2 − K − 1 ), where H,K denote the mean and the Gauss

curvature of φ.
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