

On Hamiltonian minimal submanifolds in the space of oriented geodesics in real space forms

Nikos Georgiou and Guillermo A. Lobos

Abstract. We prove that a deformation of a hypersurface in an $(n +$ 1)-dimensional real space form $\mathbb{S}_{p,1}^{n+1}$ induces a Hamiltonian variation of the normal congruence in the space $\mathbb{L}(\mathbb{S}_{p,1}^{n+1})$ of oriented geodesics. As an application, we show that every Hamiltonian minimal submanifold in $\mathbb{L}(\mathbb{S}^{n+1})$ (resp. $\mathbb{L}(\mathbb{H}^{n+1})$) with respect to the (para-)Kähler Einstein structure is locally the normal congruence of a hypersurface Σ in \mathbb{S}^{n+1} (resp. \mathbb{H}^{n+1}) that is a critical point of the functional $\mathcal{W}(\Sigma)$ = $\int_{\Sigma} \left(\prod_{i=1}^n |\epsilon + k_i^2| \right)^{1/2}$, where k_i denote the principal curvatures of Σ and $\epsilon \in \{-1, 1\}$. In addition, for $n = 2$, we prove that every Hamiltonian minimal surface in $\mathbb{L}(\mathbb{S}^3)$ (resp. $\mathbb{L}(\mathbb{H}^3)$), with respect to the (para-)Kähler conformally flat structure, is the normal congruence of a surface in \mathbb{S}^3 (resp. \mathbb{H}^3) that is a critical point of the functional $\mathcal{W}'(\Sigma) = \int_{\Sigma} \sqrt{H^2 - K + 1}$ (resp. $W'(\Sigma) = \int_{\Sigma} \sqrt{H^2 - K - 1}$), where H and K denote, respectively, the mean and Gaussian curvature of Σ .

Mathematics Subject Classification. 53D12, 53A35.

Keywords. Kähler structures, Hamiltonian minimal submanifolds, Space of oriented geodesics, Real space forms.

1. Introduction. The space $\mathbb{L}(M)$ of oriented geodesics of a pseudo-Riemannian manifold (M, q) has been of great interest for the last three decades and has been studied by different authors (see for example $(1,2,5-8,14,15)$ $(1,2,5-8,14,15)$ $(1,2,5-8,14,15)$ $(1,2,5-8,14,15)$ $(1,2,5-8,14,15)$ $(1,2,5-8,14,15)$). When (M, g) is a Riemannian symmetric space of rank one, Alekseevsky et al. have described in [\[1\]](#page-7-0) all possible metrics defined on $\mathbb{L}(M)$ that are invariant under the isometry group of g.

In the case where (M, g) is a real $(n + 1)$ -dimensional space form $\mathbb{S}_{p,1}^{n+1}$ of signature $(p, n + 1 - p)$ with constant sectional curvature one, Anciaux has shown in [\[2](#page-7-1)] that $\mathbb{L}(\mathbb{S}_{p,1}^{n+1})$ admits a Kähler or a para-Kähler structure $(G,\mathbb{J},\Omega),$ where $\mathbb J$ is the complex or paracomplex structure and Ω is the symplectic structure such that the metric G is Einstein and is invariant under the isometry group of q. In the same work, for $n = 2$, Anciaux has proved that $\mathbb{L}(\mathbb{M})$ admits an extra Kähler or para-Kähler structure $(G', \mathbb{J}', \Omega)$, where \mathbb{J}' is the complex or paracomplex structure, such that the invariant metric G' is of neutral signature, locally conformally flat, and is invariant under the isometry group of g.

The submanifold theory of $\mathbb{L}(M)$ gives interesting information about the submanifold theory of M. For example, the normal congruence (or image under the Gauss map, understood to be a map into the space of oriented geodesics $\mathbb{L}(M)$ of a one-parameter family of parallel hypersurfaces in M is a Lagrangian submanifold (the induced symplectic structure vanishes identically) of the corresponding space of geodesics (see for example [\[2](#page-7-1)]). In particular, the normal congruence $L(\Sigma)$ of a Weingarten surface Σ in $\mathbb{S}_{p,1}^3$ (its principal curvatures are functionally related) is flat with respect to the metric G' induced on $L(\Sigma)$ [\[2](#page-7-1)].

Let (M, J, g, ω) be a (para-)Kähler manifold, and let $\phi : \Sigma \to M$ be a Lagrangian immersion. A normal vector field X is called *Hamiltonian* if $X =$ $J\nabla u$, where J is the (para-)complex structure and ∇u is the gradient of $u \in$ $C^{\infty}(\Sigma)$ with respect to the non-degenerate induced metric ϕ^*g . We say that a variation (ϕ_t) of ϕ is a *Hamiltonian variation* if its velocity $X = \partial_t|_{t=0} \phi_t$ is a Hamiltonian vector field with the additional condition that the function u is compactly supported. The Lagrangian immersion ϕ is said to be *Hamiltonian minimal* or H*-minimal* if it is a critical point of the volume functional with respect to Hamiltonian variations. The first variation formula of the volume functional implies that a Hamiltonian minimal submanifold is characterised by the equation $divJH = 0$, where H denotes the mean curvature vector of ϕ and div is the divergence operator with respect to the induced metric [\[11](#page-7-5)]. Further study of H-minimal submanifolds can be found at the following articles [\[4](#page-7-6),[9,](#page-7-7)[10](#page-7-8)[,12](#page-7-9)].

Palmer showed in [\[13](#page-7-10)] that a smooth variation of a hypersurface in the sphere \mathbb{S}^{n+1} induces a Hamiltonian variation of the Gauss map in $\mathbb{L}(\mathbb{S}^{n+1})$. An analogous result for the 3-dimensional Euclidean space \mathbb{E}^3 has been shown by Anciaux et al. in [\[3](#page-7-11)]. Following similar computations as those performed in [\[13\]](#page-7-10), we prove that any smooth variation of a hypersurface in the real space form $\mathbb{S}_{p,1}^{n+1}$ induces a Hamiltonian variation in the symplectic manifold $(L^{\pm}(\mathbb{S}_{p,1}^{n+1}), \Omega)$. In particular, we prove the following:

Theorem 1.1. Let ϕ_t , $t \in (-\epsilon, \epsilon)$, be a smooth one-parameter deformation of *an immersion* $\phi := \phi_{t=0}$ *of the n-dimensional oriented manifold* Σ *in the real* $space form \mathbb{S}_{p,1}^{n+1}$. Then the corresponding Gauss maps Φ_t form a Hamiltonian *variation with respect to the symplectic manifold* $(L^{\pm}(\mathbb{S}_{p,1}^{n+1}), \Omega)$ *.*

It has been proved in [\[3\]](#page-7-11) that every Hamiltonian minimal surface in $\mathbb{L}(\mathbb{E}^3)$ (resp. $\mathbb{L}(\mathbb{E}_1^3)$, where \mathbb{E}_1^3 denotes the Lorentzian 3-space) is the Gauss map of a surface S in \mathbb{E}^3 (resp. \mathbb{E}_1^3) that is a critical point of the functional $\mathcal{F} =$ a surface S in \mathbb{E}^3 (resp. \mathbb{E}_1^3) that is a critical point of the functional $\mathcal{F} = \int_S \sqrt{H^2 - K} dA$, where H and K denote the mean curvature and the Gauss $\int_S \sqrt{H^2 - K} dA$, where H and K denote the mean curvature and the Gauss curvature, respectively. In this article, we extend this result for the case of the

space $\mathbb{L}(\mathbb{S}_{p,1}^{n+1})$ of oriented geodesics in an $(n+1)$ -dimensional real space form. In particular, we consider the (para-)Kähler–Einstein structure (G, \mathbb{J}, Ω) and the locally conformally flat (para-)Kähler structure $(G', \mathbb{J}', \Omega)$ both endowed on $\mathbb{L}(\mathbb{S}_{p,1}^{n+1})$. Then, as an application of Theorem [1.1,](#page-1-0) we prove the following:

Theorem 1.2. Let $\phi: \Sigma^n \to \mathbb{S}_{p,1}^{n+1}$ be a real diagonalizable hypersurface in $\mathbb{S}_{p,1}^{n+1}$ *and let* Φ *be the Gauss map of* φ*. Then, away of umbilic points, we have the following statements:*

(i) *The Gauss map* Φ *is a Hamiltonian minimal submanifold with respect to the (para-)K¨ahler Einstein structure* (G, J) *if and only if the immersion* φ *is a critical point of the functional*

$$
\mathcal{W}(\phi) = \int_{\Sigma} \sqrt{\Pi_{i=1}^n |\epsilon + k_i^2|} \ dV,
$$

where k_1, \ldots, k_n *are the principal curvatures of* ϕ *and* ϵ *denotes the length of the normal vector field of* ϕ *.*

(ii) *For* n = 2*, the Gauss map* Φ *is a Hamiltonian minimal surface in* $(L^{\pm}(\mathbb{S}_{p,1}^3), G', \mathbb{J}')$ *if and only if the surface* ϕ *is a critical point of the functional*

$$
\mathcal{W}'(\phi) = \int_{\Sigma} |k_1 - k_2| \, dA,
$$

where k_1, k_2 *denote the principal curvatures of* ϕ *.*

2. Preliminaries. For $n \geq 1$, consider the Euclidean space \mathbb{R}^{n+2} endowed with the canonical pseudo-Riemannian metric of signature $(p, n + 2 - p)$, where $0 \le p \le n+2$:

$$
\langle \cdot, \cdot \rangle_p = -\sum_{i=1}^p dx_i^2 + \sum_{i=p+1}^{n+2} dx_i^2.
$$

Define the $(n + 1)$ -dimensional real space form

 $\mathbb{S}_{p,1}^{n+1} = \{x \in \mathbb{R}^{n+2} | \langle x, x \rangle_p = 1\},\$

and let $\iota : \mathbb{S}_{p,1}^{n+1} \hookrightarrow (\mathbb{R}^{n+2}, \langle \cdot, \cdot \rangle_p)$ be the canonical inclusion. The induced metric $\iota^* \langle ., . \rangle_p$ has signature $(p, n+1-p)$ and is of constant sectional curvature $K=1$.

Following the notations of [\[2](#page-7-1)], we denote by $L^+(\mathbb{S}_{p,1}^{n+1})$ (resp. $L^-(\mathbb{S}_{p,1}^{n+1})$) the set of spacelike (resp. timelike) oriented geodesics of $\mathbb{S}_{p,1}^{n+1}$, that is,

$$
L^{\pm}(\mathbb{S}_{p,1}^{n+1}) = \{x \wedge y \in \Lambda^{2}(\mathbb{R}^{n+2}) \mid y \in T_{x} \mathbb{S}_{p,1}^{n+1}, \langle y, y \rangle_{p} = \epsilon \},\
$$

where $\epsilon = 1$ (resp. $\epsilon = -1$) corresponds to $L^+(\mathbb{S}_{p,1}^{n+1})$ (resp. $L^-(\mathbb{S}_{p,1}^{n+1})$). If $\Lambda^2(\mathbb{R}^{n+2})$ is equipped with the flat pseudo-Riemannian metric:

$$
\left\langle \left\langle x_1 \wedge y_1, x_2 \wedge y_2 \right\rangle \right\rangle = \left\langle x_1, x_2 \right\rangle_p \left\langle y_1, y_2 \right\rangle_p - \left\langle x_1, y_2 \right\rangle_p \left\langle x_2, y_1 \right\rangle_p,
$$

we denote by G the metric $\langle \langle \cdot, \cdot \rangle \rangle$ induced by the inclusion map $i: L^{\pm}(\mathbb{S}_{p,1}^{n+1}) \hookrightarrow$ $\Lambda^2(\mathbb{R}^{n+2})$. On the other hand, in $L^{\pm}(\mathbb{S}_{p,1}^{n+1})$ a complex (paracomplex) structure J can be defined as follows:

Let J be the canonical complex (paracomplex) structure in the oriented plane $x \wedge y \in L^{\pm}(\mathbb{S}_{p,1}^{n+1})$ defined by $Jx = y$ and $Jy = -\epsilon x$. Thus, $J^2 = -\epsilon Id$. A tangent vector to $i(L^{\pm}(\mathbb{S}_{p,1}^{n+1}))$ at the point $x \wedge y$ is of the form $x \wedge X + y \wedge Y$, where $X, Y \in (x \wedge y)^{\perp}$ in $\Lambda^2(\mathbb{R}^{n+2})$. The complex (paracomplex) structure \mathbb{J} is defined by:

$$
\mathbb{J}(x \wedge X + y \wedge Y) := (Jx) \wedge X + (Jy) \wedge Y = y \wedge X + \epsilon x \wedge Y.
$$

The metric G and the (para-)complex structure $\mathbb J$ are invariant under the natural action of the isometry group of $\mathbb{S}_{p,1}^{n+1}$. For $n \geq 3$, it has been shown in [\[1](#page-7-0)] that G is the unique invariant metric under the natural action of $SO(n +$ $2 - p, p$).

The 2-form Ω defined by $\Omega(\cdot, \cdot) = \epsilon G(\mathbb{J} \cdot, \cdot)$ is a symplectic structure on $L^{\pm}(\mathbb{S}_{p,1}^{n+1})$ and in particular:

Proposition 2.1 [\[2](#page-7-1)]. The quadraple $(L^+(\mathbb{S}_{p,1}^{n+1}), G, \mathbb{J}, \Omega)$ is a 2n-dimensional *K*ähler manifold with signature $(2p, 2n - 2p)$, while $(L^-(\mathbb{S}_{p,1}^{n+1}), G, \mathbb{J}, \Omega)$ is a 2n-dimensional para-Kähler manifold. In both cases, the metric G is Einstein *with constant scalar curvature* $S = 2\epsilon n^2$.

We now consider the case of $L^{\pm}(\mathbb{S}^3_{p,1}) \subset \Lambda^2(\mathbb{R}^4)$. The orthogonal $(x \wedge y)^{\perp}$ of an oriented plane $x \wedge y \in L^{\pm}(\mathbb{S}_{p,1}^3)$ is also a plane in \mathbb{R}^4 and is oriented in such a way that its orientation is combatible with the orientation of the plane $x \wedge y$. Then, it is possible to define a canonical complex or paracomplex structure J', depending of whether the metric $\langle \langle ., . \rangle \rangle$ induced on $(x \wedge y)^{\perp}$ is positive or indefinite. In this case, we may define a complex or paracomplex structure \mathbb{J}' on $L^{\pm}(\mathbb{S}^3_{p,1})$ by

$$
\mathbb{J}'(x \wedge X + y \wedge Y) := x \wedge (J'X) + y \wedge (J'Y).
$$

The pseudo-Riemannian metric G' on $L^{\pm}(\mathbb{S}^3_{p,1})$ is given by:

$$
G'(\cdot,\cdot):=\Omega(\cdot,J'\cdot)=-\epsilon G(\cdot,\mathbb{J}\circ\mathbb{J}'\cdot).
$$

Furthermore,

Proposition 2.2 [\[2\]](#page-7-1). The quadraples $(L^{\pm}(\mathbb{S}_{p,1}^3), G', \mathbb{J}', \Omega)$ are 4-dimensional (*para-*)*K¨ahler manifolds. The metric* G- *is of neutral signature* (2, 2)*, scalar flat, locally conformally flat, and is invariant under the natural action of* $SO(4-p,p)$.

Let $\phi: \Sigma^n \to \mathbb{S}_{p,1}^{n+1}$ be an immersion of an *n*-dimensional orientable manifold into the real space form $\mathbb{S}_{p,1}^{n+1}$, and let N be the unit normal vector of the hypersurface $S = \phi(\Sigma)$. The set S of geodesics that are orthogonal to S, oriented in the direction of N, is called *the normal congruence* or *the Gauss map* of S. Then,

Proposition 2.3 [\[2\]](#page-7-1)*. Let* ϕ *be an immersion of an orientable manifold* Σ^n *in* $\mathbb{S}_{p,1}^{n+1}$ with unit normal vector field N. Then the Gauss map of $S = \phi(\Sigma)$ is *the image of the map* $\Phi : \Sigma^n \to L^{\pm}(\mathbb{S}_{p,1}^{n+1})$ *defined by* $\Phi = \phi \wedge N$ *. When* Φ *is an immersion, it is Lagrangian. Conversely, let* $\Phi : \Sigma^n \to L^{\pm}(\mathbb{S}^{n+1}_{p,1})$ *be an*

immersion of a simply connected n-manifold. Then $\overline{S} := \Phi(\Sigma)$ *is the Gauss map of an immersed hypersurface of* $\mathbb{S}_{p,1}^{n+1}$ *if and only if* Φ *is Lagrangian.*

3. Hamiltonian minimal submanifolds. Throughout the article, the induced metric of a hypersurface in $\mathbb{S}_{p,1}^{n+1}$ and the induced metric of a Lagrangian submanifold in $L^{\pm}(\mathbb{S}_{p,1}^{n+1})$ is assumed to be non-degenerate.

3.1. Hamiltonian variations in $L^{\pm}(\mathbb{S}_{p,1}^{n+1})$. Consider the 2*n*-dimensional symplectic manifold $(L^{\pm}(\mathbb{S}_{p,1}^{n+1}), \Omega)$, where $L^{\pm}(\mathbb{S}_{p,1}^{n+1})$ denotes the space of oriented geodesics in the real space form $\mathbb{S}_{p,1}^{n+1}$. Then we prove our first main result:

Proof of Theorem [1.1](#page-1-0) Let $\phi_t : \Sigma^n \to \mathbb{S}_{p,1}^{n+1}$, where $t \in (-t_0, t_0)$ for some $t_0 > 0$, be a smooth variation of an immersion $\phi := \phi_0 : \Sigma^n \to \mathbb{S}^{n+1}_{p,1}$ of an oriented *n*-dimensional manifold Σ in $\mathbb{S}_{p,1}^{n+1}$. Let $S_t := \phi_t(\Sigma)$ be the hypersurfaces of $\mathbb{S}_{p,1}^{n+1}$ and $S := \phi(\Sigma)$.

We denote by N_t the 1-parameter family of vector fields such that $N_0 = N$ and $\langle N_t, \phi_t \rangle_n = 0$. Following the notation of [\[13\]](#page-7-10), there exist a smooth function f on S and a smooth section Y of the tangent bundle TS such that

$$
\dot{\phi} = fN + Y,
$$

where $\dot{\phi} = \partial_t \phi_t|_{t=0}$. Differentiate the expression $\langle N_t, \phi_t \rangle_p = 0$ with respect to t at $t = 0$, we have

$$
\langle \dot{N}, \phi \rangle_p = -\langle N, \dot{\phi} \rangle_p.
$$

Then it yields

$$
\left\langle \dot{N},\phi\right\rangle _{p}=-\epsilon f,
$$

where $\epsilon = \langle N, N \rangle_p$. For $X_t \in TS_t$, where $X_0 := X \in TS$, we also differentiate with respect to t the expression $\langle N_t, X_t \rangle_p = 0$ at $t = 0$, and we obtain $\langle \dot{N}, X \rangle_p = -\epsilon df(X) + \langle dN(Y), X \rangle_p,$

which finally gives

$$
\dot{N} = -\epsilon \nabla f + dN(Y) - \epsilon f \phi.
$$

Let $\Phi : \Sigma^n \to L^{\pm}(\mathbb{S}_{p,1}^{n+1}) : x \mapsto \phi(x) \wedge N(x)$ be the Gauss map of the immersion $\phi: \Sigma^n \to \mathbb{S}^{n+1}_{p,1}$. If $\overline{X} := d\Phi(X)$, from [\[2\]](#page-7-1), we have that $\bar{X} = X \wedge N + AX \wedge \phi.$

Let $\dot{\Phi} = \partial_t \Phi_t|_{t=0}$ be the velocity of the variation Φ_t and write $\dot{\Phi} = \dot{\Phi}^\top + \dot{\Phi}^\perp$. where $\dot{\Phi}^{\dagger}$ and $\dot{\Phi}^{\dagger}$ denote the tangential and the normal component of $\dot{\Phi}$ respectively. Then,

$$
G(\dot{\Phi}, \mathbb{J}\bar{X}) = G(Y \wedge N + \epsilon \nabla f \wedge \phi - dN(Y) \wedge \phi, \mathbb{J}(X \wedge N + AX \wedge \phi))
$$

= $-df(X),$

which implies that

$$
\dot{\Phi}^{\perp} = -\mathbb{J}\overline{\nabla}f,
$$

and this completes the proof of the Theorem. \Box

3.2. Applications. A *real diagonalizable immersion* is a smooth immersion ϕ of a hypersurface Σ^n into the $(n+1)$ -dimensional real space form $\mathbb{S}_{p,1}^{n+1}$ such that, locally, the shape operator A can be diagonalized, that is, there exists a local orthonormal frame (e_1, \ldots, e_n) and real functions k_1, \ldots, k_n where $A =$ $diag(k_1,...,k_n)$. In this case, each vector field e_i is called *a principal direction* with corresponding *principal curvature* k_i .

Remark 3.1. *Note that in the Riemannian case every hypersurface is real diagonalizable, away from umbilic points.*

We are now in position to prove our second result:

Proof of Theorem [1.2](#page-2-0) Consider a smooth immersion of ϕ of the *n*-dimensional manifold Σ in $\mathbb{S}_{p,1}^{n+1}$ and let $\Phi : \Sigma^n \to L^{\pm}(\mathbb{S}_{p,1}^{n+1})$ be the corresponding Gauss map. The fact that ϕ is real diagonalizable implies the existence of an orthonormal frame (e_1,\ldots,e_n) , with respect to the induced metric ϕ^*g , such that

$$
Ae_i = k_i e_i, \quad i = 1, \dots, n,
$$

where A denotes the shape operator of ϕ . Let $(\phi_t)_{t\in(-t_0,t_0)}$ be a smooth variation of ϕ and (Φ_t) be the corresponding variation of the Gauss map Φ . Real diagonalizability implies that the minimal polynomial of A is the product of distinct linear factors. Using the fact that the variation (Φ_t) is at least C^1 smooth, it is possible to obtain a positive real number $t_1 < t_0$ such that ϕ_t is real diagonalizable for every $t \in (-t_1, t_1)$. We may extend all extrinsic geometric quantities such as the shape operator A, the principal directions e_i , and the principal curvatures k_i to the 1-parameter family of immersions (ϕ_t) .

(i) From [\[2\]](#page-7-1), the induced metric $\Phi_t^* G$ is given by $\Phi_t^* G = \epsilon \phi_t^* g + \phi_t^* g(A, A, A)$, and thus

$$
\Phi_t^*G = \text{diag}(\epsilon_1(\epsilon + k_1^2), \dots, \epsilon_n(\epsilon + k_n^2)),
$$

where $\epsilon_i = g(e_i, e_i)$. For every sufficiently small $t > 0$, the volume of every Gauss map Φ_t , with respect to the metric G, is

$$
Vol(\Phi_t) = \int_{\Sigma} \sqrt{|\det \Phi_t^* G|} dV = \mathcal{W}(\phi_t). \tag{1}
$$

If ϕ is a critical point of the functional W, we have

$$
\partial_t(\text{Vol}(\Phi_t))=0,
$$

for any Hamiltonian variation of Φ . Therefore, Φ is a Hamiltonian minimal submanifold with respect to the Kähler Einstein structure (G, J) . The converse follows directly from [\(1\)](#page-5-0).

(ii) Assume that $n = 2$. From [\[2\]](#page-7-1), in terms of the orthonormal frame (e_1, e_2) , the induced metric $\Phi^* G'$ is

$$
\Phi^*G' = \begin{pmatrix} 0 & \epsilon_2(k_2 - k_1) \\ \epsilon_2(k_2 - k_1) & 0 \end{pmatrix},
$$

where $\epsilon_2 = \phi^* g(e_2, e_2)$. Then, the volume of every Gauss map Φ_t , with respect to the metric G' , is

$$
\text{Vol}'(\Phi_t) = \int_{\Sigma} \sqrt{|\det \Phi_t^* G|} dV = \mathcal{W}'(\phi_t),\tag{2}
$$

and thus the second statement of the Theorem follows by a similar argument as the proof of the first statement. \Box

Let $\phi: \Sigma^n \to \mathbb{S}_{p,1}^{n+1}$ be a hypersurface and N denotes the unit normal vector field. For $\theta \in \mathbb{R}$, consider the immersion $\phi_{\theta} := \cos \epsilon(\theta) \phi + \sin \epsilon(\theta) N$, where $\epsilon :=$ $|N|^2$ and $(\cos \epsilon(\theta), \sin \epsilon(\theta)) = (\cos \theta, \cos \theta)$ if $\epsilon = 1$ while for $\epsilon = -1$ we have $(\cos \epsilon(\theta), \sin \epsilon(\theta)) = (\cosh \theta, \cosh \theta)$. The images $\phi_{\theta}(\Sigma)$ and $\phi(\Sigma)$ are called parallel hypersurfaces. It is important to mention that parallel hypersurfaces have the same Gauss map [\[2\]](#page-7-1).

Looking more carefully the relations [\(1\)](#page-5-0) and [\(2\)](#page-6-0), we obtain the following symmetry for the functionals W and W' :

Corollary 3.2. *If* ϕ_1 *and* ϕ_2 *are parallel smooth real diagonalizable immersions of the n*-manifold Σ *in* $\mathbb{S}_{p,1}^{n+1}$ *, then* $\mathcal{W}(\phi_1) = \mathcal{W}(\phi_2)$ *. In the case where* $n = 2$ *, we also have that* $W'(\phi_1) = W'(\phi_2)$ *.*

Using the Einstein (para-)Kähler structure $(L^{\pm}(\mathbb{S}^3_{p,1}), G, J)$, we obtain the following Corollary:

Corollary 3.3. Let $\phi : \Sigma^n \to \mathbb{S}_{p,1}^{n+1}$ be a real diagonalizable hypersurface and *let* k_1, \ldots, k_n *be the principal curvatures. If* Φ *is the Gauss map of* ϕ *, then the* $function \sum_{i=1}^{n} \tan \epsilon^{-1}(k_i)$ *is harmonic with respect to the induced metric* Φ^*G *if and only if* ϕ *is a critical point of the functional* $\int_{\Sigma} \sqrt{\Pi_{i=1}^n} |\epsilon + k_i^2|$.

Proof. Let Φ be the Gauss map of ϕ and consider the Einstein (para-)Kähler structure (G, J) . Then, from [\[2](#page-7-1)], we know that the mean curvature H of Φ is given by

$$
\vec{H} = \frac{\epsilon}{n} J \nabla \left(\sum_{i=1}^{n} \tan \epsilon^{-1}(k_i) \right),
$$

where ∇ denotes the Levi–Civita connection of the induced metric Φ^*G . Then the Corollary follows by the following relation

$$
\operatorname{div}(nJ\vec{H}) = \Delta\left(\sum_{i=1}^n \tan \epsilon^{-1}(k_i)\right),\,
$$

where div and Δ denote the divergence operator and the Laplacian of Φ^*G . \Box

Using the Remark [3.1,](#page-5-1) we obtain the following two Corollaries:

Corollary 3.4. *Let* $\phi : \Sigma^n \to \mathbb{S}^{n+1}$ (*resp. in the hyperbolic space* \mathbb{H}^{n+1}) *be a hypersurface in the sphere* \mathbb{S}^{n+1} . Then the Gauss map Φ *is a Hamiltonian minimal submanifold in the* (*para-*)*K¨ahler Einstein structure* (G, J) *if and only if the hypersurface* ϕ *is a critical point of the functional* $W(\phi) = \int_{\Sigma} \sqrt{\Pi_{i=1}^n} (1 + k_i^2)$ $(resp. W(\phi) = \int_{\Sigma} \sqrt{\Pi_{i=1}^n} |1 - k_i^2|$, where k_1, \ldots, k_n are the principal curva*tures of* ϕ *.*

Corollary 3.5. *Let* $\phi : \Sigma \to \mathbb{S}^3$ (*resp. in the hyperbolic space* \mathbb{H}^3) *be a surface in the sphere* S3*. Then the Gauss map* Φ *is a Hamiltonian minimal submanifold* with respect to the Kähler, conformally flat structure (G', \mathbb{J}') if and only if *the surface* ϕ *is a critical point of the functional* $W'(\phi) = \int_{\Sigma} \sqrt{H^2 - K + 1}$ $(r \exp N'(\phi) = \int_{\Sigma} \sqrt{H^2 - K - 1}$), where H, K denote the mean and the Gauss *curvature of* φ*.*

Acknowledgments. The authors would like to thank Henri Anciaux and Martin A. Magid for their helpful and valuable suggestions and comments. Nikos Georgiou is partially supported by Fapesp—S˜ao Paulo Research Foundation $(2010/08669-9).$

References

- [1] D. Alekseevsky, B. Guilfoyle, and W. Klingenberg, On the geometry of spaces of oriented geodesics, Ann. Global Anal. Geom. **40** (2011), 389–409.
- [2] H. Anciaux, Space of geodesics of pseudo-Riemannian space forms and normal congruences of hypersurfaces, Trans. Amer. Math. Soc. **366** (2014), 2699–2718.
- [3] H. Anciaux, B. Guilfoyle, and P. Romon, Minimal submanifolds in the tangent bundle of a Riemannian surface, J. Geom. Phys. **61** (2011), 237–247.
- [4] A. BUTSCHER AND J. CORVINO, Hamiltonian stationary tori in Kähler manifolds, Calc. Var. Partial Differential Equations **45** (2012), 63–100.
- [5] N. GEORGIOU AND B. GUILFOYLE, On the space of oriented geodesics of hyperbolic 3-space, Rocky Mountain J. Math. **40** (2010), 1183–1219.
- [6] B. GUILFOYLE AND W. KLINGENBERG, An indefinite Kähler metric on the space of oriented lines, J. London Math. Soc. **72** (2005), 497–509.
- [7] B. GUILFOYLE AND W. KLINGENBERG, A neutral Kähler metric on the space of time-like lines in Lorentzian 3-space (2005) [arXiv:math.DG/0608782.](http://arxiv.org/abs/math.DG/0608782)
- [8] N.J. Hitchin, Monopoles and geodesics, Comm. Math. Phys. **83** (1982), 579– 602.
- [9] D. Joyce, Y.-I. Lee and R. Schoen, On the existence of Hamiltonian stationary Lagrangian submanifolds in symplectic manifolds, Amer. J. Math. **133** (2011), 1067–1092.
- [10] Y.-I. Lee, The existence of Hamiltonian stationary Lagrangian tori in Kähler manifolds of any dimension, Calc. Var. Partial Differential Equations **45** (2012), 231–251.
- [11] Y.-G. Oh, Second variation and stabilities of minimal lagrangian submanifolds in Kähler manifolds, Invent. Math. **101** (1990), 501–519.
- [12] Y.-G. Oh, Volume minimization of Lagrangian submanifolds under Hamiltonian deformations, Math. Z. **212** (1993), 175–192.
- [13] B. Palmer, Buckling eigenvalues, Gauss maps and Lagrangian submanifolds, Differential Geom. Appl. **4** (1994), 391–403.
- [14] M. Salvai, On the geometry of the space of oriented lines in Euclidean space, Manuscripta Math. **118** (2005), 181–189.

[15] M. SALVAI, On the geometry of the space of oriented lines of hyperbolic space, Glasg. Math. J. **49** (2007), 357–366.

Nikos Georgiou Department of Computing and Mathematics, Waterford Institute of Technology, Waterford, Ireland e-mail: ngeorgiou@wit.ie

Guillermo A. Lobos Department of Mathematics, Federal University of São Carlos, S˜ao Carlos, SP, Brazil e-mail: lobos@dm.ufscar.br

Received: 2 October 2015