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A note on approximation of operator semigroups
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Abstract. Let A be a bounded linear operator and P a bounded linear
projection on a Banach space X. We show that the operator semigroup
(et(A−kP ))t≥0 converges to a semigroup on a subspace of X as k → ∞
and we compute the limit semigroup.
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1. Introduction and discussion of the main result. To motivate the content of
this note, let (Ω,Σ, μ) be a σ-finite measure space and (etA)t≥0 a positive C0-
semigroup on X := Lp(Ω,Σ, μ) for some p ∈ [1,∞). If B ⊂ Ω is a measurable
set, if P is the projection on X which is given by multiplication with the
indicator function 1B , and if Q := 1 − P , then for all t > 0 the limits

lim
k→∞

et(A−kP ) and lim
k→∞

(
e

t
k AQ

)k (1.1)

exist with respect to the strong operator topology and coincide [1, Lemma 4.1
and Theorem 5.3]. The limit can be shown to be a certain degenerate operator
semigroup [1, p. 431–432] which we might refer to as a sort of absorption semi-
group. Usually, the latter term is used to describe the semigroup governed by
an abstract Cauchy problem which models a diffusion process with a poten-
tial (= absorption term). For the connection of such absorption semigroups to
the limit semigroup in (1.1), we refer the reader to [1]; see also [8,9] for some
additional background information.

When considering the above convergence result, a number of potential gen-
eralisations immediately comes into ones mind; for example, one could try to
replace the projection P , which is given by multiplication with an indicator
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function, by a more general projection. One could also try to consider more
general spaces and/or to omit the positivity assumption. We refer to [2,5–7]
and the references therein for a number of positive and negative results in this
direction. It is also worthwhile pointing out that the second limit in (1.1) is
closely related to the so-called Quantum Zeno Effect ; we refer to [3,4] and the
references therein for more details.

In this note we are concerned with the existence of the limits in (1.1) in the
case where A is a bounded linear operator (without any additional properties)
on an arbitrary Banach space and where P is an arbitrary bounded linear
projection. For this case, the second limit in (1.1) was shown by Matolcsi
and Shvidkoy to always exist with respect to the strong operator topology;
moreover, they identified the limit semigroup and thus proved the following
theorem [7, Theorem 1]:

Theorem 1.1 (Matolcsi, Shvidkoy). Let A be a bounded linear operator and Q
a bounded linear projection on a Banach space X. For each x ∈ X and each
t ≥ 0 we have

(
e

t
k Q

)k
x → etQAQQx as k → ∞,

where the convergence is uniform with respect to t on bounded subsets of [0,∞).

As the generator A is bounded, it is natural to ask whether the limit exists
even in the operator norm topology. In Section 3, at the end of this note, we
will prove that this is indeed true. Our focus, however, is on another question,
namely whether the limit limk→∞ et(A−kP ) always exists if A is bounded. Our
main result gives an affirmative answer to this question:

Theorem 1.2. Let A be a bounded linear operator and P a bounded linear
projection on a complex Banach space X. Define Q := 1 − P and let z ∈ C.
For all t > 0 we have

et(A+zP ) → etQAQQ as Re z → −∞
with respect to the operator norm, and the convergence is uniform with respect
to t on compact subsets of (0,∞).

The proof of Theorem 1.2, which we present in Section 2, uses only ele-
mentary methods, but it requires a careful analysis of the spectral properties
of A + zP .

In fact, we will obtain a bit more information about the convergence in the
above theorem, including an explicit estimate (for undefined notation we refer
to the end of the introduction):

Remark 1.3. For t in any fixed compact subset of (0,∞), the convergence in
Theorem 1.2 has at least a linear rate.

More precisely, the following holds: let 0 < T1 < T2 and define R := 2(‖A‖+
δ)‖P − Q‖, where δ > 0 is any number sufficiently large to ensure that R is
strictly larger than the spectral radius of QAQ. Then, for every z ∈ C with
Re z < −2R and all t ∈ [T1, T2] we have

‖et(A+zP ) − etQAQQ‖ ≤ C1e
T1 Re z + C2

1
|z| − R

,
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where C2 := ReT2R ‖A‖+δ
δ ‖P‖ sup|λ|=R ‖I+AQR(λ,QAQ)‖ and C1 := ReT1R

δ ;
here, R(λ,QAQ) denotes the resolvent of QAQ at λ. Note that C2 can be
further estimated by means of the Neumann series if we chose δ > 0 sufficiently
large such that even R > ‖QAQ‖.

A few further remarks are in order.

Remark 1.4. (a) Using complexifications, one immediately obtains an analo-
gous result for real Banach spaces.

(b) The operator family (etQAQQ)t≥0 is a (norm continuous) C0-semigroup
on QX = ker P . Hence, the semigroup (et(A+zP ))t≥0 converges to 0 on
the range of P and to a semigroup with generator QAQ on the kernel of
P .

(c) Using the power series expansion of the exponential function, one obtains
several ways to write down the limit semigroup; in fact, one has

etQAQQ = etQAQ = QetAQ = QetQAQ = QetQAQQ

for every t ∈ (0,∞).
(d) The assertion of Theorem 1.2 is obviously false for t ≤ 0; just consider

X = C, A = 0 and P = 1 to see this.
(e) A glance at the proof of Theorem 1.2 in the next section reveals that one

can show similar results for analytic functions f other than exp, provided
that f satisfies certain decay properties. Since our focus is on operator
semigroups, we shall not discuss this in detail.

It seems to be unclear what happens to the assertion of Theorem 1.2 if we
consider C0-semigroups with unbounded generator A. Of course, one expects
that some additional conditions are necessary in this case, since otherwise it
might happen that QAQ has only a very small domain which need not be dense
in the range of Q; moreover, QAQ might not even be closed. Concerning the
related Theorem 1.1, we also point out that the strong limit limk→∞

(
e

t
k AQ

)k

never exists for all bounded linear projections Q on X unless A is bounded
[6, Theorem 2.1]. In any case, the proof of Theorem 1.2, which we present
below, relies heavily on the boundedness of A. We therefore leave it as an
open problem to analyse the case of unbounded generators.

Before we give a proof of our main result in the next section, let us briefly
fix some notation. If X is a complex Banach space, then we denote by L(X)
the space of all bounded linear operators on X. The spectrum of an operator
A ∈ L(X) is denoted by σ(A) and for every λ ∈ C\σ(A), R(λ,A) := (λ−A)−1

denotes the resolvent of A at λ. For r ≥ 0 and z ∈ C we denote by Br(z) :=
{μ ∈ C| |μ − z| < r} the open disk in C with center z and radius r and by
Br(z) := {μ ∈ C| |μ − z| ≤ r} the closed disk in C with center z and radius r.

2. Proof of the main result. In this section we prove our main result. Through-
out the section we may assume that X 	= {0} and we let 0 < T1 < T2. We
want to find a norm estimate for the difference et(A+zP ) − etQAQQ, where
t ∈ [T1, T2] and where Re z → −∞. To this end we employ the functional
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calculus for analytic functions and write

et(A+zP ) − etQAQQ =
1

2πi

∮

γ

etλ[R(λ,A + zP ) − R(λ,QAQ)Q] dλ (2.1)

for an appropriate path γ which encircles both the spectra of A + zP and
QAQ. Of course, we could choose γ to be a sufficiently large circle, but this is
too crude to obtain a reasonable estimate. Hence, our first task is to localize
the spectrum of A + zP more precisely in order to find a good choice for γ.

To do this, we first show a simple auxiliary result about the resolvent of
our projection P .

Lemma 2.1. Let z ∈ C.
(a) We have σ(zP ) ⊂ {0, z} and for every λ ∈ C \ {0, z}, the resolvent of zP

is given by

R(λ, zP ) =
λ − zQ

λ(λ − z)
(2.2)

=
1
2
( 1
λ

+
1

λ − z
+

z(P − Q)
λ(λ − z)

)
. (2.3)

(b) Consider a non-negative parameter α ≥ 0 and the radius rα := 2α‖P −
Q‖. If λ ∈ C is contained in none of the closed disks Brα

(0) and Brα
(z),

then the resolvent R(λ, zP ) fulfils the estimate

α‖R(λ, zP )‖ < 1.

Loosely speaking, the estimate in (b) says that the resolvent R(λ, zP )
decreases linearly as λ tends away from the points 0 and z.

Proof of Lemma 2.1. (a) We clearly have σ(zP ) ⊂ {0, z} since σ(P ) ⊂ {0, 1}.
The representation formulas for the resolvent can be verified by a simple com-
putation.

(b) Assume that λ 	∈ Brα
(0) ∪ Brα

(z), then |λ| > rα ≥ 2α and |λ − z| >
rα ≥ 2α. Moreover, at least one of the numbers |λ| and |λ − z| is no less
than |z|

2 since we have |z| ≤ |λ| + |λ − z|. Since the other one is no less than
rα = 2α‖P −Q‖, we conclude that |λ||λ−z| ≥ α|z|‖P −Q‖. Hence, we conclude
from the resolvent representation formula (2.3) in (a) that

α‖R(λ, zP )‖ ≤ 1
2
( α

|λ| +
α

|λ − z| +
α|z|‖P − Q‖

|λ||λ − z|
)

< 1,

which proves the assertion. �

Now we can achieve our first goal and obtain very precise information on
the position of the spectrum σ(A+zP ); we also obtain a Neumann type series
representation for the resolvent:

Proposition 2.2. Let z ∈ C and consider the radius r := 2‖A‖‖P − Q‖.
(a) The spectrum of A + zP is contained in the union of the two closed disks

Br(0) and Br(z).
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(b) If λ ∈ C is contained in none of the discs Br(0) and Br(z), then

R(λ,A + zP ) =
∞∑

k=0

(R(λ, zP )A
)kR(λ, zP ),

where the series converges absolutely with respect to the operator norm.

Proof. For every λ 	∈ Br(0) ∪ Br(z) the equation

λ − (A + zP ) = (λ − zP ) − A = (λ − zP )
(
1 − R(λ, zP )A

)

holds. If we apply Lemma 2.1(b) with the parameter α := ‖A‖, then we obtain
the estimate ‖A‖‖R(λ, zP )‖ < 1, and thus (a) and (b) follow by employing
the Neumann series. �

Part (a) of the above proposition suggests a strategy to estimate the expres-
sion in (2.1): we rewrite the contour integral in (2.1) as a sum of contour
integrals around Br(0) and Br(z); the path of integration around the first
disk should also be sufficiently large to encircle the spectrum of QAQ. Let us
therefore introduce the following notation:

Notation 2.3. For the rest of this section we use the following notation:
(a) Let r := 2‖A‖‖P − Q‖ as in Proposition 2.2.
(b) Let R := 2(‖A‖+ δ)‖P −Q‖ > r, where δ > 0 is chosen sufficiently large

to ensure that the open disk BR(0) contains the spectrum of QAQ.

If |z| > 2R, then the circles with radius R around 0 and z do not intersect;
using the information about the spectrum of A + zP that we obtained in
Proposition 2.2(a), we can therefore rewrite (2.1) as

et(A+zP ) − etQAQQ =
1

2πi

∮

|λ−z|=R

etλR(λ,A + zP ) dλ

+
1

2πi

∮

|λ|=R

etλ[R(λ,A + zP ) − R(λ,QAQ)Q] dλ, (2.4)

where the paths of integration are parametrized with positive orientation. The
spectra of A + zP and QAQ and the paths of integration in formula (2.4) are
shown in Fig. 1.

Our goal is now to estimate both integrals in formula (2.4). Let us start
with the first integral, which turns out to be rather easy: since t ≥ T1, the
exponential term within the integral ensures a fast decay as Re z → −∞
provided that we can control the resolvent. This is the content of the following
proposition.

Proposition 2.4. Let z ∈ C, Re z < −2R.
(a) We have ‖R(λ,A + zP )‖ ≤ 1

δ for all λ ∈ C with |λ − z| = R.
(b) For all t ∈ [T1,∞) we have

‖ 1
2πi

∮

|λ−z|=R

etλR(λ,A + zP ) dλ‖ ≤ ReT1(Re z+R)

δ
.
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Figure 1. Spectra of A + zP and QAQ; the dashed circles
depict the paths of integration in formula (2.4)

Proof. (a) To prove (a) we do not really need that Re z < −2R but only that
the disks BR(0) and BR(z) do not intersect. Let λ ∈ C with |λ − z| = R. In
Proposition 2.2(b) we proved the resolvent representation formula

R(λ,A + zP ) =
∞∑

k=0

(R(λ, zP )A
)kR(λ, zP ).

From Lemma 2.1(b) we obtain (with α := ‖A‖ + δ and by approximating
the circle ∂Brα

(z) from the outside) the estimate (‖A‖ + δ)‖R(λ, zP )‖ ≤
1. Plugging this into the above representation formula for R(λ,A + zP ), we
compute

‖R(λ,A + zP )‖ ≤
∞∑

k=0

( ‖A‖
‖A‖ + δ

)k 1
‖A‖ + δ

=
1
δ
.

(b) Assertion (b) readily follows from (a) since Reλ ≤ Re z + R < 0 for all
λ in the path of integration. �

Part (b) of the above proposition shows that the first integral in (2.4)
exhibits the decay rate claimed in Remark 1.3. It therefore remains to consider
the second integral. Here, the exponential term is bounded below and above,
so we have to show that the difference R(λ,A+ zP )−R(λ,QAQ)Q converges
to 0 as Re z → −∞. To do this, we represent the difference of both resolvents
as a bounded multiple of R(λ,A + zP )P ; this latter term can then easily be
seen to converge to 0.

Proposition 2.5. Let z ∈ C, |z| > 2R.
(a) There is a bounded function M : ∂BR(0) → L(X), not depending on z,

such that

R(λ,A + zP ) − R(λ,QAQ)Q = R(λ,A + zP )P M(λ)

for all λ with |λ| = R.
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(b) We have ‖R(λ,A + zP )P‖ ≤ ‖A‖+δ
δ

‖P‖
|λ−z| for all λ with |λ| = R.

Proof. (a) Using that Q commutes with R(λ,QAQ), we can verify by a brief
computation that

R(λ,A + zP ) − R(λ,QAQ)Q = R(λ,A + zP )P
(
I + AQR(λ,QAQ)

)

for all λ which are contained in the resolvent sets of both A + zP and QAQ.
Hence, we simply have to define M(λ) := I + AQR(λ,QAQ) for all λ ∈
∂BR(0).

(b) Let |λ| = R. If we choose α = ‖A‖ + δ in Lemma 2.1(b) (and approx-
imate the circle ∂Brα

(0) from the outside), we obtain ‖R(λ, zP )‖ ≤ 1
‖A‖+δ .

Plugging this into the resolvent representation formula from Proposition 2.2(b)
yields

‖R(λ,A + zP )P‖ ≤ ‖A‖ + δ

δ
‖R(λ, zP )P‖.

However, using formula (2.2) in Lemma 2.1(a), we can easily see that the
operator R(λ, zP )P coincides with P

λ−z . This proves the asserted estimate. �

As a consequence we obtain the desired estimate for the second integral in
formula (2.4):

Proposition 2.6. There is a number C > 0, independent of z, such that

‖ 1
2πi

∮

|λ|=R

etλ[R(λ,A + zP ) − R(λ,QAQ)Q] dλ‖ ≤

≤ C ReT2R ‖A‖ + δ

δ

‖P‖
|z| − R

for all t ∈ [−T2, T2] and for all z ∈ C with |z| > 2R.

Proof. The assertion follows immediately from Proposition 2.5 if we set C =
sup|λ|=R ‖M(λ)‖. Note that if M is chosen as in the proof of Proposition 2.5,
then C has the value C = sup|λ|=R ‖I + AQR(λ,QAQ)‖. �

This completes the proof of our main theorem, and the choice of the con-
stant C in the above proof also gives us the estimate claimed in Remark 1.3.

It is interesting to note that the convergence of the first integral in (2.4)
is due to the decay of the exponential function as Re z → −∞, while the
convergence of the second integral only relies on the decay of the difference
R(λ,A + zP ) − R(λ,QAQ)Q as |z| → ∞.

3. Operator norm convergence in Matolcsi’s and Shvidkoy’s Theorem. In this
final section we briefly demonstrate that in Theorem 1.1 the convergence hap-
pens, in fact, with respect to the operator norm. At first glance, one might
expect that we have to reprove the theorem, possibly by another method or
with better estimates, to obtain this result. But in fact, things are much eas-
ier: we will use a simple lifting argument to derive operator norm convergence
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from the fact that we already know about the strong convergence. By the way,
the theorem of course holds for negative times t, too.

Theorem 3.1. Let A be a bounded linear operator and Q a bounded linear
projection on a Banach space X. For all t ∈ R we have

(
e

t
k AQ

)k → etQAQQ as k → ∞
with respect to the operator norm; moreover, the convergence is uniform with
respect to t in bounded subsets of R.

Proof. First note that Theorem 1.1 obviously remains true for t ∈ R (consider
the negative generator −A to handle the case of negative times).

Denote by BX the closed unit ball in X and let X̂ := 	∞(BX ;X) be the
space of all bounded maps from BX to X. Clearly, X̂ is a Banach space when
endowed with the supremum norm. For every B ∈ L(X), define B̂ ∈ L(X̂) by
B̂(yx) := (Byx) for all (yx) = (yx)x∈BX

∈ X̂; the mapping

L(X) → L(X̂), B �→ B̂

is an isometric unital Banach algebra homomorphism. In particular, Q̂ is a
projection on X̂.

Fix T > 0 and let x̂ := (x)x∈BX
∈ X̂ be the identity map from BX to X.

For every B ∈ L(X) we have ‖B‖ = ‖B̂x̂‖. Hence,

supt∈[−T,T ] ‖
(
e

t
k AQ

)k − etQAQQ‖ = supt∈[−T,T ] ‖
(
e

t
k ÂQ̂

)k
x̂ − etQ̂ÂQ̂Q̂x̂‖,

and the latter term converges to 0 as k → ∞ according to Theorem 1.1 (respec-
tively, its version for t ∈ R). �
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