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On the number of elements that are not kth powers in a group
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Abstract. Let k be a positive integer, and suppose that the number of
elements of a group G that are not k th powers in G is nonzero but finite.
If G is finite, we obtain an upper bound on |G|, and we present some
conditions sufficient to guarantee that G actually is finite.
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1. Introduction. Let G be a possibly infinite group, and fix an integer k > 0.
In this paper, we consider the set of elements in G that are not k th powers.
In other words, we are interested in the complement in G of the set

Gk = {xk | x ∈ G}.

We write Nk(G) = G − Gk and nk(G) = |Nk(G)|, so Nk(G) is the set of
non-k th-powers in G and nk(G) is the number of such elements. Our goal is
to obtain information about |G| under the assumption that 0 < nk(G) < ∞.

We begin with an easy observation.

Lemma A. Suppose that 0 < nk(G) < ∞, where G is a group. If Gk is a
subgroup, then |G| ≤ 2nk(G), and in particular, G is finite.

Proof. Since nk(G) > 0, we can choose a non-k th-power x ∈ G. The coset
xGk is disjoint from Gk, and thus xGk ⊆ Nk(G). Then |Gk| = |xGk| ≤ nk(G),
and since |G| = |Gk| + nk(G), we conclude that |G| ≤ 2nk(G). �

Although Gk is certainly not a subgroup in general, it is a subgroup if G
is abelian, and thus Lemma A applies in this case, and thus |G| ≤ 2nk(G) for
abelian groups. (The situation where Gk is a subgroup has been well studied,
and we mention in particular the paper [4] by Liebeck and Shalev.)
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Our goal is to prove something like the conclusion of Lemma A in general,
where Gk is not necessarily a subgroup. If G is a finite group, we obtain a qua-
dratic upper bound on |G|, which, as we shall see, is attained infinitely often.
Unfortunately, we have only partial results for groups that are not assumed to
be finite.

The finite-group case of this problem has been studied previously. For ex-
ample, in [1], Bannai et al. used the classification of finite simple groups to
show that if k divides |G|, then nk(G) ≥ [√|G| ]. A classification-free proof of
this inequality was given by Lévai and Pyber in [2], and more recently, in [3],
Lucido and Pournaki gave another proof for the case k = 2.

For finite groups, we prove a somewhat sharper inequality with an even
more elementary proof.

Theorem B. Assume that G is finite, and write n = nk(G). If n > 0, then
|G| ≤ n(n+1), and in fact |G| ≤ n2 except in the case where G is a Frobenius
group with kernel of order n + 1 and complement of order n, and in that case,
Nk(G) is exactly the set of nonidentity elements of the Frobenius kernel.

Observe that in the exceptional case of the theorem, where |G| > n2, we
have |G| = n(n + 1), and in this situation, the nonidentity elements of the
Frobenius kernel are conjugate in G, and thus they all have the same prime
order p. It follows that the Frobenius kernel is an elementary abelian p-group,
and we conclude that n + 1 must be a prime power.

Conversely, given an arbitrary prime power pe, there exist Frobenius groups
with elementary abelian kernels of order pe and complements of order pe−1. In
such a group, all of the elements outside of the kernel have order not divisible
by p, and so all of those elements are p th powers. It is easy to see that in this
case, none of the nonidentity elements of the kernel is a p th power, and thus,
taking k = p, we have n = np(G) = pe − 1 and |G| = n(n + 1). It follows that
our upper bound n(n + 1) for |G| is attained infinitely often: whenever k = p
is prime and nk(G) has the form pe − 1.

Without some additional conditions on a group G, we have been unable to
prove that if the number of non-k th-powers in G is nonzero but finite, then
|G| must be finite. We can prove the following, however.

Theorem C. Let G be a group, and assume that 0 < nk(G) < ∞. Suppose also
that one of the following holds.
(1) G satisfies the maximal condition on cyclic subgroups.
(2) G has a finite-index nilpotent subgroup.
(3) G is residually finite.
Then G is finite.

In particular, a group in which all elements have bounded finite order sat-
isfies condition (1) of Theorem C, and thus such a group must be finite if its
set of non-k th-powers is nonempty and finite.

A key step in our proof of Theorem C is the following, which may be of
some independent interest.
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Lemma D. Suppose that 0 < np(G) < ∞, where p is prime. Then there exists
a finite-index subgroup H ⊆ G such that Np(H) ⊆ Z(H) and 0 < np(H) ≤
np(G).

2. Finite groups. We work first to prove Theorem B in the case where k is a
prime number; the general case will then follow fairly easily. Given a prime p,
we will say that an element of a possibly infinite group is p-regular if it has
finite order not divisible by p.

We begin with an elementary general observation.

Lemma 2.1. Let x ∈ G, and let p be prime. Then x ∈ Np(G) if and only if x
is not p-regular and the cyclic group 〈x〉 does not have index p in any cyclic
subgroup of G.

Proof. First, suppose x ∈ Np(G). If x has finite order m, where m is not
divisible by p, write ap + bm = 1 for integers a and b. Then xm = 1, so
x = xapxbm = (xa)p, and this is a contradiction since x is a non-p th-power.
Also, if 〈x〉 has index p in a cyclic group B, then x ∈ 〈x〉 = Bp, which is also
a contradiction.

We must show now that if x 	∈ Np(G), then either x is p-regular, or else
〈x〉 has index p in some cyclic subgroup. Let y ∈ G with yp = x. Then
〈x〉 ⊆ 〈y〉 and |〈y〉 : 〈x〉| is the order of y modulo 〈x〉, and this order divides
p. If |〈y〉 : 〈x〉| 	= p, therefore, we have 〈y〉 = 〈x〉, and thus y is a power of x.
Writing y = xe, we have x = yp = xpe, and thus x has finite order dividing
pe − 1, and so x is p-regular. �

Lemma 2.2. Let H ⊆ G, where G is finite, and let p be prime. Then np(H) ≤
np(G).

In fact, Lemma 2.2 remains true if the assumption that |G| is finite is
relaxed, and we assume only that the index |G : H| is finite. We will prove
that more general result later, but we have decided to provide a separate
elementary proof for the finite case.

Proof of Lemma 2.2 For elements x ∈ Gp, write θ(x) = {y ∈ G | yp = x}, and
observe that the sets θ(x) are nonempty and disjoint, and their union is the
whole group G. It follows that

np(G) = |G| − |Gp| =
∑

x∈Gp

|θ(x)| − |Gp| =
∑

x∈Gp

(|θ(x)| − 1).

Similarly, if x ∈ Hp, we write ϕ(x) = {y ∈ H | yp = x}. Then

np(H) =
∑

x∈Hp

(|ϕ(x)| − 1).

Now Hp ⊆ Gp, and for elements x ∈ Hp, we have ϕ(x) = H ∩ θ(x), so
|ϕ(x)| ≤ |θ(x)|. Also, each term in the sum for np(G) is nonnegative, so a
comparison of the two sums shows that np(H) ≤ np(G), as required. �
Lemma 2.3. Let G be finite, and suppose that p divides |Z(G)|, where p is
prime. Then |G| ≤ 2np(G).
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Proof. Let Z ⊆ Z(G) with |Z| = p. Since all elements in each coset of Z in G
have the same p th power, it follows that |Gp| is at most the number of cosets,
which is |G|/p. Then

np(G) = |G| − |Gp| ≥ |G| − |G|
p

=
p − 1

p
|G| ≥ |G|

2
,

and the result follows. �
Next, we state the case of Theorem B where k is prime.

Theorem 2.4. Let |G| be finite, and assume that np(G) > 0, where p is prime.
Then writing n = np(G), we have |G| ≤ n(n+1). In fact, |G| ≤ n2 unless G is
a Frobenius group with kernel of order n + 1 and complement of order n, and
in this case, Np(G) is exactly the set of nonidentity elements of the Frobenius
kernel.

Before we begin the proof, we recall that if a group G contains a nonidentity
proper normal subgroup C such that CG(x) ⊆ C for all nonidentity elements
x ∈ C, then G is a Frobenius group with Frobenius kernel C. To see this,
observe first that C must contain a full Sylow q-subgroup of G for each prime
divisor q of |C|. It follows that C is a Hall subgroup of G, and hence by the
Schur–Zassenhaus theorem, C has a complement H in G. Since no nonidentity
element of C commutes with any nonidentity element of H, it follows that G
is a Frobenius group with kernel C and complement H.

Proof of Theorem 2.4 The set Np(G) is a union of conjugacy classes of G, and
we suppose first that it is not a single conjugacy class, so some class contained
in Np(G) has size at most n/2. Let x be a member of this class, and write
C = CG(x), so |G : C| ≤ n/2.

Since x ∈ Np(G), it follows from Lemma 2.1 that the order of x is divisible
by p. Then p divides |Z(C)|, so we can apply Lemma 2.3 to conclude that
|C| ≤ 2np(C), and we have

|G| = |C||G : C| ≤ (2np(C))(n/2) ≤ (2n)(n/2) = n2 ,

as required, where the second inequality follows since np(C) ≤ np(G) = n by
Lemma 2.2.

Now assume that Np(G) is a single conjugacy class, so all members of
Np(G) have the same order, and by Lemma 2.1, this order must be divisible
by p. Then p divides |G|, and we let A be a cyclic p-subgroup of G having the
largest possible order. Then A is nontrivial, so each generator of A has prime-
power order equal to |A| > 1. Since A does not have index p in a larger cyclic
subgroup, it follows by Lemma 2.1 that every generator of A lies in Np(G).
The common order of the elements of Np(G), therefore, is |A|.

Suppose |A| > p. Then the p th powers of the elements of Np(G) form a
conjugacy class K, with elements having order divisible by p. Also, the map
x �→ xp is not injective on the set of generators of A, so it is not injective
on Np(G), and thus |K| < n. Let x ∈ Np(G), and write C = CG(xp). Then
|G : C| = |K| < n, and since CG(x) ⊆ C, it follows that |G : C| divides
|G : CG(x)| = n, and thus |G : C| ≤ n/2. Now xp ∈ Z(C) and xp has
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order divisible by p, so we can apply Lemmas 2.2 and 2.3 to deduce that
|C| ≤ 2np(C) ≤ 2np(G) = 2n, and thus |G| = |C||G : C| ≤ n2.

We can assume now that all elements of Np(G) have order p. Let y be an
arbitrary element of G having order divisible by p, and let B be maximal among
cyclic subgroups of G containing y. Then B does not have index p in a larger
cyclic subgroup, and p divides |B|. By Lemma 2.1, therefore, each generator of
B lies in Np(G), so |B| = p, and thus y generates B. It follows that y ∈ Np(G),
and we see that Np(G) is the set of elements of G with order divisible by p.
In particular, every element with order divisible by p has order p, exactly.

Now let a ∈ Np(G), and let C =CG(a), so |G : C|=np(G)=n. If c∈C has
order m not divisible by p, then ac has order mp, which is divisible by p, and
thus ac has order p and m = 1. Each nonidentity element of C, therefore, has
order divisible by p, and hence has order p and lies in Np(G), and we conclude
that |C| ≤ n+1. If this inequality is strict, we get |G| = |G : C||C| ≤ n2, as
wanted.

We can assume now that |C| = n + 1, so |G| = |C||G : C| = n(n + 1). In
this case, C = {1} ∪ Np(G), so C � G, and thus C = CG(u) for every member
u of the conjugacy class Np(G). In particular, this holds for all nonidentity
elements u ∈ C, and it follows that G is a Frobenius group with kernel C.
Since |G : C| = n, the Frobenius complement has order n, and this completes
the proof. �

The following lemma will enable us to deduce Theorem B from Theorem 2.4.

Lemma 2.5. Let G be a group, and suppose that 0 < nk(G) < ∞. Then there
exists a prime p dividing k such that 0 < np(G) ≤ nk(G).

Proof. We proceed by induction on k. Since nk(G) > 0, some element of G is
not a k th power, and thus k > 1. If k is prime, there is nothing to prove, so
assume that k = ab, where a > 1 and b > 1, and thus a < k and b < k. Now
every k th power in G is both an a th power and a b th power, so the numbers of
non-a th-powers and non-b th-powers in G are at most nk(G). If the number of
non-a th-powers or the number of non-b th-powers in G is nonzero, the result
follows by the inductive hypothesis, with a or b in place of k. We can thus
assume that every element of G is both an a th power and a b th power. Now
let x ∈ G be arbitrary, and write x = ua and u = vb for elements u, v ∈ G.
Then x = vab = vk, and thus every element of G is a k th power, and this is a
contradiction. �

Proof of Theorem B By Lemma 2.5, we can choose a prime divisor p of k such
that 0 < np(G) ≤ n, where we recall that n = nk(G). By Theorem 2.4, we
have |G| ≤ np(G)(np(G) + 1), so if np(G) < n, it follows that |G| < n2, and
there is nothing further to prove.

We can assume now that np(G) = n = nk(G). Since p divides k, we see
that Np(G) ⊆ Nk(G), and thus Np(G) = Nk(G). By Theorem 2.4, we have
|G| ≤ n(n + 1), and in fact |G| ≤ n2 unless |G| = n(n + 1), and in that case,
G is a Frobenius group and Np(G) = Nk(G) is exactly the set of nonidentity
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elements in the Frobenius kernel of order n+1. Also, the Frobenius complement
has order n, and the proof is complete. �

3. Possibly infinite groups. We begin with a result that includes the promised
stronger form of Lemma 2.2.

Lemma 3.1. Suppose H ⊆ G has finite index, and let p be prime.
(a) If y ∈ Np(H), then y = xt for some element x ∈ Np(G), where t is a

power of p.
(b) There exists an injective map f : Np(H) → Np(G) such that y is a power

of f(y) for all y ∈ Np(H). Also f(y) = y if y ∈ H ∩ Np(G).
(c) np(H) ≤ np(G).

Proof. Given y ∈ H, let P(y) be the set of pairs (x, t), where x ∈ G and t is a
power of p such that xt = y. Note that P(y) is nonempty since (y, 1) ∈ P(y).
Suppose now that y ∈ Np(H) and (x, t) ∈ P(y). Note that if s < t, where s is
a power of p, then xs 	∈ H since otherwise, xt/p is a p th root of y in H, and
this contradicts the assumption that y ∈ Np(H).

We argue now that t ≤ |G : H|. Let B = 〈x〉, and note that |B : B∩H| < ∞
since xt ∈ B ∩ H. Writing m = |B : B ∩ H|, we see that m is the order of
the image of x in B/(B ∩ H). It follows that m divides t, and in particular,
m is a power of p. Since xm ∈ H, we cannot have m < t, so m = t, and thus
t = m = |B : B ∩ H| ≤ |G : H|, as claimed.

Now given y ∈ Np(H), choose (x, t) ∈ P(y) with t as large as possible.
(There is a maximum for t because, as we have seen, t ≤ |G : H|.) The
maximality of t guarantees that x ∈ Np(G), and (a) follows.

For (b), let f be the (not necessarily uniquely determined) function Np(H)
→ Np(G) defined as follows. Given y ∈ Np(H), we set f(y) = x, where as
above, x ∈ Np(G) and xt = y, where t is some power of p. Also, we have
seen that t must be the smallest power of p such that xt ∈ H, and thus x
determines t. It follows that x determines y = xt, and we conclude that the
map f is injective. Also, if it happens that y ∈ Np(G), we must have t = 1,
and thus f(y) = x = xt = y.

Finally, (c) follows because there is an injective map f : Np(H) → Np(G).
�

Proof of Lemma D For this proof, we write m(G) to denote the number of
elements of Np(G) that are not central in a group G. We are given that 0 <
np(G) < ∞, and we show by induction on m(G) that there exists a finite-index
subgroup H ⊆ G such that 0 < np(H) ≤ np(G) and Np(H) ⊆ Z(H).

If m(G) = 0, then every element of Np(G) is central in G, so we can take
H = G, and there is nothing further to prove. We can assume, therefore, that
there exists some element a ∈ Np(G) such that CG(a) < G, and we write C =
CG(a). All conjugates of a in G lie in Np(G), and thus |G : C| ≤ np(G) < ∞.
Also, a ∈ C ∩ Np(G) ⊆ Np(C), so np(C) > 0, and by Lemma 3.1, we have
np(C) < ∞.

We wish to apply the inductive hypothesis to the group C, and to do this,
we must establish that m(C) < m(G). Let f : Np(C) → Np(G) be the injective
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map of Lemma 3.1. If y ∈ Np(C) and y is not central in C, then since y is a
power of f(y), we see that f(y) does not centralize C, and thus f(y) is some
noncentral element in Np(G), and also, f(y) 	= a. It follows that f defines an
injective map from the set of elements of Np(C) that are not central in C into
the set of elements of Np(G) that are not central in G. Also, since the image
of this map excludes a, the image is a proper subset of the set of elements
of Np(G) that are not central in G, and thus m(C) < m(G). The inductive
hypothesis now yields the result. �

Next, we prove the first part of Theorem C.

Theorem 3.2. Suppose that the set of cyclic subgroups of the group G satisfies
the maximal condition, and assume that 0 < nk(G) < ∞. Then G is finite.

Proof. By Lemma 2.5, we can assume that k is a prime number, and we write
k = p. Lemma D guarantees that there is a finite-index subgroup H ⊆ G such
that 0 < np(H) < ∞ and Np(H) ⊆ Z(H). Since the maximal condition on
cyclic subgroups is inherited by subgroups of G, we can replace G by H, and
thus we can assume that Np(G) ⊆ Z(G).

We claim now that Z(G) contains every element of G that is not p-regular.
If x is such an element, we can apply the maximal condition to choose a
maximal cyclic subgroup B containing x. Since x is not p-regular, a generator
b for B is not p-regular, so by Lemma 2.1, we have b ∈ Np(G) ⊆ Z(G), and
thus x ∈ Z(G), as wanted.

Now let z ∈ Np(G) and suppose that y ∈ G is p-regular, so yr = 1, for
some integer r not divisible by p. We argue that zy is not p-regular. Otherwise,
(zy)s = 1 for some integer s not divisible by p, and thus 1 = (zy)rs = zrsyrs =
zrs, and hence z is p-regular. By Lemma 2.1, however, this is a contradiction
because z ∈ Np(G). By the result of the previous paragraph, zy ∈ Z(G), and
thus y ∈ Z(G).

We have now shown that Z(G) contains all non-p-regular elements of G as
well as all p-regular elements of G, and thus Z(G) = G. Then G is abelian, so
Gp is a subgroup, and thus |G| ≤ 2np(G) < ∞, by Lemma A. �

The following is the second part of Theorem C.

Theorem 3.3. Suppose that G has a nilpotent subgroup of finite index, and
assume that 0 < nk(G) < ∞. Then G is finite.

Before we proceed with the proof, we recall that in a possibly infinite nilpo-
tent group G, the upper central series is the subgroup chain

1 = Z0 < Z1 < · · · < Zc = G,

where c is a nonnegative integer and Zi is defined by the formula Zi/Zi−1 =
Z(G/Zi−1) for 0 < i ≤ c. The integer c is the nilpotence class of G, and we
observe that c = 0 precisely when G is trivial.

Proof of Theorem 3.3 By Lemma 2.5, we can assume that k = p is prime. By
Lemma D, there is a finite-index subgroup H ⊆ G such that 0 < np(H) <
∞ and Np(H) ≤ Z(H). The assumption that G has a finite-index nilpotent
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subgroup is inherited by subgroups of G, so there exists a finite-index nilpotent
subgroup K ⊆ H. Now KZ(H) is nilpotent, so we can assume that Z(H) ⊆ K,
and thus Np(H) ⊆ K, and we have Np(H) ⊆ Np(K). Also, np(K) ≤ np(H) by
Lemma 3.1, and it follows that Np(K) = Np(H) ⊆ Z(H), and thus Np(K) ⊆
Z(K). Also, np(K) = np(H), so 0 < np(K) < ∞.

Now K has finite index in G, so it suffices to show that |K| < ∞, and thus
we can replace G with K. We can assume, therefore, that G is nilpotent and
that Np(G) ⊆ Z(G). In this situation, we show by induction on the nilpotence
class c of G that |G| is finite.

If c ≤ 1 then G is abelian, so Gp is a subgroup, and the result follows by
Lemma A. We can assume, therefore, that c ≥ 2. Let Z = Z(G) and write
Y/Z = Z(G/Z), so G/Y has nilpotence class c − 2.

Now Zp is a normal subgroup of G, and we argue that Y/Zp is central in
G/Zp. It suffices to show that [y, g] ∈ Zp for all elements y ∈ Y and g ∈ G. If
g ∈ Np(G), then g is central, and thus [y, g] = 1 ∈ Zp, as required. Otherwise,
g is a p th power in G, and we can write g = up for some element u ∈ G. Since
Y/Z = Z(G/Z), it follows that [y, u] ∈ Z, and thus [y, g] = [y, up] = [y, u]p ∈
Zp, and this shows that Y/Zp is central in G/Zp, as claimed. Also, since G/Y
has nilpotence class c − 2, it follows that the class of G/Zp is at most c − 1.

Now write G = G/Zp, and let the overbar denote the canonical homomor-
phism from G onto G. We wish to apply the inductive hypothesis to the group
G, so we must verify that 0 < np(G) < ∞ and Np(G) ⊆ Z(G).

It suffices to show that Np(G) = Np(G), or equivalently, that an element
x ∈ G is a p th power if and only if x is a p th power in G. One direction of this
is trivial: if x = up, then x = up = (u)p. Conversely, suppose that x = (u)p

for some element u ∈ G. Then x = up, and thus x lies in the coset upZp. It
follows that x = upzp = (uz)p for some element z ∈ Z, and thus x is a p th
power, as wanted.

By the inductive hypothesis, |G| < ∞, so |G : Z| ≤ |G : Zp| < ∞, and
thus by Lemma 3.1, we have np(Z) ≤ np(G) < ∞. Also, Np(G) ⊆ Z, so
Np(G) ⊆ Np(Z), and thus 0 < np(Z). It follows by Lemma A that |Z| < ∞,
and thus |G| = |G : Z||Z| < ∞. �

To prove the third part of Theorem C, we need two easy preliminary results.

Lemma 3.4. Let Z = Z(G), and suppose 0 < np(G) < ∞, where p is prime.
Then

(a) |Zp| ≤ np(G).
(b) Every element of Z has finite order at most pnp(G).
(c) If x ∈ Np(G), then x has finite order at most pnp(G).

Proof. Let x ∈ Np(G). If z ∈ Z, we argue that xzp ∈ Np(G). Otherwise,
xzp = up for some element u ∈ G, and thus x = upz−p = (uz−1)p, and this is
a contradiction. We thus have xZp ⊆ Np(G), and thus |Zp| = |xZp| ≤ np(G),
as required for (a).

For (b), let z ∈ Z. Then 〈zp〉 ⊆ Zp, so |〈zp〉| ≤ np(G) by (a). Now (b)
follows since |〈z〉| ≤ p|〈zp〉|.
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To prove (c), let C = CG(x). Then |G : C| ≤ np(G) < ∞ since all conju-
gates of x in G lie in Np(G). By Lemma 3.1, therefore, we have np(C) ≤ np(G).
Also x ∈ Np(C), so 0 < np(C), and since x ∈ Z(C), it follows by (b) that x
has finite order at most pnp(C) ≤ pnp(G), as required. �
Lemma 3.5. Let H ⊆ G have finite index divisible by a prime number p. If
np(G) < ∞, then G is finite.

Proof. We can replace H by the intersection of its G-conjugates, and hence
it is no loss to assume that H � G. Now G/H is a finite group with order
divisible by p, so it contains an element of order p, and thus the p th-power
map on G/H is not injective. It follows that this map is not surjective, and
hence Np(G/H) is nonempty. Let X ∈ Np(G/H), where X is some coset of
H. Now X ⊆ Np(G), since otherwise, there exists an element v ∈ G such that
vp ∈ X, and thus X = Hvp = (Hv)p, and this is a contradiction since X is
a non-p th-power in G/H. It follows that |H| = |X| ≤ np(G) < ∞, and since
|G : H| < ∞ by assumption, we conclude that |G| < ∞, as required. �

Recall now that a group G is said to be residually finite if the intersection
of the finite-index normal subgroups of G is trivial. The following is the third
part of Theorem C.

Theorem 3.6. Assume that G is residually finite and that 0 < nk(G) < ∞.
Then G is finite.

Proof. As usual, we can assume that k = p is prime, and we let x ∈ Np(G).
Then x has finite order by Lemma 3.4, and this order is divisible by p by
Lemma 2.1. Some power y of x is thus a nonidentity element having p-power
order, and since G is residually finite, there exists a finite-index subgroup H� G
such that y 	∈ H. Then Hy ∈ G/H is a nonidentity element with p-power order,
and thus p divides |G/H|. It follows by Lemma 3.5 that |G| is finite. �
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